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Abstract

Human-centric applications such as virtual reality and immersive gaming will be central to the future

wireless networks. Common features of such services include: a) their dependence on the human user’s

behavior and state, and b) their need for more network resources compared to conventional cellular

applications. To successfully deploy such applications over wireless and cellular systems, the network

must be made cognizant of not only the quality-of-service (QoS) needs of the applications, but also of

the perceptions of the human users on this QoS. In this paper, by explicitly modeling the limitations of

the human brain, a concrete measure for the delay perception of human users in a wireless network is

introduced. Then, a novel learning method, called probability distribution identification, is proposed to

find a probabilistic model for this delay perception based on the brain features of a human user. The

proposed learning method uses both supervised and unsupervised learning techniques to build a Gaussian

mixture model of the human brain features. Given a model for the delay perception of the human brain,

a novel brain-aware resource management algorithm based on Lyapunov optimization is proposed for

allocating radio resources to human users while minimizing the transmit power and taking into account

the reliability of both machine type devices and human users. The proposed algorithm is shown to have

a low complexity. Moreover, a closed-form relationship between the reliability measure and wireless

physical layer metrics of the network is derived. Simulation results using real data from actual human

users show that a brain-aware approach can yield savings of up to 78% in power compared to the system
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that only considers QoS metrics. The results also show that, compared with QoS-aware, brain-unaware

systems, the brain-aware approach can save substantially more power in low-latency systems.

I. INTRODUCTION

The next generation of wireless services is expected to be highly human centric. Examples

include virtual reality and interactive/immersive gaming [2], [3]. In order to cope with the quality-

of-service (QoS) needs of such human-centric applications, in terms of data rate and ultra-low

latency, wireless networks will have to allocate and exploit substantially more radio resources by

leveraging heterogeneous spectrum bands across low and high frequencies [4]. However, even

though allocating heterogeneous spectrum resources can potentially increase the raw QoS, given

the human-centric nature of such emerging applications, their users may not be able to perceive

the improved QoS, due to the cognitive limitations of the human brain [5]. Indeed, many empirical

studies (anecdotal and otherwise) have shown that the limitations on the human brain can be

translated into a limitation on how wireless users translate QoS into actual quality-of-experience

(QoE) [6]–[8]. For example, the human brain may not be able to perceive any difference between

videos transmitted with different QoS (e.g., rates or delays) [8], [9]. Hence, in order to deploy

these services over wireless networks, such as 5G cellular systems, there is a need to enable

the system to be strongly cognizant of the human user in the loop. In particular, to deliver

such immersive, human-centric services, the network must tailor the usage and optimization of

wireless resources to the intrinsic features of its human users such as their behavior and brain

processing limitations. By doing so, the network can potentially save resources, accommodate

more users, and provide a more realistic QoE to its users.

Developing resource management mechanisms that can cater to intrinsic needs of wireless

users and their context (e.g., device features or social metrics) has recently been studied in

[4], [10]–[17]. In [10], a context-aware scheduling algorithm for 5G systems is proposed. This

algorithm exploits the context information of user equipments (UEs), such as battery level,

to save energy in the system while satisfying the QoS requirements of users. The authors

in [11], proposed a user-centric resource allocation framework for ultra-dense heterogeneous

networks. Context-aware resource allocation for heterogeneous cellular networks is also studied

in [4], [12], and [13]. In [4], a novel approach to context-aware resource allocation in small

cell networks is introduced. Both wireless physical layer metrics and the social ties of human

users are exploited in [4] to allocate wireless resource blocks. Proactive caching using context
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information from social networks is studied in [14]. In this work, it is shown that such a socially-

aware caching technique reduces the peak traffic in 5G networks. Other context-aware resource

allocation algorithms are also studied in [15]–[17]. However, despite this surge in literature on

context-aware networking [4], [10]–[17], this prior art is still reliant on device-level features and

is agnostic to the human users and their features (e.g., brain limitation or behavior) and, hence,

they can potentially waste network resources as they can still allocate more resources to human

users that cannot perceive the associated QoS gains, due to cognitive brain limitations.

