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An Efficient Method to Study the Trade-off between
Power Amplifier Efficiency and Digital

Predistortion Complexity
Siqi Wang, Morgan Roger, Julien Sarrazin, Member, IEEE, and Caroline Lelandais-Perrault

Abstract—This paper proposes a method to study the trade-off
between the power amplifier (PA) power efficiency and the cor-
responding digital predistortion (DPD) model complexity needed
for its linearization. The linearization performance estimated
with the adjacent channel power ratio (ACPR) is treated as a
control variable. In order to study at different PA operating
points (OP), an algorithm is proposed to trace approximate
Pareto fronts of the ACPR versus the DPD model number of
coefficients. Crest factor reduction is applied when the backoff
of the OP is less than the peak-to-average power ratio (PAPR) of
the Long Term Evolution (LTE) signal. Experimental results on
a PA with an LTE signal give interesting insights on the relation
between DPD complexity and PA power efficiency.

Index Terms—Crest factor reduction, digital predistortion,
nonlinear distortion, power amplifiers, power efficiency

I. INTRODUCTION

D IGITAL predistortion (DPD) is a common method to
compensate for nonlinearities of radio frequency (RF)

power amplifiers (PA) allowing it to work in high power effi-
ciency zone near saturation [1]. This is typically advantageous
when the PA output power is high enough so that the DPD
power consumption is negligible.

However, in modern telecommunication systems, the PA
output power requirements may vary. In cases where the DPD
power consumption might become non-negligible, one can
look for the best trade-off from the PA operating point (OP)
of view. Since the DPD is applied to save power by increasing
the PA efficiency, the power consumed by the DPD needs to be
assessed with respect to the saved power [2]. Also, at the first
order, the DPD power consumption is related to the number
of its model coefficients [3].

DPD and crest factor reduction (CFR) techniques control
the PA power efficiency [4] by allowing to adjust the PA OP.
Different OPs lead to different PA characteristics and thus the
DPD model structure should be correspondingly adapted so
that the linearization performance remains the same.
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In this paper, the final goal is to make a study on the
trade-off between PA power efficiency and the necessary DPD
complexity to achieve a given adjacent channel power ratio
(ACPR) requirement. To do that, we propose an algorithm to
estimate the minimum number of DPD coefficients at a chosen
PA OP for different ACPR requirements. Then we apply this
algorithm on data acquired from a PA at different OPs and
visualize the relation between PA power efficiency and DPD
complexity.

This paper is organized as follows. Section II presents the
DPD model. An algorithm is introduced to plot approximate
Pareto fronts for the DPD complexity versus its linearization
performance in Section III. In section IV, the PA efficiency is
measured and the DPD complexity is estimated according to
the experimental results. Finally, section V gives a conclusion.

II. CREST FACTOR REDUCTION AND DIGITAL
PREDISTORTION

The system architecture is illustrated in Fig 1, where, the
output signals of the CFR and the DPD are denoted by uc(n)
and x(n) respectively. In cases where the OP has an input
back-off less than the input signal peak-to-average power ratio
(PAPR), the clip-and-filter method [5] is used in this paper
as CFR technique with the number of iterations set at 10 as
suggested in [4].

Regarding DPD identification, we use the indirect learning
architecture to estimate PA post-inverse model coefficients
as in Fig 1. Numerous DPD models have been proposed
based on Volterra Series, e.g. generalized memory polynomial
(GMP) [1], dynamic-deviation-reduction (DDR) model [6] and
decomposed vector rotation-based behavioral model (DVR)
[7], etc. We use the GMP in this paper since it exhibits good
trade-off between modeling accuracy and model complexity
[3]. The post-inverse output zp(n) modeled with the GMP can
be written as:

zp(n) =

Ka−1∑
k=0

La−1∑
l=0

aklz(n− l)|z(n− l)|k

+

Kb∑
k=1

Lb−1∑
l=0

Mb∑
m=1

bklmz(n− l)|z(n− l −m)|k

+

Kc∑
k=1

Lc−1∑
l=0

Mc∑
m=1

cklmz(n− l)|z(n− l +m)|k

(1)

where the input signal is z(n) which is the PA output y(n)
divided by g, the nominal gain of PA, k is the index for
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Fig. 1. Indirect learning architecture (ILA)

