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Abstract

The modulation of turbulence by sub-Kolmogorov particles has been thoroughly char-

acterized in the literature, showing either enhancement or reduction of kinetic energy

at small or large scale depending on the Stokes number and the mass loading. How-

ever, the impact of a third parameter, the number density of particles, has not been

independently investigated. In the present work, we perform direct numerical sim-

ulations of decaying Homogeneous Isotropic Turbulence loaded with monodisperse

sub-Kolmogorov particles, varying independently the Stokes number, the mass loading

and the number density of particles. Like previous investigators, crossover and modu-

lations of the fluid energy spectra are observed consistently with the change in Stokes

number and mass loading. Additionally, DNS results show a clear impact of the par-

ticle number density, promoting the energy at small scales while reducing the energy

at large scales. For high particle number density, the turbulence statistics and spectra

become insensitive to the increase of this parameter, presenting a two-way asymptotic

behavior. Our investigation identifies the energy transfer mechanisms, and highlights

the differences between the influence of a highly concentrated disperse phase (high

particle number density, limit behavior) and that of heterogeneous concentration fields
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(low particle number density). In particular, a measure of this heterogeneity is proposed

and discussed which allows to identify specific regimes in the evolution of turbulence

statistics and spectra.

Keywords: Particle dynamics, homogeneous isotropic turbulence, two-way coupling,

heterogeneity.

Highlights

• Original and exhaustive study of sub-Kolmogorov particle - turbulence two-way

interactions for decreasing HIT.

• Beyond the usual influence of Stokes and mass loading, study of impact of the

particle number density.

• Influence of particle phase heterogeneity on spectral distribution of energy cou-

pling is investigated and characterized.

• Design of a heterogeneity measure and criterion for convergence of turbulence

statistics.

Introduction

Turbulent flows laden with particles or droplets are common in many engineer-

ing and environmental applications, such as atmospheric dispersal of pollutants, liquid

sprays in engines, sediments in rivers, droplets in clouds etc. The turbulence can com-

pletely govern the particles’ behavior, and in the case of sufficiently dense flows, the

presence of particles can also influence the turbulence (Squires and Eaton, 1990; Boivin

et al., 1998).

In the literature, the interactions between a turbulent carrier phase and a particu-

late phase in the point-particle limit have been extensively studied. In the one-way

coupled context, for which the particles do not affect the carrier phase, the impor-

tance of Stokes number based on Kolmogorov or Lagrangian integral time scales have
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been demonstrated: the former characterizes the occurence of preferential concentra-

tion (Eaton and Fessler, 1994) while the latter is representative of the transition to

particle-trajectory-crossing dominated flows (Février et al., 2005).

In the case of two-way coupling, turbulence modulation by particles has been also

investigated in Homogeneous Isotropic Turbulence (HIT), focusing on the effect of

the Stokes number and mass loading. On the one hand, studies on stationary HIT of

Squires and Eaton (1990); Boivin et al. (1998); Mallouppas et al. (2017) showed that

the turbulent kinetic energy of the carrier phase is reduced by particles. They concluded

that inertial particles inject energy in the turbulent motion at high wavenumbers with

a corresponding increase in the dissipation, which was also described by Squires and

Eaton (1994) with respect to mass loading.

On the other hand, Elghobashi et al. (1994); Druzhinin and Elghobashi (1999);

Druzhinin (2001); Ferrante and Elghobashi (2003); Abdelsamie and Lee (2012) worked

with a decaying HIT and found that particles with low Stokes number can enhance

the fluid energy. Indeed, studies on the fluid-particle interaction spectrum reveal a

negative contribution at low wave numbers where intensity is reduced when Stokes

number increases, whereas the energy rate at large wavelengths remains positive. More

generally, Ferrante and Elghobashi (2003) classified particles according to their Stokes

number and described the evolution of turbulent energy and dissipation of the flow, and

Sundaram and Collins (1999) showed that the shift in energy to high wavenumbers in

the fluid phase increases the viscous dissipation rate. The focus of all these studies was

the influence of the Stokes number and mass loading: the former parameter globally

determines the dynamics of particles in a given fluid and the latter plays a role in the

inverse-coupling force that the particles exert on the fluid. Table 1 summarizes some

of the previous works, and the parameters studied.

A dimensional analysis leads to the identification of a third controlling parameter,

the particle number density. In fact, this parameter plays a key-role: for high num-

ber density, the proximity of particles can lead to a continuous phase behavior, while

for low number density, distant particles can produce strong local effects on the sur-

rounding fluid and the exact location of the particles may have a great impact on the

dynamics of the flow, depending on the realization. In the literature, this parameter has
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Reference Forcing Mr/Mc Fixed Changed

Squires and Eaton (1990) YES 100 τp, n0 φ, α, ρp, dp

Elghobashi et al. (1994) NO 100 α, τp dp, φ, n0, ρp

α, dp, n0 τp, ρp, φ

τp, ρp, dp α, φ, n0

Squires and Eaton (1994) YES 1 τp, n0 φ, α, ρp, dp

Boivin et al. (1998) YES > 1 α, φ, ρp τp, dp, n0

τp, n0 φ, ρp, α, dp

Druzhinin and Elghobashi

(1999)

NO 1 τp, ρp, dp φ, α, n0

Sundaram and Collins (1999) NO 1 α, φ, ρp τp, dp, n0

τp, dp, ρp α, φ, n0

Druzhinin (2001) NO 1 α, φ, ρp τp, dp, n0

Ferrante and Elghobashi

(2003)

NO 47 α, φ, ρp τp, dp, n0

Abdelsamie and Lee (2012) YES vs NO 95 α, φ, ρp τp, dp, n0

Mallouppas et al. (2017) YES 1 α, dp, n0 τp, ρp, φ

τp, ρp, dp φ, α, n0

Table 1: Previous studies of the modulation of turbulence by disperse phase. Forcing scheme for

stationary HIT and ratio of real particles per computational particle are precised for each study.

Choice of fixed parameters and studied parameters are displayed in the two last columns. In

the table, τp is the particle relaxation time, α is the volume fraction, n0 is the particle number

density, φ is the mass fraction, ρp is the particle density and dp is the diameter of particles.

4



been first studied in the objective of reaching statistical convergence for one-way cou-

pled simulations (Vié et al., 2016). Strutt et al. (2011) observed the lack of consensus

regarding the number of particles that must be considered in simulations. A common

definition for statistical convergence is the point at which the particle dispersion statis-

tics do not change significantly (i.e. become independent on the number of particles).