A general framework for modeling the intelligence of communication systems which serve

humans is proposed in [18]. The author defines intelligence in terms of predicting and serving

human demands in advance. However, the work in [18] does not account for the cognitive

limitations of a human brain. Moreover, demand prediction, as done in [18], will not be sufficient

to capture the full spectrum of the human user limitations and behavior. By being aware of

brain limitations of each user, the network can provide a unique experience for each user and

optimize its performance. For example, an increase in the delay of a wireless system may have

different effects on the QoE perceived by different human users. In particular, such different delay

perceptions can potentially be exploited by the cellular network to minimize power consumption

and reduce the amount of wasted resources. To our best knowledge, no existing work has studied

the impact of such disparate brain delay perceptions on wireless resource allocation.

The main contribution of the paper is, thus, a novel brain-aware learning and resource

management framework that explicitly factors in the brain state of human users during resource

allocation in a cellular network which has both human and machine type devices. In particular,

we formulate the brain-aware resource allocation problem using a joint learning and optimization

framework. First, we propose a novel learning algorithm to identify the delay perceptions of a

human brain. This learning algorithm employs both supervised and unsupervised learning to

identify the brain limitations and also creates a statistical model for these limitations based on

Gaussian mixture models. Then, using Lyapunov optimization, we address the resource allocation

problem with time varying QoS requirements that captures the learned delay perception. Using

this approach, the network can allocate radio resources to human users while considering the

reliability of both machine type devices and human users. We then identify a closed-form

relationship between system reliability and wireless physical layer metrics and derive a closed-

form expression for the reliability as a function of the human brain’s delay perception. Simulation

results using real data show that the proposed brain-aware approach can substantially save
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power in the network while preserving the reliability of the users, particularly in low latency

applications. In particular, the results show that the proposed brain-aware approach can yield

power savings of up to 78% compared to a conventional, brain-unaware system.

The rest of the paper is organized as follows. Section II introduces the system model. Sec-

tions III and IV present the proposed learning algorithm and resource allocation framework,

respectively. Section V presents the simulation results and conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink of a cellular network with humans-in-the-loop having a single base

station (BS) serving a set H of N human users with their UEs and a set M of M machine

type devices (MTDs). Each UE or MTD can have a different application with different QoS

requirements such as sending a command to an actuator (for an MTD) or playing a 3D interactive

game (for a UE). We consider a time-slotted system with each slot duration being equal to the

LTE transmission time interval (TTI). We define K as the set of K resource blocks (RBs). In our

model, the packets associated with user i ∈ H ∪M arrive at the BS according to independent

Poisson processes with rate ai(t). The lengths li, ∀i ∈ H∪M of the packets follow an exponential

distribution. Hence, each user’s buffer at the BS will follow an M/M/1 queuing model. The total

queuing and transmission delay of each user i is Di(t) = qi(t) +
li
ri(t)

. The data rate for each

user is given by:

ri(t) = B

K
∑

j=1

ρij(t) log2

(

1 +
pij(t)hij(t)

σ2

)

, (1)

where pij(t) is the transmit power between the BS and user i over RB j at time t and hij(t) is

the time-varying Rayleigh fading channel gain. In (1) ρij(t) = 1 if RB j is allocated to user i

at time slot t, and ρij(t) = 0, otherwise. B is the bandwidth of each RB.

The BS seeks to allocate RBs and power to the users according to their delay needs and their

channel state. The delay that MTD i can tolerate is βmi , i.e., Dmax
i (βmi ) = βm. βmi is known

to the system. The delay perception of the brain of a human user who is using a given UE

is captured by βi(t). βi(t) essentially represents a delay perception threshold for human user i

at time t. If we decrease the delay below the threshold βi(t), the human user will not be able

to discern the difference. This delay perception is determined by the capabilities of the human

brain. By explicitly accounting for the cognitive limitations of the human brain, the BS can better

allocate resources to the users that need it, when they can actually use it. This is in contrast to
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conventional brain-agnostic networks [4], [18] in which resources may be wasted, as they are

allocated only based on application QoS without being aware on whether the human user can

indeed process the actual application’s QoS target.

