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Abstract—Two-dimensional digital predistortion (2-D DPD) is
one of the most commonly used approaches to linearize the
concurrent dual-band radio frequency (RF) power amplifiers
(PA). This paper explores the use of a hill-climbing optimization
heuristic to determine the optimal structure for 2-D DPD. To
improve convergence and reduce computation time, we propose
a new parameterization for the 2-D DPD model. The proposed
search criterion is based on the generalized information criterion,
which represents the trade-off between the DPD linearization
accuracy in both bands and the model complexity. A comparison
against a compressed-sensing-based method is also made. The
effectiveness of the proposed method is validated with two
20 MHz long-term-evolution (LTE) signals on two carriers with
100 MHz frequency separation.

Index Terms—Digital predistortion, information criterion, non-
linear distortion, opitmization, RF power amplifiers

I. INTRODUCTION

Multi-band power amplifiers (PA) are designed for the
compatibility of different standards in modern wireless com-
munication systems [1]. The conventional single-band digital
predistortion (DPD) becomes difficult for the linearization
since the feedback bandwidth is largely increased if the dual-
band signal is considered as a single broadband signal. Bassam
et al. [2] proposed a 2-D memory polynomial (MP) model
DPD by processing the signals in different bands separately
and adding cross terms to preserve accuracy.

Even for single-band DPD, determining the model struc-
ture according to a trade-off between model accuracy and
complexity is an important step before estimating the model
coefficients. Some optimization heuristic (OH) methods have
been proposed to address this problem [3], [4]. In [3], an
algorithm based on a hill-climbing heuristic was developed
for sizing single-band generalized memory polynomial (GMP)
models.

These methods determine the optimal full models with min-
imal nonlinearity orders and memory depths for an acceptable
linearization performance. Sparse models are considered in [5]
for the case of 2-stage cascade MP models. Determining a
sparse model structure is equivalent to pruning a complete
model whose nonlinearity order and memory depth are large.
A compressed sensing (CS) method under sparsity hypothesis
to select only important model kernels has been proposed for
the model pruning in [6]. This pruning technique is applied
for the case of 2D-MP model in [7].

DPD 1

PA

u1(n)

y1(n)
1
g

DPD 
Estimation

-

1st Post-
distortion

x1(n)

z1(n)

DPD 2

u2(n)

-

∑

-

1
g

2nd Post-
distortionz2(n)

x2(n)
Filt2

Filt1

y2(n)

Fig. 1. Dual-band system architecture

In this paper, we use an OH-based method to determine an
optimal pruned structure for the 2-D MP model. To improve
convergence and reduce computation time, we propose a new
form for the 2-D MP model. Besides, a comparison against
the CS-based pruning technique is given. In the simulations,
the stimulus is composed of two 20 MHz long term evolution
(LTE) signals on different bands.

This paper is organized as follows. Section II presents the
structure of the DPD. The OH-based method proposed to size
the 2-D DPD model structure is introduced and compared with
CS-based method in Section III. The simulation results are
given in Section IV. Finally, the conclusion is given in Section
V.

II. DPD STRUCTURE

A. Model Structure

The dual-band system is depicted in Fig 1. The lower
and upper band signals are denoted by u1(n) and u2(n)
respectively. The feedback signals y1(n) and y2(n) can be
also extracted from the PA output with filters selecting the
corresponding frequency band. In this paper, the DPD uses
a 2-D MP model [2]. A post-distortion is first identified and
then applied upstream of the PA as the DPD. The i-th band
model coefficients are estimated using the PA input signal
xi(n) and the filtered PA output signal yi(n) normalized by the
chosen gain g. Denoting the normalized signal by ỹi, the post-
distortion output is expressed as a function of both normalized



signals:

zi(n) =

K−1∑
k=0

k∑
j=0

L−1∑
l=0

γ
(i)
kjlỹi(n− l)

× |ỹi(n− l)|k−j |ỹ3−i(n− l)|j

=fi(ỹ1(n), ỹ2(n))

(1)

where k is the nonlinearity index, l the memory index, and
the γkjl’s are the complex coefficients. As different possible
choices for g achieve about the same PA efficiency [8], we
choose the small signal gain in this paper.

B. Model Identification

The identification is based on indirect learning architecture
(ILA) [3] so that we can take the average of the two bands
normalized mean square error (NMSE) between xi(n) and
zi(n) to represent the modeling accuracy:

Y = 10log10

[
NMSE1 + NMSE2

2

]
(2)

where for i = 1, 2

NMSEi =

∑N
n=1 |xi(n)− zi(n)|2∑N

n=1 |xi(n)|2
. (3)

The model coefficients can be estimated by solving a linear
problem. For each band, we can express the post-distortion
using matrix notation for a block of N samples:

zi = Ψiγi (4)

where zi= [zi(1), . . . , zi(N)]
T , Ψi is the N × R matrix

containing the basis functions and R is the total number of
model coefficients. The LS estimation of γi is found by

γ̂i = [ΨH
i Ψi]

−1ΨH
i xi (5)

which minimizes the cost function (3).