Fig. 2. The proposed algorithm traces out an approximate Pareto Front
composed of optimal models

nonlinearity, and l, m are the indices for memory, Ka, Kb,
Kc are the highest orders of nonlinearity. La, Lb, Lc are the
highest memory depths. Mb, Mc denote the longest lagging
and leading delay tap length, respectively. akl, bklm, cklm are
the complex coefficients of the signal and envelope, the signal
and lagging envelope, and the signal and leading envelope,
respectively. These coefficients can be estimated using least
squares (LS) as in [8] by solving:

[ZHZ]ĉ = ZHx (2)

which minimizes the cost function

C =

N∑
n=1

|zp(n)− x(n)|2. (3)

where x is the PA input, Z is the N × R matrix containing
basis functions of z, c is a R× 1 vector containing akl, bklm,
cklm, R is the total number of coefficients.

III. ALGORITHM FOR OPTIMAL SOLUTIONS

According to (1), we can see that, by varying values
of (Ka, La, ..., Mc), DPD models with the same number
of coefficients may correspond to different structures thus
different linearization performance.

The linearization performance is evaluated here with the
ACPR of the post-inverse output zp(n). It could also be
evaluated with the normalized mean square error (NMSE) or
error vector magnitude (EVM) between zp(n) and x(n). In
order to know the necessary DPD complexity, we need to find
out for each number of coefficients the corresponding DPD
model with the best ACPR values.

In [8], an algorithm based on the Hill-Climbing heuristic
has been proposed to determine an optimal DPD structure.
It mainly addresses solving an optimization problem within a
short time.

Algorithm 1: Algorithm to trace Pareto front
Initialize d = dinit, q=1;
Add t0(1) to the Pareto front and set it as starting point;
while R0(q) 6 Rlimit & d 6 Rlimit do

Find the best ts(q) in S(q)(d);
if A(ts(q)) < A(t0(q)) then

Add ts(q) into the Pareto front;
t0(q+1) = ts(q);
d = dinit, q = q + 1;

else
d = d+ 1;

end
end

Algorithm 1 summarizes the modified version proposed in
this paper and detailed below. It allows users to obtain all
optimal solutions with different number of coefficients and to
choose the most appropriate model structure according to their
customized criterion. It gives out all models with the lowest
ACPR/NMSE values as the blue curve in Fig 2 without doing
an exhaustive search. The red points are the models tested in
the algorithm. The blue circles are Pareto-optimal points such
that there is no point who outperforms them on both ACPR
and number of coefficients. The set of Pareto-optimal solutions
is called Pareto front [9].

We define a neighbor tj of the model ti as
1) an 8-tuple (Ka,i + δ1, La,i + δ2, ..., Mc,i + δ8), where

δ1,...,8 ∈ [0,±1] and δ1,...,8 are not 0 at the same time.
2) |Ri−Rj | < d where d is a constraint on the number of

coefficients.
The subspace of neighbors is denoted by S(d).

The first starting point t0 is the simplest model. The
constraint d is initialized at dinit = 2 and it increases when
there is no better element in S(d). If a better neighbor ts is
then found, d is reset to its initial value. We set a constraint
Rlimit on the total number of coefficients. 6658 and 6563
models were tested to plot the Pareto front for respectively
ACPR and NMSE in Fig. 2. Using the exhaustive search, if
each parameter is limited to 10, there will be more than 108

models to test. The study on the relation between PA efficiency
and its DPD complexity needs to explore a large amount of
OPs. Using the proposed algorithm can save enormous time.

IV. EXPERIMENTAL RESULTS

With the algorithm proposed in Section III, we can quickly
obtain the DPD models with best ACPR or NMSE values at
different PA OPs. The PA under test is a HMC409LP4E PA
fabricated by Analog Devices. Its nominal gain at 3.5 GHz is
31 dB and the saturated output power is 32.5 dBm. The supply
voltage is 5 V. We generate the modulated signal with a carrier
frequency of 3.5 GHz in the PC Workstation and feed it to
the PA through an Arbitrary Waveform Generator (AWG) with
10 GHz sampling frequency. The input and output baseband
signals are synchronized after down-sampling to 120 MHz to
be used by the identification algorithm.
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Fig. 3. Pareto fronts of the ACPR versus the number of DPD coefficients
for different PA OPs

TABLE I
IMPACT OF THE PA OP ON PA EFFICIENCY AND NECESSARY NUMBER OF

DPD COEFFICIENTS FOR DIFFERENT ACPR REQUIREMENTS

Pin (dBm) -1.0 -0.1 0.6 1.1 1.2 2.6 3.6
Isupply (A) 0.73 0.77 0.79 0.81 0.83 0.87 0.92
Pout (dBm) 25.3 26.0 26.3 26.6 26.9 27.5 27.9