We pose this resource allocation problem as a power minimization problem that is subject to

a brain-aware QoS constraint on the latency:

min
ρ(t),P (t)

∑

j∈K

[

∑

i∈H

P̄
j
i +

∑

i∈M

P̄
j
i

]

, (2a)

s.t. Pr
{

Di(t) ≥ Dmax
i

(

βi(t)
)

} ≤ ǫi
(

βi(t)
)

, ∀i ∈ H ∪M, (2b)

pij(t) ≥ 0, ρij(t) ∈ {0, 1} ∀i ∈ H ∪M, j ∈ K, (2c)

∑

i∈H∪M

ρij(t) = 1, ∀j ∈ K, (2d)

where ρ(t) is an (M +N) ×K matrix having each element ρij(t). P (t) is an (M +N) ×K

matrix with each element pi,j(t), representing the instantaneous power allocated to user i on RB

j. The term P̄
j
i = limt→∞

1
t

∑t−1
τ=0 ρijpij(τ) is the time average of the power allocated to user i

on RB j. Dmax
i

(

βi(t)
)

is the maximum tolerable delay, and 1−ǫi
(

βi(t)
)

is the reliability of user

i. We define reliability as the proportion of time during which the delay of a given user does not

exceed a threshold. For notational convenience, hereinafter, we use the terms Dmax
i (βi(t)) and

Dmax
i interchangeably. The key difference between our problem formulation and conventional

RB allocation problems is seen in the QoS delay requirement in (2b). In (2b), the network

explicitly accounts for the human brain’s (and the MTDs’) delay needs. By taking into account

the features of the brain of the human UEs, the network can avoid wasting resources. This waste

of resources can stem from allocating more power to a UE, solely based on the application QoS,

while ignoring how the brain of the human carrying the UE perceives this QoS. Clearly, ignoring

this human perception can lead to inefficient resource management.

For finding βi(t), we propose a machine learning algorithm to identify the human brain delay

perception. Each human user has p features, (e.g., age, occupation, location) assumed to be

known to the BS. This time-varying feature vector is denoted by xi(t) ∈ R
p. We develop a

learning algorithm to build a model that maps these features to βi(t) for each user. We then

show that being aware of βi(t) can help the resource allocation algorithm to save a significant

amount of resources for low-latency systems. Here, we assume that BS has the access to the

user features xi(t). In practice, the BS can collect such data whenever a given user registers in

the network or by using the sensors of a user’s mobile device.
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III. MACHINE LEARNING FOR PROBABILITY DISTRIBUTION IDENTIFICATION

To find the mapping βi(t) = f(xi(t)) between human features xi(t) and the delay percep-

tion of the brain, we use supervised learning [19], [20]. Since reliability is a key factor in a

communication system, we need a supervised learning algorithm that not only predicts βi(t) as

function of xi(t), but also gives a measure of reliability for this prediction. Hence, we cannot

rely on conventional supervised learning methods, such as neural networks [20]. Here, reliability

of predictions is defined as the probability that the prediction of βi(t) lies within a certain range

of the true values for βi(t).

To this end, we propose a novel supervised learning mechanism dubbed as probability distri-

bution identification (PDI) method that can find the mapping between the features of a human

user and the human brain’s perception on delay, as captured by βi(t), while quantifying the

reliability of this mapping. We will use this reliability to determine the overall reliability of

our system. As discussed in [21], the delay perception of a human brain typically follows a

multi-modal distribution. As a result, we design the proposed PDI approach to capture such a

model and find the different modes of a human brain. Then, using the distribution of the brain

delay, the PDI approach can find the effective delay of the human brain. This effective delay

determines relationship between βi(t) and xi(t) along with its reliability.

Consider a dataset {x1(t), · · · ,xn(t)}, where xi(t) ∈ R
p is one sample data vector. The

elements of xi(t) are features which can be both categorical (such as gender) and numerical (such

as age). For each input vector xi(t), we have a corresponding output value of delay perception

βi(t). This data can be collected using experiments or surveys such as those in [22]. Since we

can remove the data’s time dependency of the data using time-series techniques, hereinafter, we

use x instead of x(t). This dataset can be represented by a matrix X ∈ Rn×p, where xTi is row

i of X . Using PDI, we first create an n× (p+ 1) dataset matrix W :

W = [X‖β] =











wT
1

...

wT
n











=











xT1 β1(t)
...