On the other hand, Sundaram and Collins (1999) studied a regime with very low parti-

cle number density, for which each particle acts independently and observed that their

collective effect on the fluid scales linearly with the total number of particles.

In the present work, we investigate the effect of the particle number density along

with the mass loading and the Stokes number. We propose a characterization and a

measure for the heterogeneity of the particulate phase. We identify two regimes in

two-way coupled flows, according to the level of heterogeneity of the disperse phase:

an asymptotic behavior for highly-concentrated particle phase (high particle number

density), and a strong response of turbulence at small scales for the heterogeneous

particle phase. We provide some characterization of turbulence statistics and energy

spectra for those specific regimes and explain the transition between them for interme-

diary particle number densities.

In section 1, we first present the assumptions and governing equations of our study,

as well as the numerical methods. Then, the target HIT configuration and the param-

eter set are presented in section 2, with an emphasis on the other parametric studies

in the literature. A definition of heterogeneity is detailed in section 3 along with the

way to measure it unequivocally when preferential concentration occurs. Results of the

extensive study are presented in section 4, in the following order: turbulence modula-

tion by particles is measured through the analysis of global energy transfers (section

4.1). Then, deeper insight is given by an analysis in the spectral domain (section 4.2),

permitting to identify specific regimes with respect to the number density of the partic-

ulate phase. These regimes are further analyzed in section 4.3, in particular with regard

to coupling mechanisms.
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1. Modeling and numerical frameworks

1.1. Fluid and particles equations

We consider monodisperse solid spherical particles of fixed size. Particles diameter

is smaller than the Kolmogorov length scale (dp << η), thus particle-resolved DNS

is not necessary (Fröhlich et al., 2018), and a point-particle approximation is adopted.

The density ratio between the particles and the fluid is large (ρp >> ρf ) and the

Reynolds number of the particle is smaller than one (Rep ≤ 1). The volume fraction

α is small enough to consider particle-particle collisions as negligible (dilute regime:

α < 10−3). Therefore, many of the forces in the original Basset-Boussinesq-Oseen

equation are assumed negligible compared to the drag force. Furthermore, if the drag

force obeys Stokes’ law, the equation of motion is linear in the velocity difference

between fluid and particle. Then the motion equations of particles are written as
dxp(t)

dt
= vp(t)

dvp(t)

dt
=

uf@p(t)− vp(t)

τp

(1)

where xp(t) and vp(t) stand for particle position and velocity at time t, and uf@p(t) =

uf (t,xp(t)) is the fluid velocity evaluated at the particle position. The particle relax-

ation time τp is defined as τp =
ρpd

2
p

18µf
where µf is the dynamic viscosity of the fluid.

The effects of particles on the carrier phase are expressed through an additional force

in the momentum equation of the fluid. For an incompressible fluid, the equations of

motion for the carrier fluid are:
∂uf,i
∂xi

= 0

∂uf,i
∂t

+
∂uf,iuf,j
∂xj

=
−1

ρf

∂P

∂xi
+
µf
ρf

∂2uf,i
∂xj∂xj

+
1

ρf
fi

(2)

where f is the force exerted by particles on the fluid.

1.2. Coupling equations

A projection kernel ∆ is introduced to give a local average of the feedback force.

This function is positive, monotically decreasing and normalized such that its integral
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over the entire physical space is unity. The source term f in Eq.2 is then written as:

f(x, t) =
∑
p

F(p)∆(x− xp(t)) (3)

where F(p) = mp
vp(t)−uf@p(t)

τp
is the resultant force exerted by a particle p of mass

mp on the fluid.

Other Eulerian spatial fields can therefore be defined as:

n(x, t) =
∑
p

∆(x− xp(t)) (4)

n(x, t)ṽp(x, t) =
∑
p

vp∆(x− xp(t)) (5)

n(x, t)ũf@p(x, t) =
∑
p

uf@p∆(x− xp(t)) (6)

Spatial averages can then be derived and the notation used is 〈f(x, t)〉 = 1
|Vf |

∫
Vf f(x, t)dx,

where Vf indicates that the integral is taken over the whole domain of fluid |Vf | = L3.

For monodisperse spherical particles,mp = ρpπd
3
p/6 and global volume fraction is de-

fined as α = n0πd
3
p/6, where n0 is the mean particle number density 〈n(x, t)〉 = n0.

The mass loading of the disperse phase is therefore defined as φ = αρp/ρf . To high-

light the effect of these parameters, the coupling term is expressed as:

1

ρf
f(x, t) = φ

n(x, t)

n0

ṽp(x, t)− ũf@p(x, t)

τp
(7)

The mass fraction term is thus a factor in the expression, the fraction n(x,t)
n0

contains

information about the spatial distribution of particles and the last term is related to the

Stokes number.

1.3. Numerical methods

We performed direct numerical simulation to solve the unsteady three-dimensional

Navier-Stokes and continuity equations with the Asphodele code using a low Mach

formulation of the Navier-Stokes equations and a Lagrangian formulation for the par-

ticles. This code was developed by J. Réveillon and co-workers at CORIA laboratory

(Reveillon and Demoulin, 2007). The time resolution is provided by a third order
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explicit Runge Kutta scheme and spatial evolution is done with a high order finite dif-

ference scheme.

One of the key aspects of in Euler-Lagrange simulation is the coupling between the

particle equations and the carrier phase. Two elements are required: an interpolation

scheme to evaluate the gas phase properties at the particle locations, and a projection

scheme to compute the feedback of particles to the gas phase or to compute particle

Eulerian fields.

For the interpolation step, we use a third-order algorithm to compute the gaseous

quantities at droplet location. Strutt et al. (2011) discussed the accuracy of interpolation

schemes such as the fourth-order cubic spline, the fifth-order Lagrange or the third-

order Hermite polynomials interpolation.

