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Abstract—Importance measures have been used extensively to
support risk-informed decision making. The purpose of such
metrics is to help achieve safe and efficient design, maintenance
and operation of assets in industrial sectors. In parallel, Value
of Information (Vol), a concept at the junction of the fields of
decision theory and Bayesian theory, has been used to define cost-
efficient inspection policies, in particular in Structural Health
Monitoring (SHM). This paper discusses the use of importance
measures in a decision context that includes cost, maintenance
and inspection, with the objective of defining infrastructure man-
agement policies. More specifically, it focuses on the use of Vol for
the identification of components or groups of components that
may be particularly ‘information-relevant’ in a given decision
context.

Index Terms—Importance measures, Risk analysis, Probabilis-
tic Risk Assessment (PRA), Infrastructure management, Decision
theory, Value of Information, Inspection policy, Pre-posterior
analysis

I. INTRODUCTION

Risk analysis and management methods provide the de-
cision makers with tools for the design and operation of
structures, systems and components. In order to guarantee
the safety of critical systems, both the assessment of the
potential risks associated with their operation and the choice
of corresponding risk control measures must be carefully
performed, with design and operation costs playing a role in
the decision process.

Probabilistic Risk Assessment (PRA) is a widely used
methodology that provides a quantitative description of the
risk level associated to different undesirable scenarios. A PRA
model is generally built from statistical knowledge available
on the system. From the model, importance measures (IM)
can be computed to characterize the role that the different
components play for the risk of the system [1], [2].

Depending on the decision context, different importance
measures can be used to produce different rankings of com-
ponents, with respect to their contribution to the overall risk
index at the system level, and identify safety-significant or
risk-significant components [1]. Importance measures serve
then as decision aids in the search for solutions to meet
prescribed safety and budget requirements, see e.g. [3], [4]
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Traditionally, importance measures are designed to quantify
changes in terms of a risk metric and, thus, cannot be readily
employed to compare different decisions in terms of cost-
efficiency. The necessary extension of importance measures
to a particular decision context has been considered by many
authors, see e.g. [3]-[5] for examples and discussions. They
can, then, be used to assess the interest of component reliabil-
ity improvements or to evaluate different maintenance [6]—[8]
or inspection policies.

For comparing the cost-efficiency of different inspection
policies, the concept of Value of Information (Vol) is receiving
increasing attention, especially in Structural Health Monitoring
(SHM). Early works include [9], [10] and subsequent research
activity has been developing since, see e.g. [11]-[13]. Essen-
tially, Vol is a utility-based metric defined as the difference
between the expected cost associated to the optimal decisions
(e.g. maintenance) taken with and without the collection
of additional information, through inspection or sensing, on
the given structure. In association with adequate models for
degradation and maintenance and inspection actions (e.g using
Markov Decision Process (MDP)), an integrated approach
for the elaboration of cost-efficient infrastructure management
policies is proposed in [14].

The objective of this paper is to discuss Value of In-
formation (Vol) concepts in the framework of Importance
Measures (IM) for identifying components whose inspection
or monitoring yields significant value in view of achieving a
cost-efficient operation of the system.

The rest of the paper is organized as follows. Section II
describes the importance measures traditionally considered
and discusses the extension of their use into a decision context.
Section IIT introduces the computation of Vol and proposes
its application as a raking index for information-significance.
Section IV proposes an example to illustrate the calculation
and the practical use of IM and Vol for the cost-efficient
operation of a system. Section V offers a look at the variation
of inspection importance with the evolution of the decision
context. Lastly, perspectives and conclusions for the use of a
Vol-based metric for component inspection and/or monitoring
are given in section VI.



II. IMPORTANCE MEASURES AND INFRASTRUCTURE
MANAGEMENT CONTEXT

A. Definition and use of importance measures

IMs quantify the effect of changes in the characteristics
(here reliability is considered) of components or groups of
components, on a risk index at the system level. Let R,
be the risk index (here a reliability function) for a system
with structure function ®. Let (R, = P(z; = 1))i=1.p
be a set of probability values associated to the basic events
(x;)i=1...p representing the state (x; = 0 if failed and z; =1
if functioning) of the components. The system risk index is
given by (1).

R, = ®(R1,...,Rp) (1

For illustration purposes, a few common importance mea-
sures are defined in Table I, where Ry is the value of the risk
at the system level when the components’ characteristics are at
their nominal value R? = P(z; = 1). See e.g. [1] for details.