...

xTn βn(t)











, (3)

where wi ∈ Rp+1 is a vector of the delay perception βi(t) and p other correlated features of the

human brain. Then, we fit a Gaussian mixture model (GMM) of m modes to our dataset using

the expectation-maximization (EM) algorithm [23]. In other words, we adopt an EM method for

learning the joint probability distribution using the joint dataset W , i.e., p(x, βi(t)). After finding
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the probability distribution p(x, βi(t)), we are able to cluster the data samples and find m modes

in the data. Then, each data vector xi is labeled based on its cluster so that each xi, i = 1, · · · , n

has a label in the cluster set C = {1, · · · , m}. Subsequently, our dataset is labeled using its cluster

number. In the next step, we train a classifier such that it finds a mapping between the input data

xi and its cluster number. These cluster numbers will correspond to the modes of the human brain

that determine its effective delay perception. When this proposed learning approach is deployed

in a wireless network, each user will be classified after connecting to the BS, and its brain mode

will be identified. Then, each user’s mode can be used to derive a probabilistic model of its

delay perception. Before delving into the PDI method for finding the brain’s effective delay, we

describe the Gaussian mixture model that we use for the human brain.

A multi-modal stochastic model is assumed for the brain features wi for user i. The proposed

distribution for wi is given by [19]:

p(wi) =
∑

z

p(z)p(wi|z) =
L
∑

k=1

πkf(wi|µk,Σk), (4)

where f(wi|µk,Σk) is the probability density function for a multivariate normal distribution

with mean vector µk and covariance matrix Σk. Σk and µk represent the covariance matrix

and mean vector for mode k of the human brain, respectively. πk is the mixing weight of mode

z = zk. p(w) is the distribution of data points wi. L is total number of modes in the GMM.

The human brain will be in mode k with probability πk, and its features are generated using a

multivariate normal distribution with mean and covariance µk and Σk, respectively. The posterior

probability, i.e. responsibility, for mode k will be:

r(zk) =
πkf(w|µk,Σk)

∑L

j=1 f(w|µj,Σj)
. (5)

This responsibility can be used for clustering the data as well. After fitting the GMM on the

dataset, we can find the mode with highest responsibility for each data point and assign the data

to this mode. The EM algorithm is used to find these parameters based on a real-time human

brain behavior [23]. The log likelihood function for our dataset can be written as:

lnL(Σ, µ, π|w) = ln p(w|Σ, µ, π) =
∑

i

ln

L
∑

k=1

πkf(wi|µk,Σk). (6)

The likelihood function in (6) has singularities and, hence, it is infeasible to find parameters πk,

Σk, and µk. The EM algorithm is proposed in [24] to maximize the likelihood function for a
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Gaussian mixture model. We first initialize Σk, µk, and πk randomly. Next, we find the respon-

sibility for each mode using (5). Then, we reestimate parameters using current responsibilities.

Finally, the likelihood in (6) is maximized with respect to Σk, µk ,and πk.

In the next step, we use the derived joint distribution of human features and its associated

delay perception to derive a probabilistic model for the human insensitivity of the delay. In other

words, we find the relationship between a certain level of the delay Dmin
i and the probability

Pr(βi(t) > Dmin
i ). In the proposed PDI, along with the supervised learning component previously

explained, we also propose to use an unsupervised learning step to measure the reliability of our

predictions. In the unsupervised learning step, the data will be labeled based on the GMM as

follows. For each feature vector wi, the responsibilities r(zk) = p(zk = 1|wi) are found using

the EM algorithm. Then, the most probable mode is assigned as the label of this data, i.e.,

c(wi) = argmax
k

p(zk = 1|wi). (7)

The output of the unsupervised learning step, ci, is used for training the supervised learning

model. We will form an output vector y which is defined as y =
[

c(w1) · · · c(wn)
]T

. Then,

during the supervised learning step, we train a classifier so that it can find the mode using the

human features x as input. Given the data matrix X and the output vector c(wi), this supervised

learning builds us a model f such that ci = f(xi),i.e.,

f = argmin
f̂

n
∑

i=1

ξ
(

c(wi), f̂(xi)
)

, (8)

where ξ(.) is a 0-1 loss function. f is approximated using a set of points (xi, ci) and determines

the relationship between the features of a user and its cluster. After approximating f , given

each human user’s feature vector xi, we find the modes ci using model f . Finally, we bounds

Dmax
i (βi(t)) based on its features xi. Now that the system can identify the human users’ modes,

we need to find a relationship between a human user’s mode and the probabilistic model of its

delay perception by defining the concept of effective delay.

