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Study on the Trade-off between PA Power
Efficiency and DPD Complexity

Siqi Wang, Morgan Roger, Caroline Lelandais-Perrault, Julien Sarrazin, Member, IEEE

Abstract—This paper investigates the trade-off between the
power amplifier (PA) power efficiency and the corresponding
digital predistortion (DPD) model complexity needed for its
linearization. The linearization performance is estimated with the
adjacent channel power ratio (ACPR). A hill-climbing algorithm
is proposed to trace approximate Pareto fronts of the ACPR
versus the DPD model number of coefficients at different PA
operating points (OP). Crest factor reduction is applied when
the backoff of the OP is less than the peak-to-average power
ratio (PAPR) of the LTE signal. Experimental results on a PA
with a Long Term Evolution (LTE) signal give interesting insights
on the relation between DPD complexity and PA power efficiency
for a given ACPR requirement. Finally we propose a criterion for
the trade-off between the PA efficiency and the DPD complexity
in function of the ACPR requirement.

Index Terms—Crest factor reduction, digital predistortion,
nonlinear distortion, power amplifiers, power efficiency

I. INTRODUCTION

D IGITAL predistortion (DPD) is a common method to
compensate for nonlinearities of radio frequency (RF)

power amplifiers (PA). The basic idea of DPD is to apply a
nonlinear model with the inverse characteristics of the PA [1]
on its input signal, allowing the PA to work in high power
efficiency zone near saturation. This is typically used when
the PA output power is high enough that the DPD power
consumption is negligible.

However, in modern telecommunication systems, the PA
output power requirements may vary. In cases when the DPD
power consumption might become non negligible, one can
look for the best trade-off from the PA operating point (OP) of
view. Since the DPD is applied to save the power by increasing
the PA efficiency, the power consumed by the DPD needs to
be considered whether it is more than the saved power [2].

The DPD power consumption depends on its model com-
plexity. Different operating points lead to different PA charac-
teristics and thus the DPD model should be correspondingly
adapted so that the linearization performance remains the
same. Moreover the input signal peak-to-average power ratio
(PAPR) imposes a constraint on the OP. If the backoff of the
OP is less than the input signal PAPR, some samples of the
signal fall into the PA saturation zone, which will degrade
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Fig. 1. Indirect learning architecture

the linearization performance. Crest factor reduction (CFR)
techniques [3] are used to address this problem.

In [4], an algorithm has been developed for an optimal DPD
model with respect to the trade-off between modeling accuracy
and model complexity. This paper proposes a modification on
this algorithm to trace approximate Pareto fronts so that we can
estimate the necessary minimum number of DPD coefficients
to achieve some certain ACPR requirements. Then we make
a study on the trade-off between PA power efficiency and
DPD complexity taking consideration of ACPR requirements
according to the experimental measurement results.

This paper is organized as follows. Section II presents the
CFR and DPD models. An algorithm to plot approximate
Pareto fronts for the DPD complexity versus its linearization
performance is introduced in Section III. In section IV, The PA
efficiency is measured and the DPD complexity are estimated
according to the experimental results. Finally, section V gives
a conclusion.

II. CREST FACTOR REDUCTION AND DIGITAL
PREDISTORTION

The system architecture is illustrated in Fig 1. In cases when
the back-off of the OP is less than the input signal PAPR, the
signal needs to be clipped to avoid the PA saturation zone:

urawc (n) =

{
u(n) P

|u(n)| if |u(n)| ≥ P,
u(n) otherwise.

(1)

where P is threshold. However this hard clipping brings dis-
tortion in all bands. In order to remove out-of-band frequency
components, a filter that has the same bandwidth B as u(n) is
applied on the correction signal crawr (n) = u(n)− urawc (n):

F{cr} =

{
F{crawr }(ω) if ω ∈ [−B

2 ,
B
2 ],

0 otherwise,
(2)

where F{·} represents Fourier transform. The clipped signal is
then uc(n) = u(n)−cr(n). We repeat this approach iteratively
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to reduce the new peaks generated by filtering. In this paper,
the number of iterations is set at 10.