Definition
Rs(R; =1) — Rs(R; =0)
(Rs(R; = 1) — Rs(R; = 0)) x R?/Rq
Rs(R; =1)/Ro
Ro/Rs(R; =0)

TABLE I
IMPORTANCE MEASURES

Measure

Birnbaum importance
Criticality importance
Risk Achievement Worth
Risk Reduction Worth

These measures describe the effect of large changes in the
reliability of components from O to 1. They may be used
to illustrate the consequence of a component failure on the
overall risk at the system level, thus giving an idea about the
risk-significance of such component. As far as maintenance
is concerned, they may be used to evaluate the effect of
taking out a component for repair, or assess the worthiness of
keeping a component highly reliable by specific maintenance
measures. The use of importance measures as decision aids
to identify, rank components or propose improvements [1],
[2], is especially relevant when the system is large and his
structure function (and associated PRA model) is complex,
possibly including scores or tens hundreds of components.

Limitations usually cited when discussing the more tradi-
tional importance measures include:

o Their inability to describe small rather than large changes
in the components’ reliabilities or to deal with parametric
descriptions which the latter could be based on.

o The fact that many of them cannot be used to handle
groups of components but only components indepen-
dently.

o The realization that they are based on ‘point estimates’ of
the components’ reliability and that the results that they
give should be interpreted while considering the epistemic
uncertainty associated to such estimates.

Developments have been proposed to overcome those lim-

itations. As it is not the main purpose of this paper, the
interested reader is refereed to existing literature. In [15], a

so-called Differential Importance Measure (DIM) is proposed.
The fact that it is an additive measure allows to consider
groups of components and small changes or parametric de-
scriptions for the components’ reliability. More refined mea-
sures for the joint importance of two components are discussed
in [16]. Extensive discussions about uncertainty importance
and the effect of epistemic uncertainty are offered in [17], [18].
The use of decision theory is mentioned in [19] as a potential
solution to measure and analyze uncertainty importance. A
discussion about the connection between importance measures
and a specific decision context is proposed hereafter.

B. Extension of importance measures to a decision context

In most cases, importance measures quantify changes in
terms of a risk metric. Based on this information, the action
that is subsequently taken has to consider the decision context.
If a component ranks particularly high in terms of its influence
on system reliability, a rational manager may want to augment
the reliability of such component or modify the system’s
structure function, e.g. using redundancy. While such actions
will likely increase the overall reliability of the system, they
also induce a cost. Thus, the optimal solution is necessarily a
tradeoff between the gain in reliability and the cost of realizing
the improvements.

Let us define L as the total cost (or loss, assuming that it is
linearly related to monetary cost) associated to the operation
of the system. Let us consider that this analysis is carried out
in a design stage and that R represents the probability that the
system will operate properly during its operating life. Let us
suppose that the cost of failure of the system may be estimated,
through means outside of the scope of the present manuscript,
and that its value is cy. For example, if N systems have been
commercialized and the manufacturer must pay penalty fees
(or warranty costs) for failed systems, then he may expect to
Pay Cezpected = N X (1 — Rs) X cy. In that context and if one
decides not to modify the system structure’s function, looking
for an optimal solution amounts to solving (2):

{Rir}r.leiﬁl]pL (R1,...., Rp,cp,ci(Rr), .oy cp(Rp)) 2)

where the cost function L is defined in (3):

L=c;x(1=Ry(Ry,...Ry) + 1R+ ... + R, (3)

and ¢; : [0,1] — R are monotonically increasing functions
linking the reliability of component i to the cost of producing
it.

Extensions of traditional importance measures to a particu-
lar decision context (for example here, specifying the values
cy and functions ¢;) have been proposed, see e.g. [6]-[8]. In
any case, the search for an optimal solution imposes that a
decision context is specified (see [4] as an example).

The definition of a decision context and the interpretation of
cost, reliability and risk values are neither simple problems nor
is it the purpose of this paper to be exhaustive about modeling
solutions to address such issues.