The choice of the projection kernel depends on the developed physics or the desired

precision. The PSI-Cell method of Crowe et al. (1977) was originally implemented in

Asphodele code. The Lagrangian contributions are instantaneously allocated to neigh-

boring gas nodes, weighted by the distance to the nodes. This procedure is some-

times controversial because it leads to significant error that depends on the ratio of

particle diameter to the grid spacing. This approach requires for the mesh size to be

much larger than the particle diameter. More physical mollification kernels can be

used to transfer particle data on the Eulerian mesh, such as described by Capecela-

tro and Desjardins (2013). Diffusion operation might also be necessary to deal with

finer grids. Maxey et al. (1997) proposed a ”narrow envelope function” in the form

∆(x) = (2πσ2)−3/2 exp(−x2/2σ2), which was used by other works (Capecelatro

and Desjardins, 2013; Zamansky et al., 2014). The length scale σ is a parameter that

can be adjusted to reflect the finite size of the particle. A gaussian envelope for the

source term was also implemented in the code and a comparison of the influence of the

projection kernels is provided in Appendix A: the effect of the coupling kernel is lim-

ited to the smallest scales and does not impact the qualitative results that are reported

in this work.
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2. Target configuration and parameter sets

2.1. Homogeneous Isotropic Turbulence

Among the works mentioned in the introduction, we can distinguish studies with

forced stationary turbulence, for which statistics are therefore easier to carry out, from

naturally decreasing turbulences, as reported in Table 1. A comparison of these turbu-

lences is proposed by Abdelsamie and Lee (2012), who noted a number of difficulties

in the attempt to study the impact of particles on the energy spectrum when it is ar-

tificially forced. Many differences are observed, including significant changes in the

influence of small particles that do not allow energy to be reintroduced to the fluid in

forced turbulence. And although Mallouppas et al. (2013) introduced a new forcing

model, the same biases observed for small particles are found in their results. We have

therefore chosen a configuration of decaying turbulence, for which we normalize the

observed quantities by the total kinetic energy at each instant and thus retrieve more

stationary trends in the evolution of components of the energy decay rate.

The proposed test case is a decaying homogeneous isotropic turbulence loaded with

particles. The domain is a cubic periodic box of size L = 5 meshed with N3
g = 2563

cubic cells. The initial condition for the gaseous phase is set using a Pope spectrum

(Pope, 2000). The initial parameters of the spectrum areC = 1.5 , β = 5.2 and p0 = 4,

cL = 0.019, cη = 0.051. All the values of the variables presented in this work are

dimensionless and the normalizing Reynolds number is Re0 = urefLref/νf = 103 .

The turbulent characteristics of the decaying HIT are given in Table 2 for initial

time, injection time and final time. It shows the mean turbulent kinetic energy e, the dis-

sipation ε , the Kolmogorov time and length scales (τk and η), the Eulerian eddy turn-

over time τf , the longitudinal integral length scale L11, and the turbulent Reynolds

number Re = urmsL11/νf , where urms =
√

2/3e is the gas velocity fluctuations.

The energy spectrum is plotted for the corresponding times in Fig. 1. Adequate reso-

lution of statistics is verified with the parameter κmaxη = 2π/L×Ng/2η = 2.9 ≥ 1.

Comparison of different mesh resolutions is also provided in Appendix B and a good

agreement is found between them.
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time e ε τk η τf L11 Re

t0 0.015 0.0089 0.335 0.018 2.11 0.21 21.13

tinj = 3 0.054 0.0014 0.854 0.029 4.55 0.27 16.45

tf = 6 0.003 0.00052 1.38 0.037 6.95 0.31 13.47

Table 2: Turbulence properties of the HIT

Figure 1: Energy spectra at initial time, injection time and final time

To evaluate turbulence modulation by particles, statistical quantities and spectrum

of energy are studied. The time-evolution equation of turbulent kinetic energy e(t) is

obtained by multiplying fluid momentum equation by uf,j and ensemble averaging.

The homogeneous isotropic field allows us to use instead the spatial mean 〈.〉 previ-

ously introduced. It is numerically implemented as the discrete average over all the

cells in the domain.
de(t)

dt
= −ε(t) + ψp(t) (8)

where ε(t) = 2νf 〈SijSij〉 is the viscous dissipation rate of e(t) with Sij =
1

2

(∂uf,i
∂xj

+

∂uf,j
∂xi

)
and νf is the dimensionless kinematic viscosity. ψp(t) represents the energy

rate of change due to the particles drag force:

ψp(t) =
φ

τpn0

〈
n(x, t)uf,i(x, t)[ṽp,i(x, t)− ũf@p,i(x, t)]

〉
(9)

Performing the Fourier transform of the fluid momentum equation, we obtain the
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equation for the energy spectrum E(κ):

dE(κ, t)

dt
= T (κ, t)−D(κ, t) + Ψp(κ, t) (10)

where the spectral dissipation rate is D(κ) = 2νfκ
2E(κ) and T (κ) is the spectral

energy transfer rate. The fluid-particle energy interaction term Ψp(κ) produced by

particles is responsible for the modulation in the turbulence energy spectrum.

2.2. Parameter set for particles

The particles are injected after approximately one eddy turnover time to ensure that

natural turbulence is established. At injection time, the particle locations are randomly

drawn in the domain, and the particle velocities are set equal to the ones of gas phase at

the particle locations. The simulation is run under one-way coupling during approxi-

mately one eddy turn over time to thermalize the particles. Then the two-way coupling

is activated and the evolution of the turbulence spectrum is analyzed. This delay for the

activation of the two-way coupling allows the influence of the particles to be studied

once they have naturally segregated. This removes an inconvenient transitional regime

observed otherwise, already mentioned by Ferrante and Elghobashi (2003), especially

visible for particles with large Stokes.

Regarding some properties of the turbulent flow, dimensionless numbers can be

derived, considering fluid density ρf , Kolmogorov time τk =
(
νf/ε

)1/2
and length

scale η =
(
ν3f/ε

)1/4
. This yields the ratio of the characteristic time of a particle and a

turbulence time scale, commonly referred to as the Stokes number St = τp/τk, the ratio

of the diameter of particles and Kolmogorov length scale dp/η and the dimensionless

particle number density, introduced by Poelma et al. (2007), noted nη = n0η
3, that

can be interpreted as the number of particles per Kolmogorov eddy. Volume fraction α,

mass loading φ and density ratio can also be derived. All those parameters are related

to each other in Fig. 2.

Given a fluid and turbulence properties, only three fundamental units are present:

time, mass and length. According to the Π-theorem, the system is describable by only

three dimensionless parameters of diagram 2, each of which must belong to a different
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𝑆𝑡

𝜌𝑝/𝜌f 𝑑𝑝/𝜂

𝜙 𝛼 𝑛𝜂

Figure 2: Controlling non-dimensional parameters for particles in turbulence.

”group” (symbolized with the circles in the background of Fig. 2).