PAE (%) 9.3 10.4 10.8 11.4 11.9 12.8 13.4

R

A:-37 1.9 2.1 2.2 2.4 2.6 3.4 8.2
A:-39 2.7 2.8 2.9 3.1 3.7 12.8 10.5
A:-41 3.8 4.2 4.7 23.1 21.6 18.9 25.8
A:-42 5.2 17.5 18.8 25.0 27.0 23.0 39.2
A:-43 16.8 21.8 22.9 29.2 31.8 31.8 49.5

A:-43.5 20.9 25.6 26.5 42.4 47.8 46.5 70.7
A:-43.7 23.8 27.4 27.8 45.7 54.7 52.6 79.1
A:-44 29.6 31.3 34.5 57.5 70.3 61.7 -

A:-44.3 38.9 40.4 41.2 80.3 79.7 82.0 -

A: ACPR requirements in dBc.
R: Number of DPD coefficients.

TABLE II
IMPACT OF THE PA OP ON PA EFFICIENCY AND NECESSARY NUMBER OF

DPD COEFFICIENTS FOR DIFFERENT NMSE REQUIREMENTS

PAE (%) 9.3 10.4 10.8 11.4 11.9 12.8 13.4

R

NE:-30 2.7 2.7 2.7 2.8 2.9 5.3 20.7
NE:-32 8.3 5.8 4.5 4.0 5.9 10.9 -
NE:-33 15.3 17.3 15.3 7.2 62.4 21.2 -
NE:-34 24.2 31.6 40.5 62.5 - 82.0 -

NE: NMSE level in dB.
R: Number of DPD coefficients.

A 20 MHz LTE signal with 614400 samples is used as
stimulus and 25000 samples are used in iterative DPD identi-
fications. Its PAPR at 10−4 probability level is 8 dB.

We use as a measure of efficiency the PA power-added
efficiency (PAE). For different PA OPs, e.g. the average output
power varying between 25.3 dBm and 27.9 dBm, we apply
the algorithm proposed in Section III to obtain the Pareto
fronts as illustrated in Fig 3 and Fig 4 for ACPR and NMSE
respectively. The CFR technique described in Section II is
applied to keep signal samples out of the PA saturation zone.

In order to study the relation between the PAE and the DPD
complexity, we treat the ACPR or NMSE value as a control
variable. Thus we make a linear interpolation to estimate the
number of coefficients corresponding to a given ACPR or
NMSE and we keep decimals to preserve the accuracy. Table I
gives the PA efficiency and the necessary number of DPD
coefficients for different ACPR requirements at different PA
OPs.

The DPD complexity versus the PA efficiency is then plotted

Fig. 4. Pareto fronts of the NMSE versus the number of DPD coefficients
for different PA OPs

Fig. 5. DPD complexity vs PA efficiency

in Fig 5. For the tested PA, the higher the ACPR requirement
is, the larger dynamic of the DPD complexity is versus the PA
efficiency. This means that the DPD complexity limits more
on the PAE when the ACPR requirement becomes strict.

Thanks to this method, the system designers will be able
to optimize their choices. For instance, with a high ACPR
requirement, it may not be worth to increase the PAE of the
tested PA up to 13.4% considering the added DPD complexity.

For loose ACPR requirements, the PAE does not influence
much the necessary DPD complexity. On the other hand, for
strict ACPR requirements, the DPD complexity and conse-
quently the DPD power consumption increases rapidly with
the PAE, meaning the optimal OP w.r.t. the overall power
consumption needs to be further studied.

The results for the NMSE as the control variable are given
in Table II. We can see that the NMSE is strictly kept lower
than -30 dB when the DPD has more than 20 coefficients.

V. CONCLUSION

In this paper, an modified algorithm is proposed to trace
approximate Pareto fronts for studying the trade-off between
DPD model complexity and its linearization performance. It
then helps to study the influence of the PA OP on the PA power
efficiency and the necessary number of DPD coefficients for
different ACPR or NMSE requirements with a reduced number
of tests compared to the exhaustive search. Measurements with
a 20 MHz LTE stimulus show that the trade-off between the
power saved from the PA dissipation and the DPD power
consumption heavily depends on the ACPR requirement: the
more stringent it is, the more room there is to optimize the
trade-off.
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