III. MODEL COMPLEXITY REDUCTION METHODS

A. Optimization-heuristic-based method

For the full model with nonlinearity orders k = [0 : K− 1]
and memory depth l = [0 : L− 1], the number of coefficients
equals to 1

2K(K+1)L. Pruning the model, especially pruning
the nonlinearity arrays k, can sharply decrease the model
complexity.

Hill-climbing heuristic is an optimization algorithm with
a rapid progress converging to a local optimum. It has been
confirmed robust for DPD model structure optimization since
its local optima are very close to or even the same as the
global optimum [3].

We propose to use this kind of optimization heuristic to
determine the 2D-MP model structure. At the 1st iteration
starting point M0(1) is chosen and its merit value J(M0(1)) is
computed as well as those of its neighbors. If the best neighbor
element Ms(1) is better than M0(1), it is taken as the starting
point for the next iteration M0(2). Otherwise M0(1) is taken
as the final solution and the procedure ends.

For the hill-climbing method to be effective, it is important
to define relevant neighbours. To this end, we need here to
characterize the sparsity in a 2-D DPD model. It is quite easy
to characterize the sparsity in a vector. S can be used to denote
that S−1 elements are selected from the K−1 element array
[1 : K − 1] (element 0 is always in the array k and l). All
possible combinations of S− 1 elements of vector [1 : K− 1]
can be listed in increasing order. Then each combination is
indicated by its index I and its sparsity S. Since parameters
k and l are independent of each other, they can be treated in
the same way.

Noticing the range of values for parameter j in (1) varies
according to k, it is more difficult to list the sparse arrays in
the same way. Considering this, we propose to rewrite (1) as
follows:

zi(n) =

K−1∑
m=0

K−1∑
j=0

m+j6K−1

L−1∑
l=0

γ
(i)
mjlỹi(n− l)

× |ỹi(n− l)|m|ỹ3−i(n− l)|j ,

(6)

The structure of the 2-D MP model can then be represented
by 6 parameters: (Sm, Im; Sj , Ij ; Sl, Il). Thus we can
construct a 6-D discrete space where each point represents
a model structure. We define two constraints for Md to be a
neighbor of Mi:

1) The parameters of Md can be represented by (S(i)
m ± 1,

I
(i)
m ± 1; S(i)

j ± 1, I(i)j ± 1; S(i)
l ± 1, I(i)l ± 1).

2) The total variation of the number of coefficients |Rd −
Ri| 6 d, where d is a given threshold.

B. Compressed-sensing-based method

We take the orthogonal matching pursuit (OMP) algorithm
as a reference in this paper to solve the CS problem. First,
for the PA output signal filtered in the i-th band, we construct
the basis matrix Ψi of the complete model Mcomp with K
and L as the maximal nonlinearity order and memory depth
respectively. The model M(q) contains q basis functions. At the
beginning, M(0) is an empty set. We select the most important
basis function from Ψi and add it to our model M(q) at each
iteration. Thus q represents also the number of iterations. The
importance of each basis function is determined by the product

I(c) =
|ΨH

c r(q−1)|
||Ψc||

(7)

where Ψc is the column vector for the c-th basis function and
r(q−1) is the residual at the (q − 1)-th iteration. The residual
is initialized as r(0) = zi and is updated at each iteration with
the estimated model output:

r(q) = r(q−1) −Ψiγ̂
i (8)

where the coefficients γ̂i are estimated using (5). The algo-
rithm ends when a given stall condition is reached.



Fig. 2. AM/AM & AM/PM curve of Wiener model PA for dual-band LTE

Fig. 3. Search path of OH-based method for 2D-MP model structure (d=50)

C. Merit function

In order to find the optimal model with respect to the trade-
off between modeling accuracy and model complexity, we
compute merit values according to the generalized information
criterion (GIC) [9]. The GIC can be written as

GIC = −2 ln p(x, γ̂(R)) + (1 + ρ)R (9)

where p(x, γ̂(R)) is the likelihood function of the data vector
x which depends on the 1×R parameter vector γ̂(R). In the
case of a 2D-MP model, we have in the i-th band

−2 ln p(xi, γ̂i
(R)) =N ln(

1

N
||xi(n)− zi(n)||2) + cst

=
N ln 10

10
NMSEi + cst

(10)

where cst is a constant. Considering the performances in both
bands, we propose the merit function as following:

J = Y +
10 · (1 + ρ)

N ln 10
R = Y + µR. (11)

Since the importance of a basis function can be computed
for the signal of only one band at a time, the CS-based method
determines the model structure separately for the two bands
and thus they can be different. We take R = 1

2 (R1 + R2) in
(11) for the merit value of the CS-based method solution.

IV. SIMULATION RESULTS

We create a baseband dual-band signal with 100 MHz
frequency separation as the stimulus. The signal in each band
is a 20 MHz LTE signal. The signal is fed to a Wiener
model PA. The AM/AM & AM/PM (Amplitude Modula-
tion/Amplitude Modulation & Amplitude Modulation/Phase
Modulation) curves of the PA are illustrated in Fig 2.