The reader can re-examine previous publications with this diagram in mind. Table

1 shows the parameters that were fixed and changed between their different simula-

tions. The parameters in bold font were those identified by the authors as responsible

for turbulence modulation. The only consistent and exhaustive study of a given triplet

was completed by Elghobashi et al. (1994) who successively observed the separate in-

fluence of τp, α and dp. However, the use of computational particles to represent sev-

eral real particles (Mr/Mc = 100) can mimic the characteristics of an heterogeneous

disperse phase, though aiming at representing a highly-concentrated one (high ”real”

particle number density but low ”computational” particle number density). As already

noticed by Boivin et al. (1998), neither simulations of Squires and Eaton (1990); El-

ghobashi et al. (1994) nor their own calculations met the condition of nη >> 1, re-

quired for correspondence between computational and actual particles. Therefore, only

”real” particles (Mr/Mc = 1) are used in our study.

Our choice of description for the disperse phase is represented by the darkest triplet

in Fig. 2. The choice of these three parameters was made in view of the proposed form

of the interaction term. Indeed, in Eq. 9, mass loading is a factor as well as the inverse

of the relaxation time of the particles. We therefore naturally wanted to be able to study

the influence of each of these terms in modifying turbulence.

For the description of the system, we see in Fig. 2 that the third parameter can

be the volume fraction, the particle diameter or the particle number density. From a
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St(tinj) φ nη

[0.5, 1, 2, 4, 8] [0, 0.1, 0.2, 0.3] [0.03, 0.3, 3]

Fig. 3, 17, 21 1 0.001 2.7 × 2j , j = −15, ..., 0

Table 3: Set of parameters for particles

modeling point of view, we have already seen that the number of particles plays a role

in the description of the disperse phase in single-phase flows (Vié et al., 2016). We

will see through this work that at fixed Stokes and mass loading, particle distribution

in space is essential to quantify the impact on the gaseous phase.

In some of previous works such as those of Druzhinin and Elghobashi (1999) or

Druzhinin (2001), particle field has been considered as perfectly homogeneous when

St << 1. This assumption was justified by considering that in the case of micropar-

ticles the preferential concentration is negligible. However, if particle number density

is not large enough, the disperse phase cannot be considered as homogeneous even

though the distribution of particles is uniform in the domain. One of the aim of the

present work is to give a criterion on particle number density to determine what is the

appropriate mean particle number density to consider the two-way exchanges as inde-

pendent of this parameter.

In the present work, we apply direct numerical simulations to investigate turbulence

modulation by inertial particles in decaying isotropic turbulence. Parameters of the

disperse phase were successively varied to provide data on modulation of turbulence

features and energy spectra according to Table 3. In order to cover the entire parameters

space, the exhaustive study of the three selected parameters is carried out according to

the parameter values in the first line of Table 3. To emphasize the role played by the

particle number density parameter, another set of simulations is performed, with a very

large range of values for nη . To satisfy the assumptions of sub-Kolmogorov particles

and dilute regime, the mass fraction is set at a sufficiently low value φ = 0.001.
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3. Defining a measure of disperse phase heterogeneity

In turbulent flows, preferential concentration of particles is a major aspect that

can strongly lead the physics (see ? for example). In the literature, several methods

have been proposed to measure preferential concentration, and an exhaustive review is

proposed by Monchaux et al. (2012). However, preferential concentration is not the

only source of phase heterogeneity. Actually, when particle concentration is not high

enough, the particulate phase cannot be seen as a continuum, and must therefore be

considered as a set of individual particles, and this can have an impact on physics (see

for instance Zamansky et al. (2016)). This introduces an additional level of heterogene-

ity. Here we thus define the heterogeneity of the disperse phase as the combination of

the preferential concentration, consequence of the interactions between particles and

turbulence, and the lack of continuum, consequence of large particle interspace. In

the following, we propose methods that permit to separate both sources, and we also

propose a way to identify isolated particles.

3.1. Measurement of preferential concentration

A classical tool to quantify preferential concentration is the PDF of particle num-

ber density based on bin counting, which depends on the bin size, as demonstrated

by Monchaux et al. (2012) and Hogan and Cuzzi (2001). A possible index to quan-

tify the preferential concentration is the normalized variance of the number density

field 〈N2
pb〉/〈Npb〉2, with Npb being the number of particles per bin. Fig. 3 not only

confirms the dependency of the measure with the bin size, but also highlights its depen-

dency on the particle number density nη . For a given bin size, the normalized variance

converges when increasing the number of particles. For sufficiently high particle num-

ber densities, the statistical sampling becomes redundant and saturated and increasing

the number of particles does not add any information in the measure. Moreover, the

threshold of convergence depends on the bin size: smaller bins require a higher particle

number density to be completely sampled.

Another solution proposed in the literature is the use of Voronoı̈ diagrams based

on the Lagrangian point-particle cloud. The local particle concentration is the inverse
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Figure 3: Evolution of preferential concentration with particle number density for different bin

sizes (the arrow shows the increase in bin size). Parameters displayed in Table 3.

of the volume of Voronoı̈ cells and unlike other segregation calculation methods such

as bin counting, they do not depend on the size of the box arbitrarily chosen. A direct

measure for the preferential concentration is the standard deviation of Voronoı̈ volume

distributions: when clusters and vacuum regions are formed, the tails of the distribu-

tions are enhanced and the standard deviation increases.

Figure 4a shows the distribution of the normalized Voronoı̈ volumes normalized by

the average particle density1, introduced by Monchaux et al. (2010). Three one-way

coupled simulations are compared with different Stokes numbers and particle number

densities at final time. Figure 4a also shows the distribution generated by a Random

Poisson Process (RPP), which corresponds to the perfectly homogeneous case. For all

three cases, the standard deviation is greater than for the Random Poisson Process, and

it is maximal for a Stokes close to unity, when the highest preferential concentration

occurs.

In Fig. 4b, we show the standard deviation of the Voronoı̈ volume distribution for

three original simulations with different particle number densities: nη = 0.03, 0.15, 1.5,

respectively the yellow, red and blue diamonds. Similar to the bin counting method,

1We recall that the average particle density is independent of the spatial organization of particles.
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(a) (b)

Figure 4: (a) PDF of normalized Voronoı̈ volumes. (b) Evolution of the standard deviation of

the PDF with the number of particles in simulations, for successive depletion in post-processing.

this measure also depends on the particle number density, and thus does not differ-

entiate the source of heterogeneity between preferential concentration and the lack of

continuum.

Here we suggest another strategy based on the artificial depletion of the particu-

late field: before post-processing, we remove particles randomly and we perform the

Voronoı̈ analysis on the depleted field. In Fig. 4b (blue stars, red circles and yellow

crosses), we show that when the original simulations are artificially depleted, the stan-

dard deviation is perfectly scaled as soon as the number of particles is large enough.