From this point on, the value of these metrics do not
characterize only the structure of a system or its constituents
but also the cost of alternative actions and their consequences.
They may be used to rapidly identify or rank the components
based on the potential gain related to their improvement (or
maintenance). A rather simple cost-based measure, quantifying
the effect of changes on the cost function rather than the
reliability function, is expressed in (4):

oL
LIM=— 4
R, 4)
which in the context defined in (3) gives (5):
(R% = — v
LIM;(R;) cy OR. R, 5)

Before moving to the next section, let us note that here,
the reliability of the system R, is a scalar value. Nonetheless,
the same reasoning may be applied to a time-varying function
Rs(t), if it is applied on different time instances (e.g. when
considering life extension, see [10] for an example). The issue
may become more difficult to address if multiple reparations
can be counted, if downtime is costly and so on. In that case,
one has to resort to more elaborate models, e.g using Markov
Decision Process, see [14], [20]. The extension of importance
measures to a time-varying context is theoretically possible
but introducing parameters for the cost of one or different
maintenance policies can prove much more complex. The
reader may be interested in [3], [21] for measures taking into
account the influence of time, outside of a decision context.

III. VALUE OF INFORMATION AND INSPECTION
IMPORTANCE

A. Value of Information

For a structure or an industrial system, maintenance ac-
tivities are meant to increase safety and expected life. In
condition-based and predictive maintenance, decisions on
when and what actions to perform are based upon the
knowledge available on the aging state and behavior of the
system and its components, derived from periodic inspection
or continuous monitoring. By considering the total cost of
the system’s operation, including inspection and maintenance
costs, one can choose among different policies. Value of
Information (Vol) is a utility-based metric that may be used
for that purpose.

As described in [10], “the value of a piece of information
depends on its ability to guide our decision”. Vol is a tool
rooted both in Bayesian updating and decision theory that
provides a rational approach to attach a value to a piece
of information. Formally, Vol is the difference in expected
cost (or loss) between the outcome of the best decisions that
may be taken with and without the collection of additional
information.

Let L(s,a) be the loss function defined in relation with
the system being in state s and the manager choosing to
apply action a on the system (e.g. repairing). The Vol may
be calculated according to (6):

Vol = L*(#) — Eol[L* (o) ©)

where L*()) represents the minimal expected loss (i.e. associ-
ated to the optimal decision) when no additional information is
available and L* (o) represents the minimal expected loss when
the information from observation o is available, thus ‘modify-
ing’ the prior knowledge on the aleatory uncertainty associated
to the system state. As one does not know beforehand what
the observation is going to be, L*(0) has to be averaged over
all possible observations in set O. Giving the expression of the
minimal expected loss and making the dependance on aleatory
uncertainty explicit yields (7):

Vol = %1£/L(s7a)p(s)ds

_ / ({322 / L(s,a)p(so)ds) p(o)do  (7)

where A is the set of all possible actions, p(s) is the prior
distribution of the system states and p(s|o) is the posterior
distribution given an observation o.

Values for the observations are generally derived from an
observation model. The latter accounts for the precision p(o|s)
of the inspection process (e.g. that of a sensor). The prior
knowledge p(s) on the system is generally used along with
Bayes’ equation p(s|o) = p(o|s)p(s)/p(o0) in order to sample
from the observation distribution, see e.g. [10] for details.
Hence, this approach is often called pre-posterior analysis.

The estimated Vol has to be compared to the cost of
the acquisition of such information. Roughly speaking, the
inspection is worth realizing if its cost does not exceed the
additional value it can generate, namely Vol. This metric
provides a rational approach to compare inspection devices
or procedures that provide different pieces of information on
the system state and with different levels of precision.

B. Use of Vol for inspection importance assessment

As expressed in section II-B, any extension of importance
measures to a decision context implies the specification of such
context. This is also the case for Vol as, according to (7), the
computed Vol is necessarily dependent on:

o The decision context through the different possible ac-
tions and their outcomes L(s, a)

o The prior knowledge on the aleatory uncertainty associ-
ated to the system p(s)

o The precision of the inspection process p(o|s)

When the inspection consists in assessing the state of one
or a group of components in the system, Vol can be seen
as an importance measure, which we will call here: inspection
importance measure (IIM). It serves as a decision aid allowing
to rank different components based on the worthiness of
obtaining information on any of them. While traditional im-
portance measures quantify the effect on the risk metric at the
system level, IIM quantifies the effect on the minimal expected



cost (which can be lowered) when additional information on
one or a group of components is available.