Definition 1. Given the statistical model for human delay perception, Dmin
i (ǫ′) is the effective

delay for human user i that satisfies:

Pr
{

βi(t) < Dmin
i (ǫ′)

}

< ǫ′. (9)

To find the effective delay for human user i, we first find the probability that the delay

perception of human user i is less than a threshold Dmin
i (ǫ′). In other words, we want to find the
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Figure 1: Finding Dmin
i using a GMM model for two different clusters.

relation between ǫ′ and Dmin
i (ǫ′) in (9). The concept of effective delay is defined using the fact

that delays less than Dmin
i (ǫ′) cannot be sensed by a human with (1− ǫ′) certainty. The relation

between ǫ′ and Dmin
i (ǫ′) in (9) is found in Theorem 1. For notational simplicity, hereinafter, we

use Dmin
i instead of Dmin

i (ǫ′).

Theorem 1. The delay perception of the identified brain mode k user i is bounded such that

Pr
{

|βi − µDK | <
√

Qp+1(γ)eTp+1Σkep+1

}

> γ, (10)

where Σk and µk represent, respectively, the covariance matrix and the mean vector of the

identified brain mode k. Also, Qp(γ) is the quantile function of chi-square distribution with p

degrees of freedom, and is defined as

Qp+1(γ) = inf
{

x ∈ R|γ ≤

∫ x

0

χ2
p+1(u)du

}

, (11)

and ej is a unit vector in Rp+1, whose jth element is 1 and all other elements are zero. p is

number of features used for learning. χ2
p+1(x) is the probability density function of a chi-square

random variable with p+ 1 degrees of freedom. µDK is the element p+ 1 in vector µk.

Proof: See Appendix A.

As seen from Theorem 1, in addition to the delay perception element µDK , the only other

parameter that affects the delay is eTp+1Σkep+1, which is the (p+ 1)th diagonal element of the

covariance matrix Σk. Note that, we did not assume that matrix Σk is diagonal. Fig.1 shows

the relationship between Dmin
i and GMM. From Fig.1, we can see that, after finding the GMM

for the dataset, one can find the predictive coverage of each Gaussian distribution. Using this
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Figure 2: Relationship between ǫ and Dmin
i (ǫ) for different values of µDK and ΣDK .

predictive coverage, we can determine the probability with which βi(t) for a user i will be higher

than a threshold Dmin
i .

In order to find the effective delay for human user i, we first find the probability with which

the delay perception for human user i will be less than a threshold Dmin
i . In other words, we

will find the relationship between ǫ and Dmin
i in (9) using the following corollary that follows

directly from Theorem 1.

Corollary 1. As a direct result of Theorem 1, we can reduce (10) to

Pr
{

βi(t) < µDK −
√

Q(γ)eTp+1Σkep+1

}

<
1− γ

2
. (12)

Therefore, we find Dmin
i (ǫ) and ǫ in (9) as

Dmin
i (ǫ) = µDK −

√

Q(1− 2ǫ)eTp+1Σkep+1. (13)

Since Q(γ) can only be calculated numerically, a closed-form relationship cannot be found

between Dmin
i (ǫ) and ǫ. However, we can numerically analyze this relationship, as shown in

Fig. 2. From Fig. 2, we can first observe that Dmin
i (ǫ) is an increasing function. This means

that the probability of the human brain noticing QoS differences for low delays will be much

smaller than for higher delays, which is an intuitive fact. Furthermore, it can be inferred that,

if the delay perception for a group of human users within a cluster is diverse, then the system’s

confidence on the delay perception of this group of humans will decrease, i.e., the estimation

of the delay perception of this group of human users will be less reliable. Next, we determine

constraint (2b) using Dmin
i (ǫ).
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As stated before, some delays are not perceptible to human users. To capture this feature,

we find Dmax
i (βi(t)) and ǫ(βi(t)) in problem (2) using Dmin

i (ǫ). Recall that Dmax
i (βi(t)) is a

parameter that will be used by the resource allocation system to represent the maximum tolerable

delay for the reliable communication of user i with 1 − ǫ(βi(t)) being the reliability of user i.

There are three possible cases for Dmax
i based on Dmin

i of a human user i:

1) Dmax
i > Dmin

i : In this case, the system will not be reliable even if we satisfy Pr(D >

Dmax
i ) < ǫ. The reason is that the human user has a delay perception of less than the maximum

delay Dmax
i and hence, the system is not reliable.

2) Dmax
i < Dmin

i : In this case, if the system is able to satisfy Pr(D > Dmax
i ) < ǫ, then the

system will be reliable, because user i cannot sense delays less than Dmin
i and its service delay

will not exceed Dmax
i .