Therefore, to compare preferential concentration between simulations with different

number of particles, we can artificially deplete the highest concentrated simulation un-

til we obtain the same number of particles, as long as the number of particles is large

enough to consider the remaining sample significant, when nη & 10−3 in our simula-

tions. Below this limit, the depletion strategy is not accurate anymore because of the

high sensitivity of the measure to the exact location of the particles.

To summarize, we compare the different measures of preferential concentration

introduced above in Fig. 5, for several Stokes numbers. The bin counting method

based on the smallest bins (lbin = ∆x) reveals a strong statistical bias that can masks
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(a) (b)

Figure 5: Comparison of preferential concentration for one-way coupled simulations. Dotted

lines ( ) : nη = 0.03, dashed lines ( ): nη = 0.15 and solid lines ( ): nη = 1.5. (a)

Bin counting method; (b) Standard deviation of normalized Voronoı̈ PDF before (red lines) and

after (black lines) depletion in post-processing.

the preferential concentration of particles for very low particle number densities: the

Stokes dependency is not evident for the dotted curve in Fig. 5a. This is corrected in

the measure introduced by Monchaux, plotted in red in Fig. 5b. Even for very low

particle number densities, the Voronoı̈ diagrams are well defined and the shape of the

correct dependency on Stokes number is captured. However, there is still the statisti-

cal bias due to the mean particle number density. The black lines represents the new

measure we introduced. The scaling of those black curves is consistent with the fact

that the same physics rules the preferential concentration, and that the only difference

between the red curves is due to the additional sampling. Note that the value of the

depleted measure still contains the effect of particle number density because it depends

on the reference nη chosen, but it is now independent of the particle number density of

the original simulation. This quantifies the tendency for particles to gather in specific

regions of the fluid.
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Figure 6: 2D Voronoı̈ cells superimposed with particle number density field

3.2. Identification of isolated particles

Voronoı̈ cells produce a partition of the domain and thus, even in a regime where

all particles are visibly part of a well-converged cluster as in the schematic example of

Fig. 6, the cells of particles located at the border of the high density area will include

the vacuum domain separating the other clusters. From the definition proposed by

Monchaux et al. (2010), those specific particles are therefore not part of any clusters.

However, we would like to include them in the cluster given that they are located in the

high-density area. On the other hand, we would like to identify if particles are com-

pletely isolated from a cluster, and Voronoı̈ volumes fails to provide this information

because a large cell volume does not necessarily mean that the associated particle is in

a void region. This is why we are considering a different distribution than the Voronoı̈

volumes to avoid this eventuality.

Let us introduce the minimum interparticle distance δmin, defined for each particle

as the distance between the particle and its closest neighbor. Thus, even for particles on

the boundary of a cluster, the minimum distance is small enough to consider that those

particles belong to it, while the Voronoı̈ criterion reflects the fact that they belong a

vacuum region. The distributions of minimum interparticle distances is given in Fig. 7

for several particle number densities. Naturally, an increase in the particle number den-

sity results in a shift of the distribution towards lower values of interparticle distances.
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Figure 7: Probability density function of minimum interparticle distance for simulation with

St = 0.45 and φ = 0.3 at tf = 6. Dotted line represents 2∆x.

3.3. Summary of proposed measures

We have introduced several measure of particle concentration. We have verified

that the bin counting measure of segregation converges with the number of particles,

and that particle preferential concentration can be compared between simulations with

different number densities using the method of depletion and volume Voronoı̈ PDF. We

will therefore use the bin counting method to estimate the convergence of exchanges

between particles and fluids at a given scale, and the volume Voronoı̈ PDF will be

helpful to compare particle preferential concentration in two-way coupled simulations

in section 4.3.1. The minimum interparticle distance gives another characterization

of the heterogeneity of the particulate phase, by allowing to identify isolated particles

with large interparticle distances.

4. Results

An overview of the evolution of statistical quantities and spectra is presented in this

section according to the three parameters St, φ and nη . The results already observed in

the literature for the influence of Stokes number and mass loading are retrieved. Focus

is on the role played by the particle number density, and the importance of taking it

into consideration for a heterogeneous disperse phase.
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Figure 8: Turbulent kinetic energy and decay rate evolution for φ = 0.3 and a highly-

concentrated disperse phase. Stokes number are based on τk(t = tinj)

4.1. Two-way interaction energy rate

The existing literature has agreed that there is a criterion for determining whether

turbulence will be increased or decreased by the presence of particles. While some

studies propose a diameter ratio on a turbulence scale, others have observed the im-

portance of the role played by the Stokes number based on Kolmogorov time scale.

Ferrante and Elghobashi (2003) suggested that the critical Stokes (based on the Kol-

mogorov time scale at injection time) is in the order of 0.25, and therefore name these

particles as ”ghosts” because of their limited influence on the total energy change of

the turbulence. Figure 8 shows similar results: the Stokes number does play a role in

the modulation of the kinetic energy of the fluid, with a tendency to slow down the rate

of energy decrease for low Stokes, and to increase it for more inertial particles. The

evolution equation of this decay rate (Eq. 9) is related to the dissipation term −ε(t), to

which is added the energy rate of change due to particle drag force ψp(t).

Figure 9 describes the evolution of the two components of the decay rate: the fluid-

particle coupling energy rate (Fig. 9a) and the dissipation rate (Fig. 9b) at a given time

tf = 6 and as a function of the Stokes number. Both are normalized by the total energy

budget of the carrier phase e(tf ). The two energy rates have very similar behaviors,
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(a) Fluid-particle exchange energy rate (b) Dissipation rate

Figure 9: (a) Normalized fluid-particle exchange energy rate. (b) Normalized dissipation rate

versus Stokes number at time tf = 6. Lines blue: φ = 0.1, red: φ = 0.2, yellow: φ = 0.3,

: nη = 3 , : nη = 0.3 , : nη = 0.03. The black dash-dotted line stands for the

single-phase flow.

Figure 10: Normalized dissipation rate ε/e as a function of ψp/e. at time tf = 6. Lines blue:

φ = 0.1, red: φ = 0.2, yellow: φ = 0.3.
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and the strain rate being only a function of the fluid, we deduce that fluid dissipation is

closely related to the fluid-particle energy rate. This correspondence is clearly visible

in Fig. 10 which groups the fluid dissipation values according to those of the fluid-

particle exchange term. Moreover, the change in dissipation relative to the one for

single-phase flow is smaller than the source term ψp. Therefore, we will mainly focus

on the two-way interaction energy rate and consider the dissipation as a consequence

of this term.