As the objective is to provide a metric for the comparison
of different components, here, it will be assumed that one
is able to obtain perfect information on the state of the
components (failed or functioning). This allows us to leave
aside considerations about inspection cost, generally related
to the precision of the inspection procedure. In this case,
the computed measure is the Value of Perfect Information
(VoPI). The assumption of perfect information yields a value
(IIM) that represents an upper bound on the potential gain
in expected cost. One should note that in practice Vol will
be lower than VoPI and that the inspection will have a non-
negligible cost. Yet, the higher the value of the IIM for a
given component, the more valuable it is for the manager to
collect information on it, in a given decision contest (i.e. when
knowing the cost of potential actions such as maintenance).

IV. IMPORTANCE MEASURES ILLUSTRATION

In this section, a simple system made of five components
and displayed on Figure 1, is used as a means to illustrate
the discussion of section II-B and the inspection importance
measure (IIM) proposed in section III-B.

Fig. 1.

Simple system with 5 components.

Components can be in either one of the two binary states,
functioning or failed. The expression of the reliability function
is given in (8), using the system structure function ®:

Ry = R4yRs + R1RyR5 + R1R3R5
— R1R3R3R5 — RiRyR4R5 — R1R3R4R5
+ RiRoR3R4Rs  (8)

where (R;);=1..5 constitute the prior knowledge on uncer-
tainty associated to the system. Here, these reliability values
describe the probability that the component is operating prop-
erly on a given time interval [0,7] defining the life of the
system.

A. Importance measures without considering inspection

Birnbaum importance measures are calculated for the differ-
ent components and displayed on Figure 2. Epistemic uncer-
tainty is introduced in the calculation by varying components
reliabilities around their nominal values. The point is to
illustrate that the ranking that one obtains using importance
measures and a PRA model may be sensitive to the initial

knowledge about the system. The nominal values for the
components’ reliability are given in Table II.
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Fig. 2. Boxplot of Birnbaum Importance, with random variation of

(R;)i=1...5 around their nominal value (illustrating epistemic uncertainty).

Let us define ¢y as the cost induced by a failure of the
system. Let cp, be the cost associated to the maintenance
action (e.g. repairing) applied on component ¢. Simply said,
if cost cp, is paid, component ¢ will not fail in [0,7], i.e.
x; = 1 and R, becomes Ri™ = R, (z; = 1). The values for
parameters cy and cg, are given in Table II. In that context,
the loss function is defined by (9):

L(s,a) = ¢; x (1 — ®(max(x1,a1), ..., max(zs,as5)))

+ > aice, )

i=1...5

where s = (2;);=1..5 characterizes the state of the system
and a = (a;);=1..5 is the action vector with a; = 1 if a
repair action is applied for component ¢ and a; = 0 otherwise.
With five components there are 2° = 32 potential actions to
consider. ® is the system’s structure function.

Parameter Value

Ri1, Ra, R3 ,R4, Rs 0.6, 0.5, 0.5, 0.7, 0.9

cy 500

CRy> CRs» CR3> CRy> CRs 20, 10, 15, 40, 60
TABLE 11

NOMINAL VALUES FOR THE COMPUTATION OF IMPORTANCE MEASURES.

On Figure 3, the average outcome (Eg[L(s, a)]) of different
actions is illustrated.
The first five values on the upper part of Figure 3
((LIM;);=1,...5 = (20.5,10.25,5.25,34.25, —18.25)) can be
seen as a cost-based importance measure for the five different
components. The measure represents the average gain when
repairing such components (or assuring perfect maintenance
on [0, t]) without any specific ‘inspection’ information, given
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Fig. 3. Potential gain in expected cost (upper part) when repairs are made

(with respect to the situation with no repairs). Lower part of the figure
describes which components are repaired.

the decision context and associated costs. These values may
be calculated according to (10):

LIM; = ¢; x [R:" — Ro] — cg, (10)
where RiT = R, (x; = 1) is the reliability of the system when
component ¢ is maintained perfectly functional at cost cg,.

It is interesting to notice that the decision context can alter
the relative importance of components obtained when based
only on system structure and components reliability. As an
example, component 5 Birnbaum importance value is large on
Figure 2, while its cost-based importance LIM5 = —18.25
points to a negative outcome of maintaining it. This can be
explained by a high ‘base’ reliability R? and a significant
maintenance cost cp,. Lastly, on Figure 3, one can also
consider the effect of pairs of components, thus assessing joint
importance.