Regarding DPD identification, we use indirect learning
architecture to first estimate a post-inverse of the PA and then
use it as a DPD as in Fig 1. The output of the post-inverse
block zp(n) modeled with the generalized memory polynomial
(GMP) can be written as [1]:

zp(n) =

La−1∑
l=0

z(n− l)Al +

Lb−1∑
l=0

z(n− l)Bl +

Lc−1∑
l=0

z(n− l)Cl

(3)

where Al =
∑Ka−1

k=0 akl|z(n − l)|k is the diagonal branch
gain, Bl =

∑Kb

k=1

∑Mb

m=1 bklm|z(n − l − m)|k and Cl =∑Kc

k=1

∑Mc

m=1 cklm|z(n− l+m)|k are gains with lagging and
leading delay respectively, akl, bklm, cklm are coefficients, z
is the output y normalized by the PA gain g.

These coefficients can be estimated using least square (LS)
method as in [4] by solving:

[ZHZ]ĉ = ZHx (4)

where x is the PA input, Z is the N × R matrix containing
basis functions of z, c is a R× 1 vector containing akl, bklm,
cklm, R being the total number of coefficients.

III. ACPR VS DPD COMPLEXITY

We aim to optimize two objectives: the modeling accuracy
and the model complexity. The modeling accuracy is evaluated
here with the adjacent channel power ratio (ACPR) of the post-
inverse output zp(n) as the search criterion:

Y = 10 log10

[∑
ω∈L |F{zp}(ω)|2 +

∑
ω∈U |F{zp}(ω)|2

2×
∑

ω∈M |F{zp}(ω)|2

]
(5)

where M represents the pass band of the signal, and L and U
represent the lower and upper adjacent channel respectively.
And the model complexity is represented by the number of
DPD coefficients R. In this multi-object optimization problem,
a Pareto-optimal solution t∗ is such that there exists no ti that
Y (ti) < Y (t∗) or R(ti) < R(t∗). The set of Pareto-optimal
solutions is called Pareto front [5].

In [4], an algorithm based on Hill-Climbing heuristic has
been proposed to determine an optimal DPD structure respect-
ing the trade-off between the modeling accuracy and the model
complexity. Here we propose a modified version to trace an
approximate Pareto front as in Fig 2. The red points are the
models tested in the algorithm.

We define a neighbor of the model ti as tj :
1) an 8-tuple (Ka,i + δ1, La,i + δ2, ..., Mc,i + δ8), where

δ1,...,8 ∈ [0,±1] and δ1,...,8 are not 0 at the same time.
2) |Ri−Rj | < d where d is a constraint on the number of

coefficients.
The subspace of neighbors is denoted by S(d).

The first starting point t0 is the simplest model as it is
surely on the Pareto Front. The value of d is initialized at
dinit = 2 and it increases when there is no better element
in S(d). If a better neighbor ts is then found, d is reset to

Fig. 2. ACPR vs Number of DPD coefficients

its initial value. We set a constraint Rlimit to stop when the
tested models have too many coefficients. The procedure is
described as Algorithm 1.

Algorithm 1: Algorithm to trace Pareto front
Initialize d = dinit, q=1;
Take t0(1) into Pareto set and set as starting point;
while R0(q) 6 Rlimit & d 6 Rlimit do

Find the best ts(q) in S(q)(d);
if Y (ts(q)) < Y (t0(q)) then

Take ts(q) into Pareto set;
t0(q+1) = ts(q);
d = dinit, q = q + 1;

else
d = d+ 1;

end
end

IV. EXPERIMENT RESULTS

The test bench is illustrated in Fig 3. The PA under test is a
HMC409LP4E PA fabricated by Analog Devices. Its nominal
gain at 3.5 GHz frequency is 31 dB and the saturated output
power is 32.5 dBm. The supply voltage is 5 V. Because of
the power limit of the Arbitrary Waveform Generator (AWG),
we use a TA020-060-30-27 PA fabricated by Transcom as the
driver in front of the PA. Its nominal gain is 30 dB and the
output power at 1dB gain compression is 27 dBm.