We measure a change in the sign of ψp around Stokes number close to unity 2 in

Fig. 9a. In the case of St < 1, the fluid-particle coupling energy rate ψp is positive,

because the fluid-particle correlation along the particles paths 〈uf,i(x, t)ṽp,i(x, t)〉 is

larger than the autocorrelation of the fluid 〈uf,i(x, t)ũf@p,i(x, t)〉 (Ferrante and El-

ghobashi, 2003). With the inverse coupling, particle energy is given to the fluid result-

ing in an attenuation of the energy decay rate.

For Stokes numbers close to unity, particles are ejected from the large-vorticity

cores but remain in their periphery. Even though fluid-particle energy rate is close to

zero, the concentration of particles in those peripheric areas of vortices increases the

dissipation.

Conversely, when the inertia of the particles increases, the fluid-particle coupling

energy rate becomes negative due to a decorrelation between the velocities of the fluid

and the particles. Inertial particles escape from their initial vortices and ”cross” the

trajectories of fluid points. Accordingly, ψp becomes negative and thus enhances the

decay rate of turbulent kinetic energy.

In the scalar limit (for microparticles, i.e. St << 1), the particle distribution is

relatively uniform and particles behave like fluid-tracers. They are not ejected from

the vortex cores and they retain their kinetic energy longer than the surrounding fluid.

This is called ”dusty gas”, a phenomenon already described by Saffman (1962) and

quantified analytically by Druzhinin (2001). The zeroth-order solution of the two-way

2The Stokes number calculated in our study is based on Kolmogorov scale at the measuring time tf , and

not the injection time as it is defined by Ferrante and Elghobashi (2003)
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Figure 11: Fluid-particle coupling energy rate normalized by dissipation rate as a function of

mass loading. The arrow shows the decrease in Stokes number: St ∈ [2, 1, 0.5, 0.15]. The

dotted line is the asymptotic limit analytically predicted.

coupling source term is in the form:

ψp(t) =
φ

1 + φ
ε(t) +O(St) (11)

This asymptotic behavior is retrieved in Fig. 11.

As expected, an increase in mass loading produces a more significant fluid-particle

coupling term. Figure 12 suggests that a normalization by φ yields a scaling indepen-

dent of mass loading. Thus, at high Stokes, an increase in mass loading enhances the

suppression of kinetic energy. On the contrary, at low Stokes, ψp remains positive, and

its absolute value increases, which slows down the natural decrease in the turbulent

kinetic energy of the fluid. Physically, the particles with low Stokes follow the fluid

particles and thus uniformly charge the vortices, which therefore retain their vorticity

longer.

Finally, Fig. 9a shows that the particle number density nη influences the two-way

interaction energy rate, especially when the mass loading φ is large. Figure 13, which

shows the evolution of the normalized fluid-particle energy rate as a function of the

particle number density, confirms that an heterogeneous disperse phase enhances the

fluid-particle exchange term contribution. We also plotted on the same figure the seg-
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Figure 12: Fluid-particle coupling energy rate normalized by mass loading. Lines blue: φ =

0.1, red: φ = 0.2, yellow: φ = 0.3.

regation (dotted line) measured with size bins corresponding to the smallest resolved

scales. The exchange terms and the segregation show similar trends, especially regard-

ing the asymptotic behavior already observed in section 3 that is reached for nη >> 1,

which is consistent with the idea that sampling becomes statistically significant for a

large number of particles per bins of size η3. A similar statistical convergence was also

observed and quantified by Vié et al. (2016) for one-way coupled flows. The asymptotic

convergence of the disperse phase segregation with particle number density naturally

leads to an asymptotic value for the fluid-particle exchange energy rate as well. We

call this regime the highly-concentrated regime: the interactions between fluid and par-

ticles are independent on particle number density for nη >> 1. In section 4.3.1, we

will verify if this convergence is solely a statistical effect (Law of Large Numbers) or

related to a modification of the preferential concentration zones.

4.2. Spectral space analysis of two-way coupling energy rate

The consequence on the coupling can be further examined by taking the evolution

of the energy and forcing spectra. As already observed by Ferrante and Elghobashi

(2003), even if the change in the total energy budget is not affected by the presence

of small particles (in the case of ghost particles), it does not necessarily imply that the

distribution of this energy in the different scales is uniformly zero.
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Figure 13: Solid lines ( ) : fluid-particle coupling energy rate and dotted line ( ) : seg-

regation as a function of particle number density for St = 0.4 at tf = 6 (respectively left and

right axis). Lines blue: φ = 0.1, red: φ = 0.2, yellow: φ = 0.3.

Figure 14: Energy spectrum at t = 6 for φ = 0.3 and St = 1.6. The arrow shows the increase

in the particle number density. The dash-dotted line stands for the single-phase flow spectrum.
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(a) (b)

Figure 15: (a) Influence of Stokes number and (b) mass loading on Ψp spectrum at tf = 6 for

nη = 3. solid line ( ): φ = 0.3, dashed line ( ): φ = 0.1

In Fig. 14, the turbulence spectrum is plotted at time t = 6 for cases without parti-

cles, and in the two-way coupled cases for a mass loading of 0.3, a final Stokes number

St(tf ) = 1.6, and six different values of mean particle number densities. The pres-

ence of particles enhances the energy at small scales while decreasing the energy at

large scales, the overall turbulent kinetic energy being reduced because of the pro-

moted turbulent dissipation. Furthermore, as the particle number density is increased,

the spectrum tends to a limit one which corresponds to the highly-concentrated regime.

The fluid-particle interaction spectrum has been extensively studied in the liter-

ature. In particular, Ferrante and Elghobashi (2003) compared Ψp(κ) for different

Stokes number and found similar results. Figure 15a shows that for particles with

small Stokes (microparticles), Ψp(κ) is positive at almost all wavelengths and thus

produces a positive contribution to the decay rate ∂E(κ)/∂t. On the other hand, the

term is negative at almost all wavelengths for larger Stokes. For intermediate and large

Stokes, Ψp(κ) remains positive for large κ while a negative peak appears in the spec-

trum for small κ. It can be assumed that in the neighborhood of the particle, the fluid

particles ”follow” the inertial particle, thus producing a local correlation of particle ve-

locity with the velocity of the surrounding fluid. This results in a positive interaction
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at high κ on the Ψp spectrum. Figure 15b shows the spectral fluid-particle interaction

for two different Stokes and two different mass loading. As mentioned in section 4.1,

the scaling between spectra with same Stokes but different mass loading is close to the

ratio of mass loading, but because of the non-linearity, we do not expect such scaling

for higher mass loading.