B. Inspection importance measure (IIM)

The decision context defined in section IV-A is introduced
in order to propose a Vol-based measure, labeled as IIM,
that can be used to aid in the identification of components
whose inspection holds particular value. In practice, it may be
difficult to assign a value to system failure cost or maintenance
costs. The latter may be associated to a specific preventive
maintenance plan on the entire time interval [0, ¢]. Nonetheless,
it is interesting to use the Vol concept to address the following
question: if I could have ‘clairvoyance’ on the true state (here
the outcome on the interval [0, ¢]) of the considered system (i.e.
a given individual in the population p(s)), what should action
I select: maintain or not, one or several of its components.

Let us assume that one is able to acquire perfect information
on the system at no cost. Here the objective is not actually to
judge an inspection process but rather to rank components
based on the worthiness of acquiring information on them. If

component ¢ is inspected, the related inspection importance
measure (IIM) can be calculated according to (11):

IIM; = min (cf x (1— R + Zaic&.)
- main (cf x (1 — R»™) + Zaic&) x RY
— min (cf x (1— R+ ZaicRJ % (1—R%) (11)

where R? = ®(max(R;,a1),...,max(Rs,as)) is the value
of the reliability function modified by action a, Rt =
R%(R; = 1) and R**~ = R%(R; = 0) are the values of
the reliability function when the inspection guarantees that
component ¢ is either functioning or failed and action a is
applied. In this context of perfect inspection RY and (1 — R?)
are used as the probabilities of observing component ¢ in
functioning or failed state, based on the prior knowledge on
the system (R;);=1,..5.

The expression for joint inspection of components is not-
given but it can be deduced easily from (7) as (11) was. Results
of the calculation of IIMs are given on Figure 4. The first
five values of the upper part of Figure 4 ((IIM;);=1,..5 =
(12,5,5,21,44)) are inspection importance measures for the
five different components.
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Fig. 4. Inspection importance measures (upper part) based on the inspection

of one or several components (Lower part of the figure describes which
components are inspected).

With the values considered in Table II, the minimal expected
cost is L*(@) = 80 and the VoPI for a complete inspection
of all components is VoPI = 70.85. This mean that, through
inspections, the minimal expected cost of operating the system
can be brought down to L* = 9.15. Simply said, this
corresponds to the outcome where repair actions are only taken
when specifically needed. In practice, L* is a lower bound that
cannot be reached exactly, as one has to consider inspection
costs and limited precision or partial nature of the inspections.

As can be expected, inspecting several components at the
same times yields higher value. It can also be noted that



combinations of inspections that correspond to a minimal path
set: here (4,5), (1,2,5) or (1,3,5) are particularly valuable.
Taken alone, component 5 ranks as the highest IIM value. This
may be explained by the fact that it is a critical component
which contributes immediately to the failure of the system,
and that its repair cost is large and repairing only the failed
individuals (or rather individual which will fail on [0,¢]),
thanks to inspections, does bring the overall cost down. The
influence of the decision context, especially costs values, is
further illustrated in the following section.

V. INFLUENCE OF CHANGE IN THE DECISION FRAMEWORK
ON INSPECTION IMPORTANCE

In order to get an idea on the effect of the parameters
that may influence I1IM, the latter are calculated with different
values for:

o Prior knowledge (i.e. here (R;);=1,...5)
o Repair / maintenance costs
o Precision of the inspection

The influence of the repair costs on IIMs is illustrated on
Figures 5 through 7. L* is defined on these Figures as the
expected cost when no inspection if carried out and it can
be diminished when information is collected. VoPI results
correspond to the perfect inspection of all five components,
thus defining the maximal potential gain in this decision
context.

A couple of remarks can be made. First, it is seen that
when the repair cost of component 5 increases (in fact in
relation with a fixed failure cost of ¢y = 500), at one point it
becomes too costly to repair this component without specific
information on its state. When component 5 repair cost is
close to failure cost, inspection information is worthless, as
it becomes non-profitable to repair component 5 regardless of
its actual state. Conversely when component 5 repair cost is
low, one might as well repair it, regardless of the knowledge
one has on the true state of component 5. For both those
extremes there is little or no value in inspection. Second, it
can be noticed on the upper part of Figure 6 that the ranking
between the five components evolves when the repair costs
vary. Third, on Figure 5, variations in component 5 repair cost
only influence IIM5 and not the IIMs of the other components.
But this is not always the case, as can be seen on Figure 7 for
the effect of component 4 repair cost.