We generate the modulated signal with a carrier frequency
of 3.5 GHz in the PC Workstation and feed it to the PA
through an AWG with 10 GHz sampling frequency. The input
and output baseband signals are synchronized in time after
down-sampling to 120 MHz to be used by the identification
algorithm.

A 20 MHz LTE signal with 614400 samples is used as
stimulus and 25000 samples are used in iterative DPD identi-
fications. Its PAPR at 10−4 probability level is 8 dB.

In this paper we use as a measure of efficiency the PA
power-added efficiency (PAE) defined as

η =
Pout − Pin

Psupply
, (6)

where Pin and Pout are the PA input and output powers
respectively, Psupply is the power provided by the supply.
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Fig. 3. Test bench

Fig. 4. Pareto Fronts of the ACPR versus the number of DPD coefficients
for several PA operating points

For different PA operating points with average output power
varying between 25.3 dBm and 27.9 dBm, we apply the
algorithm proposed in Section III to obtain the Pareto fronts
illustrated in Fig 4. The CFR technique is applied to keep the
signal samples out of the PA saturation zone.

Since the number of DPD coefficients is an integer, we may
not have a real model that reaches the exact same ACPR as
the given ACPR requirement. Simply taking the number of
coefficients of a model that has a lower ACPR value than
the requirement will reduce the estimation precision. Thus
we estimate the minimum number of coefficients using linear
interpolation.

Table I gives the PA efficiency and necessary number of
DPD coefficients for different ACPR requirements at different
PA operating points. The DPD complexity versus the PA
efficiency is then plotted in Fig 5.

For all cases of ACPR requirements, improving the PA
efficiency demands a DPD with higher complexity. The higher
the ACPR requirement is, the larger the variation dynamic of
the DPD complexity is versus the PA efficiency. For loose
ACPR requirements, the PA operating point does not influence
much the needed DPD complexity. On the other hand, for strict
ACPR requirements, the DPD complexity increases rapidly
with the PA output power. This means that the importance of
the DPD complexity increases with the ACPR requirement.

V. CONCLUSION

In this paper, a modified algorithm is proposed to trace
approximate Pareto fronts for the trade-off between DPD
model complexity and its linearization performance. We then
study the influence of the PA operating point on the PA power

TABLE I
IMPACT OF THE PA OPERATING POINT ON PA EFFICIENCY AND

NECESSARY NUMBER OF DPD COEFFICIENTS FOR DIFFERENT ACPR
REQUIREMENTS

Pin (dBm) -1.0 -0.1 0.6 1.1 1.2 2.6 3.6
Isupply (A) 0.73 0.77 0.79 0.81 0.83 0.87 0.92
Pout (dBm) 25.3 26.0 26.3 26.6 26.9 27.5 27.9

PAE (%) 9.3 10.4 10.8 11.4 11.9 12.8 13.4

R

A:-32 1.9 2.1 2.2 2.4 2.6 3.4 8.2
A:-34 2.7 2.8 2.9 3.1 3.7 12.8 10.5
A:-36 3.8 4.2 4.7 23.1 21.6 18.9 25.8
A:-37 5.2 17.5 18.8 25 27 23 39.2
A:-38 16.8 21.8 22.9 29.2 31.8 31.8 49.5

A:-38.5 20.9 25.6 26.5 42.4 47.8 46.5 70.7
A:-38.7 23.8 27.4 27.8 45.7 54.7 52.6 79.1
A:-39 29.6 31.3 34.5 57.5 70.3 61.7 -

A:-39.3 38.9 40.4 41.2 80.3 79.7 82.0 -

A: ACPR requirements in dBc.
R: Number of DPD coefficients.

Fig. 5. DPD complexity vs PA efficiency

efficiency and the necessary number of DPD coefficients for
different ACPR requirements. Measurements with a 20 MHz
LTE stimulus show that the trade-off between the power saved
from the PA dissipation and the DPD power consumption
heavily depends on the ACPR requirement: the more stringent
it is, the more room there is to optimize the trade-off.
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