Previous results show that a low particle number density results in an increase in

the fluid-particle interaction energy rate ψp(t), especially when the mass loading is

high. Let us study the spectrum of this exchange term to understand at what scales

the interactions between particles and fluid are located and how the distribution of

mass loading can modify the fluid energy. A high particle number density produces a

highly-concentrated particle number field in which each particle is light and takes part

in a collective cluster of particles. On the contrary, a low particle number density gen-

erates a heterogeneous particle concentration field and therefore individual particles

are more isolated and heavy.

We can see in Figs. 16a and 16b that a heterogeneous disperse phase (nη = 0.03)

produces a larger Ψp(κ) at small scales than a highly-concentrated one (nη = 5). How-

ever, for particles with small Stokes in Fig. 16a, this effect is reversed at large scales of

the fluid and the highly-concentrated disperse phase produces a stronger source term.

On the other hand, for particles with higher Stokes in Fig. 16b, the negative peak at

large scales is enhanced by the collective effect of clustered particles. In both cases,

at larger scales, the fluid-particle exchange of the heterogeneous disperse phase is re-

duced (in absolute value) compared to the highly-concentrated one.

4.3. Particle field heterogeneity

For a physical intuition of the interpretation of the spectra in section 4.2, the spatial

distribution of the corresponding fields before the Fourier transform can be examined.

Figure 17 compares the spatial distribution of the local two-way interaction energy rate

ψ̃p(x, t) = uf (x, t)f(x, t)/ρf , with superimposed particles in a part of the flow do-
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(a) (b)

Figure 16: Spectral fluid-particle interaction plotted for different particle number densities nη

and fixed φ = 0.3. (a) St = 0.45 ; (b) St = 1.60

main at time t = 6. Particles parameters were set to the same Stokes number St = 1,

and global mass loading φ = 0.001, but different particle number densities. Figure 17a

shows that each isolated particle produces a localized contribution to the two-way in-

teraction term, and therefore the two-way interaction field is more heterogeneous than

for the case with higher nη , accordingly to the corresponding particle concentration

field. By increasing the particle number density nη without changing the total mass φ

nor the behavior of each particle defined by St, see Fig. 17b, each particle produces a

smaller individual effect on the fluid. On the other hand, the collective effect of seg-

regated particles results in a smoother and well-distributed two-way interaction field.

The probability distribution function of the corresponding spatial two-way interac-

tion terms is plotted in fig. 18, and the reduction of the tails indicates a better distributed

interaction term for highly-concentrated disperse phase.

4.3.1. Preferential concentration

Figure 19 shows the standard deviation of the normalized Voronoı̈ volume distribu-

tions for the different configurations. As explained in section 3, the simulations were

depleted in post-processing to equalize to the same number of particles in order to be
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(a) (b)

Figure 17: Distribution of two-way interaction energy rate ψ̃p at t = 6 superimposed with par-

ticles parametrized by φ = 0.001 and St = 1. (a) nη = 0.12 ; (b) nη = 2

Figure 18: Distribution of the two-way interaction energy rate field ψ̃p(x, t) for the heteroge-

neous and highly-concentrated cases.
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Figure 19: Comparison of preferential concentration for all simulations. Lines blue: φ = 0.1,

red: φ = 0.2, yellow: φ = 0.3, : nη = 3 , : nη = 0.3 , : nη = 0.03. The black

dash-dotted line stands for the single-phase flow.

able to compare them without statistical bias. The quasi-scaling of those curves is con-

sistent with the fact that the Stokes number based on real time governs the preferential

concentration, revealing that the adaptation is faster than the decrease in energy. Only

simulations with low particle number density and low Stokes number increase the pref-

erential particle concentration effect. We can conclude that all the two-way coupling

effects that we analyze in our simulations are not a consequence of a modification of

the clustering.

4.3.2. Collective and isolated regimes

A single particle will interact and exchange energy with the surrounding fluid up

to a characteristic distance of δi, which is directly related to the size of the projection

kernel 3. The source term introduced in the fluid momentum equation is limited to the

kernel envelope δi and we will consider that a particle is ”isolated” if it is distant from

others of more than δi. On the contrary, if two particles are closer than this length-

scale, their corresponding source terms can be superposed and these two particles form

a ”cluster”.

3Using a trilinear projection, we verify that δi = ∆x < η
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Let us consider the two limit regimes where particles are either all isolated to each

other, or all part of a cluster. Those two configurations correspond to the PDF of the

minimal interparticle distance being respectively on the right or on the left side of the

2δi = 2∆x boundary, see Fig. 7 (dotted line). These limit behaviors are indeed ob-

served in Fig. 16: green and light blue distributions of Fig. 7 are on the left of 2δi and

produced in Fig. 16 overlapped spectra, because the particulate phase is already con-

verged and increasing particle number density do not change the interaction spectrum

anymore. However, for the other distributions, on the other side of the threshold, one

can see in Fig. 16 that the spectra are strongly dependent on particle number density,

especially at the smallest scales, the last ones to reach convergence.

Let us explained these limit behaviors. If particles are all isolated from each other,

then the particles properties locally determine the amount of energy exchanged with

the fluid and the global budget is a statistical average of all the exchanges. Thus, if we

modify the properties of this particle, for example by decreasing the particle number

density of the simulation while ensuring that we keep isolated particles, then the mass

mp of the single particle is now larger and the amount of energy transferred will be

locally larger. In this regime, the two-way interaction spectrum is highly sensitive to

particle number density, especially at the smallest scales of the fluid, where particles

inject an energy almost proportional to their mass.

On the contrary, if every particle is part of a cluster, the force exerted by particles

on the fluid can be assimilated to a continuous force on the cluster domain. By in-

creasing particle number density but maintaining the mass loading, the total mass and

therefore the energy contained in each cluster is unchanged. Therefore, the two-way

interaction spectrum is unchanged, this collective regime leads to the two-way limit

behavior observed for spectra.

This criterion is very restrictive, those two limit regimes are rarely reached and we

propose in the next section an other approach to characterize the transition from the

isolated to collective regime, scale by scale.
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(a) (b)

Figure 20: (a) Two-way interaction spectra for different particle number densities nη = 2.7×2j ,

j = −15, ..., 0, and fixed St = 1 and φ = 0.001 (The arrow shows the increase in nη). (b)

Two-way interaction spectra for 11 realizations of simulation with nη = 2.7×2−14 (grey lines),

the mean spectrum (black solid line) and the standard deviation (red solid lines).