The prior knowledge on the system uncertainty, here the
reliability of the components, also has an effect on the com-
puted I[IMs. On Figures 8 and 9 the following remarks can
be made. First, as the reliability of component 5 increases
the minimal expected cost L* decreases. The system becomes
more cost-efficient thanks to the higher performances of its
components (obviously cost of component 5 has to be taken
into account also). Second, if one knows that the reliability of
component 5 is low, it will generally be necessary to repair it,
and inspecting will not produce much cost saving. Conversely,
if it is expected to be very reliable, most inspections will give
the same answer, making inspection less valuable. Yet one has
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Fig. 6. Ratio of potential gain in expected cost (with respect to L*) with
additional information, as a function of the repair cost (ranging from 1 to
500) of component 5 (top). Best average decision a* (vector with Os or 1s)
for each value of component 5 repair cost (bottom).

to remain careful with this analysis, as it may no longer be
valid if repair cost is simultaneously high.

It is also interesting to consider the influence of the precision
of the inspection process. As previously mentioned, 1IMs
are upper bounds on the potential gain achievable through
inspection. On Figure 10, one sees that the Vol increases
with the precision. It is also good to note that the ranking
of the different components, as far as information-significance
is concerned, does not seem to depend too much on precision.
Thus [IMs, corresponding to perfect information, are valuable
metrics to make rankings between the different components of
a system, in a given decision context.

Finally, let us point out that in the framework of this paper
and for the calculation of IIMs, here, the repair or maintenance
actions are considered perfect. Indeed, if cost cg, is paid,
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then, reliability of component : is fixed to its maximum value
R; < 1 on time interval [0,7]. This must not be considered
as an absolute restriction and (11) can still be applied if the
so-called ‘maintenance action’ consists in assuring a given
reliability of component ¢, which needs not be perfect R; < 1.

VI. CONCLUSION

Importance measures have been used extensively to rank
or identify components with significant impact on the risk
index at the system level. Such measures can be used as
decision aids to propose improvements on the system structure,
on the reliability of components or on maintenance policies.
The decision taken with this information will likely be a
tradeoff between assuring a high level of reliability for the
system and the cost to realize improvement actions. Thus,
extensions of importance measures to the decision context
have to include a precise specification of the latter. This
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includes the specification of the cost of system failure as well
as the specification of the alternative actions, their costs and
their outcomes. Let us point out that this specification phase
can constitute a significant increase in modeling work on top
of the construction of the PRA model.

As far as operation decisions are concerned, the inclusion
of specific information about a given individual of interest,
i.e. inspection, within a population for which one possess
prior knowledge, is an efficient way to reach a lower expected
cost. When it comes to setting up a monitoring or inspection
policy, it is important to weight inspection costs against the
value of the information that may be acquired from inspection.
It is, then, relevant to use a Vol-based metric to identify
components whose inspection is particularly valuable for the
cost-efficient operation of the system. A measure, based on



the assumption of perfect information, has been proposed
here. It has been coined ‘inspection importance measure’
(IIM) and computations in the case of a simple example have
demonstrated its ability to rank components according to their
‘information-significance’.

This approach is particularly attractive in a context where
condition-monitoring (CM) data is increasingly available and
may be processed into valuable and individual-specific (i.e.
among a population of systems) information. IIM are an
interesting tool to rapidly identify which components of a
complex system should receive particular attention, in a given
decision context, when additional information can be collected
for such components. In this paper, the specification of the
decision context has not been extensively developed and a
straightforward formulation has been sought for simplicity and
clarity’s sake. Obviously this constitutes a difficult issue in
practice but, nonetheless, the underlying concept of a Vol-
based metric can always be applied. A study on the effect of
the parameters that may influence the computed IIM has been
carried out, in order to provide elements to consider regarding
that last issue.

Future work on this topic include the application of
information-related measures in situations where inspection
information originates from the processing of CM data. In this
case, information extracted from CM is likely imperfect and
one has to account for the precision of the diagnostics or prog-
nostics model, which should be assessed beforehand, when
computing any Vol or Vol-based metric. Additionally, the
handling of time-varying problems, involving complex policies
(combinatorial complexity of the action space might be very
large) on a given time horizon, has only been mentioned
here. In this latter framework, the use of more complex tools,
e.g. MDP models, or the formulation of a decision problem
adapted to the time-varying context, may be necessary.
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