3) Dmax
i = Dmin

i : If this equality holds, the system will be reliable and it will also have

prevented a waste of resources. If any given user cannot perceive delays less than Dmin
i , then it

is not effective to allocate more resources to this user.

S represents the event where the system delay meets the cognitive perceptions of the human

user, which is the desired result (case 2) and case 3)). In other words, if event S happens, the

system is reliable. Also, we assume that the events E1 and E2 are defined as D < Dmax
i and

βi(t) > Dmin
i , respectively. We know that for case 1, event E1 ∩ E2 is a subset of event S, and

in case 2, event S is a subset of event E1 ∩ E2. Similarly, in case 3, event E1 ∩ E2 is same as

event S. Since the probability of E1 ∩ E2 can be computed, if we set Dmin
i to Dmax

i (case 3),

we will be able to find S based on the system parameters and design the resource allocation

system in a way that each user is satisfied. We know that:

Pr(E1 ∩ E2) = 1− Pr
(

(D > Dmax
i ) ∪ (βi(t) < Dmin

i )
)

(14)

= 1−
(

Pr(D > Dmax
i ) + Pr(βi(t) < Dmin

i )− Pr(D > Dmax
i )Pr(βi(t) < Dmin

i )
)

. (15)

(14) follows from De Morgan’s law, and (15) is true since D and βi(t) are two independent

random variables. Therefore, if Dmin
i = Dmax

i for user i and ǫǫ′ is small, we can see that

1−
(

Pr(D > Dmax
i ) + Pr(βi(t) < Dmin

i )
)

≥ 1− (ǫ+ ǫ′), (16)

and, hence,

Pr(S) = Pr(E) > 1− (ǫ+ ǫ′), (17)
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where Pr(S) is the reliability of the system defined in (2). Subsequently, as we design the system,

we consider the reliability as a predetermined target design parameter for the system. Using this

parameter, we can set ǫ and ǫ′. Given ǫ′ and numerical function Dmin
i (ǫ′) derived in (12), Dmin

i

can be determined. Now, given ǫ(βi(t)) and Dmax
i (βi(t)), we can fully characterize problem (2).

IV. BRAIN-AWARE RESOURCE MANAGEMENT

To solve problem (2), we propose a novel brain-aware resource management framework that

takes into account the time-varying wireless channel and the time-varying brain-aware delay

constraint (2b). In this section, we transform this constraint into a mathematically tractable form.

First, in the next lemma, the relation between the packet length distribution and the service time

distribution for a packet is shown.

Lemma 1. If a fixed rate ri is allocated to a user and the packet lengths follow an exponential

distribution with parameter χ, then, the distribution of the service time s will also be exponential

with parameter χri.

Proof: The CDF of the exponential distribution is Fψ(l) = Pr(l < ψ) = 1− e−χψ. Hence,

FS(s) = Pr(s < S) = Pr(
l

ri
< S) = Pr(l < riS) = FriS(s) = 1− e−χriS. (18)

This means that the PDF for the service time is fS(s) = e−χris.

Therefore, without loss of generality, we assume that the service time of each packet is

exponential with parameter ri, which is the same as the rate allocated to the user.

Here we assume that for any given user, the packets arrive with the rate ai(τ), and the user

data rate is ri(τ) in slot τ = 1, · · · , t. In the next theorem, We derive the probability with which

the delay of a given user i exceeds a threshold Dmax
i .

Theorem 2. Assume that user i has a time varying rate rτi at time slot τ . If the duration of each

time slot is long enough for the queue to reach its steady state, i.e.,

1

ri(τ)− ai(τ)
<< δτ, (19)

then, the probability that the delay exceeds a threshold is

Pr(D > Dmax
i ) = lim

t→∞

1

t

t
∑

τ=1

e−
(

ri(τ)−ai(τ)
)

Dmax

i , (20)

under the condition that ri(τ) > ai(τ) for all τ > 0.
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Figure 3: Comparison between simulation results and the result of Theorem 2.

Proof: See Appendix B.

Theorem 2 shows that constraint (2b) is satisfied if the network can satisfy the following

condition

lim
t→∞

1

t

t
∑

τ=1

e−
(

ri(τ)−ai(τ)
)

Dmax

i < ǫ. (21)

Fig. 3 shows the relationship between the theoretical result from Theorem 2 and the simulation

results. It shows that the simulation and analytical results are a near-perfect match. The maximum

error between the analytical and simulation results is only 0.0146.