Fig. 4. Search path of New OH-based method (d=50)

Fig. 5. Evolution of merit value for different methods

In the following tests, we use a dataset of N = 30000
samples. Considering the scenario as well as the value of N ,
we set µ = 0.02 for the merit function which represents that
we trade-off 1dB on NMSE with 50 coefficients. Computation
times are given for an Intel Core i7-7500U CPU @ 2.70GHz.

The simulation results for the OH-based method and the
CS-based method are listed and compared in Table I. The
OH-based method is first applied on the original form of the
2-D DPD model (1), which is denoted by “OH”. We set d =
50 for the neighborhood constraint. The OH-based method is
then applied on the 6-D parameter space corresponding to the
new proposed form (6), which is denoted by “NOH”. The
maximum orders are set in bth cases as K=L=15.

As the modeling accuracy is represented by the error
between the post-distortion output zi(n) and the stimulus u(n)
as (3), the spectra of z1(n) and z2(n) given by different
methods are depicted along with the spectrum of u(n) in
Fig 6 and Fig 7 respectively. The lower and upper adjacent
channel power ratios (ACPR.L/U) for each band are also given
in Table I.

1) Results for the OH-based method: The search path
of the proposed OH-based method is shown in Fig 3. The
colored points are tested models. The black circles represent
solutions at each iteration (the iteration number is indicated
beside), which trace the search path of the algorithm converg-
ing towards the red diamond. The final solution has R=168
coefficients and Y =-60.3 dB, k=[0:4, 8], l=[0:5, 8]. 323
models were tested in this case for a total computation time
of 9.6 minutes.

2) Results for the new OH-based method (NOH): The
search path of the NOH method is shown in Fig 4. The final
solution has R=108 coefficients and Y =-70.5 dB, m=[0:2],



Fig. 6. Spectra of the post-distortion output in the 1st band

j=[0:2], l=[0:10, 12]. 2435 models were tested in this case
for a total computation time of 90.9 minutes.

3) Results for the new OH-based method with d=25
(NOH 1

2
): Since NOH has 6-D search space, the number of

models tested is greater than that of OH. To compare both
methods with a similar computation time, we test NOH with
a reduced neighborhood radius d = 25 with results given in
Table I. The final solution has R=48 coefficients and Y =-
66.7 dB, m=[0:1], j=[0:2], l=[0:7]. 1345 models were tested
in this case for a total computation time of 12.8 minutes.

4) Result for the CS-based method: We set K=L=15 the
orders of the complete model Mcomp same as in OH and NOH.
We test the algorithm with different stall conditions. In Table I
and Fig 6-7, To compare with the NOH solution “CS1” ends
when R=108. “CS2” ends when J(M(q)) better than 0.9 ×
J(M(q−1)) at the q-th iteration.The solution given by CS1
reaches an NMSE value of Y =-62.9 dB. The computation time
is 47.1 minutes. The solution given by CS2 reaches an NMSE
value of Y =-67.9 dB with 144 coefficients for the 1st band and
136 for the 2nd band. The computation time is 54.6 minutes.

The evolution of merit values versus the number of coeffi-
cients is illustrated in Fig 5. The proposed NOH methods can
reach better merit values than OH and CS methods.

Compared with the conventional OH method, NOH im-
proves the linearization performance by about 10 dB with less
coefficients. Comparing Fig. 3 and Fig. 4, we can see that
equation (6) allows NOH to test models with NMSE lower
than -60 dB and coefficients less than 100. The solution given
by CS1 has the same number of coefficients than that of NOH
but its linearization performance is very weak. The solution
given by CS2 achieves the best linearization performance
among the CS-based solutions. But it is still worse than the
NOH solution even though with more coefficients.

V. CONCLUSION

In this paper, we extend the search algorithm proposed
in [5] to a 2-D MP model. To trade-off model complexity
and accuracy, a search criterion based on GIC is used. We
propose a new form of 2-D MP model which improves
convergence and leads to a more accurate and less complex
model. A comparison against the CS-based pruning technique
validates the advantages of the proposed NOH method. Future
work includes studying the impact of d on the algorithm and

Fig. 7. Spectra of the post-distortion output in the 2nd band

TABLE I
PERFORMANCES OF DIFFERENT METHODS

OH NOH NOH 1
2

CS1 CS2

J -57.0 -68.4 -65.8 -60.7 -65.1
R (Band 1/2) 168/168 108/108 48/48 108/108 144/136

Y (dB) -60.3 -70.5 -66.7 -62.9 -67.9

ACPR
1.L -65.5 -77.8 -76.1 -74.2 -76.2

(dBc)
1.U -65.4 -80.6 -79.3 -76.1 -79.2
2.L -70.9 -84.0 -76.3 -73.0 -73.8
2.U -69.4 -82.2 -72.0 -68.7 -72.1

Runtime (min) 9.6 90.9 12.8 47.1 54.6

NOH 1
2

: NOH with d=25.

extending the method to allow for different models on each
band.
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