4.3.3. Scale by scale convergence

The two-way interaction spectrum indicates for each wavelength the amount of

energy introduced into the spectral equation. More precisely, each wave-number κl is

associated to a physical size l = 2π
κl

. Thus, the term Ψp(κl) specifies the average energy

provided by the exchange term in boxes of size l contained in the domain. Figure 20a

shows the interaction spectrum for different particle number densities. For very low

particle number densities, the spectrum is noisy at the largest scales due to a lack of

statistics available for the corresponding box sizes.

To illustrate the strong variability of the spectrum realizations between different

simulations (same parameters of the disperse phase and the gas phase but different ini-

tial particle distribution), we reported in Fig. 20b the two-way interaction spectra of

several realizations, along with the mean spectrum (black line) and its standard devi-

ation (red lines). The variability between the different realizations is reduced at the

smallest scales because one flow realization contains a sufficiently large sample of

small eddies to ensure statistical convergence.

32



(a)

slope -1

(b)

Figure 21: (a) Two-way interaction spectra averaged between several realizations. (b) Evolu-

tion with nη of the spectral values for different wavenumbers (the arrow indicates increasing

wavenumbers).

In the following, to only take into consideration the effect of a representative re-

alization of a highly heterogeneous disperse phase, we consider the average spectrum

associated with several realizations (black spectrum). We thus obtain Fig. 21a, identi-

cal to Fig. 20a for large nη but less noisy for small nη .

In Fig. 21b, we have plotted for several wavelengths the evolution of the spectrum

values at those scales when nη increases.

For each graph in this figure, we observe two very distinct regimes: a first linear zone of

slope −1 for low nη , and a second zone for high nη , in which the spectrum values are

converged and are therefore no longer modified when the particle number density in-

creases. Those regimes are respectively the isolated (linear) and collective (converged)

regime introduced before. This scale-by-scale convergence can be correlated with the

convergence of the segregation measure defined with bin counting of corresponding

sizes in Fig. 3, and is also a consequence of the statistical sampling related to the scale

in consideration: the large scales reach their asymptotic value for smaller nη than small

scales, because the number of particles per scale is larger.
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Conclusion

An exhaustive study of the influence of the three parameters describing a monodis-

persed phase on isotropic homogeneous turbulence has been carried out. Classical

results from the literature have been retrieved, in particular the global trends in energy

and spectral statistics with the Stokes number and mass loading. The study of the two-

way coupling term here normalized by fluid kinetic energy and the use of a Stokes

number based on instantaneous Kolmogorov scales have permitted to clearly identify

two regimes: a first regime for St < 1 in which particles promote turbulent energy, and

a second regime for St > 1 in which particles destroy turbulent energy.

Additionally to the existing literature, the present study has emphasized the influ-

ence of the particle number density on the coupling term. First, we ensured with a

Voronoı̈ analysis that the structure of turbulence is not strongly modified by the pres-

ence of particles: turbulence is sustained or dissipated but particle preferential concen-

tration remains directly correlated to the updated Stokes number.

Numerical simulations have revealed that a highly heterogeneous particulate phase

tends to increase the energy transmitted to the fluid. In particular, a spectral analy-

sis showed that isolated particles inject energy at the finest scales while a continuous

particulate phase no longer produces energy at these scales but rather at smaller wave-

lengths. Those two regimes are reflected in the behavior of the energy spectra:

• At ”small” scales, the spectrum is strongly dependent on particle number density

and behave almost linearly with this parameter: the energy injected by particles

is almost proportional to individual particle mass because particles are isolated

regarding those specific scales.

• At ”large” scales, the spectrum is no longer modified by the number of particles

since the sampling is significant enough, all these scales necessarily contain a

large number of particles.

• The limits for ”small” and ”large” scales depend on the mean particle number

density.
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• If the distribution of minimal interparticle distance is on the left side of η, the

spectrum is completely converged: increasing particle number density does not

modify the spectrum.

Furthermore, due to the high variability of the spectrum at large scales for low particle

concentration, we have highlighted the necessity to construct statistics over several

flow-particles realizations.

This study therefore made it possible to determine precisely the conditions of partial

or total convergence of the spectrum as a function of the particle number density, and

more precisely of the distribution of interparticle distances.

As a conclusion, it must be noted that such regimes, whereas being intrinsically

present in Lagrangian point-particle approaches, must be included and modeled when

the carrier phase description is given by a reduced description such as Large Eddy

Simulation. The use of adapted Lagrangian Stochastic models must be considered. For

Eulerian approaches, even with a fully resolved carrier phase, accounting for heteroge-

neous regime requires new developments and closures at the kinetic level.
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Appendix A. Impact of the coupling kernel

Let us introduce the threshold δi, the characteristic size of the domain of influence

of a particle on the surrounding fluid. This numerical quantity corresponds to the size

of the volume filtering kernel, usually determined to fit the physics. Several works

are dedicated to the determination of the parameter δi for finite size particles (see for

instance Maxey and Patel (2001)), the objective being to ensure that the force distri-

butions are completely contained within the interior of the particle. This corresponds

in our case to δi ≤ dp ≤ η. Knowing that anything under Kolmogorov scales will

be immediately dissipated by the fluid, any size of δi can be chosen under η. In our

numerical implementation, we use a gaussian filter with size σ = ∆x/2
√

2ln(2) such

that the full width at half height of the kernel δi is equal to the grid spacing. This way,

the effect of the particle is typically spread out over the 27 nearest cells. Results are

compared with the trilinear projection kernel.

Thus, in Fig. A.22, the comparison of the interaction spectra obtained is consistent

with the previous wavelength analysis: for simulations with a large number of particles,

statistical convergence is achieved at all scales and thus the kernel change has no impact

on the interaction spectrum. On the other hand, at low particle number density, the

small scales are less energetic with the Gaussian kernel which spread the energy of the

particles at these scales over a larger range of influence δi. It should also be noted that

large scales are then more energetic in this case, since the total interaction energy must

be preserved.

Appendix B. Mesh convergence

We verified the convergence of the spectra for different grid sizes in Fig. B.23.

Spectra overlapped in their definition domain, which ensures that the smallest scales

are always appropriately resolved. The results presented in this work were obtained

using the 2563 grid.
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Figure A.22: Normalized two-way interaction spectrum with trilinear (solid lines) and gaussian

(dashed lines) projection. Two different particle number densities are compared. The inset

displays a zoom around the smallest scales.
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Figure B.23: Comparison of Energy spectrum for different size of meshgrids
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