A. Optimal Resource Allocation with Guaranteed Reliability

Constraint (21) is analogous to the drift-plus-penalty method in the Lyapunov optimization

framework [25] and, hence, we will use this framework to solve (2). The problem has a time-

varying nature since the human brain conditions and needs will change from time to time. The

users’ processing state β(t) is also a function of time, and accordingly, the latency needs in

(2b) will be time-varying. Therefore, we need to solve the optimization problem (2) during each

time slot efficiently. Here, we propose an algorithm with a low computational complexity for

solving problem (2). The drift-plus-penalty approach is used to stabilize a queue network while

minimizing time average of a penalty function. In order for constraint (2b) to be satisfied in all



14

time slots, we need to make sure that (20) will always be smaller than ǫ. For this reason, we

define a virtual queue:

Fi(t+ 1) = max{Fi(t) + e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫ}. (22)

We can see that e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫ < Fi(t + 1)− Fi(t). Consequently, we obtain:

t
∑

τ=1

e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫt < Fi(t)− Fi(0). (23)

If Fi(0) is bounded, we have:

lim
t→∞

1

t

t
∑

τ=1

e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫ < lim
t→∞

Fi(t)

t
. (24)

If the queue Fi(t) is mean-rate stable, that is, limt→∞
Fi(t)
t

= 0, then we have:

lim
t→∞

1

t

t
∑

τ=1

e−
(

ri(t+1)−ai(t+1)
)

Dmax

i < ǫ. (25)

The Lyapunov function is defined for all the queues in the base station as

Y (t) =
1

2

∑

i∈M∪H

Fi(t)
2. (26)

Then, we can find the drift function ∆t = Y (t+ 1)− Y (t) as:

Y (t + 1) =
1

2

∑

i∈M∪H

Fi(t+ 1)2 ≤
1

2

∑

i∈M∪H

Fi(t)
2 +

1

2

∑

i∈M∪H

y(t)2 +
∑

i∈M∪H

y(t)Fi(t), (27)

where

yi(t) = e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫ. (28)

Thus,

∆t ≤
1

2

∑

i∈M∪H

y(t)2 +
∑

i∈M∪H

y(t)Fi(t). (29)

We can form the drift-plus-penalty by adding V
∑

i,j pij(t) to both sides of inequality (29),

where
∑

i,j pij is the total power of the BS which we want to minimize, and V is a parameter

that determines how important minimizing the objective function (2a) is in comparison with

satisfying (2b). We can balance the tradeoff between power and delay. The drift-plus-penalty

inequality is

∆t + V
∑

i,j

pij ≤
1

2

∑

i∈M∪H

y(t)2 + V
∑

i,j

pij(t) +
∑

i∈M∪H

y(t)Fi(t). (30)
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Given that we assumed ri(t) > ai(t) for all t, we know that |yi(t)| < 1 ∀t, i ∈ M ∪ H, and

hence, we can rewrite (31) as

∆t+ V
∑

i,j

pij ≤ B + V
∑

i,j

pij(t) +
∑

i∈M∪H

y(t)Fi(t), (31)

where B is the upper bound of 1
2

∑

i∈M∪H y(t)
2, and is equal to

|H|+|M|
2

. |A| is the cardinality of

set A. Using the drift-plus-penalty algorithm [26], we know that, by minimizing the right hand

side of equation (31), queue Fi(t) will be mean-rate stable, and hence, the condition yi(t) < 0

will be satisfied. As a result, constraint (2b) will also be satisfied. Furthermore, we know that

by minimizing the right hand side of (31), cost function (2a) is also minimized, owing to the

fact that (2a) is defined as a penalty function. By minimizing the right hand side of (31), our

optimization problem can be converted to the following time-varying problem:

min
ρ(t),P (t)

V
∑

i,j

pij(t) +
∑

i∈M∪H

yi(t)Fi(t), (32a)

s.t. ri(t) > ai(t), ∀i ∈ H ∪M (32b)

pij(t) ≥ 0, ρij(t) ∈ {0, 1}, ∀i ∈ H ∪M, j ∈ K, (32c)

∑

i∈H∪M

ρij(t) = 1, ∀j ∈ K. (32d)

As discussed earlier, the cost function in (32a) is equivalent to (2a) and (2b) in the original

optimization problem. Learning the effective delay of each human user using our proposed PDI

method determines the parameters yi(t) and Fi(t) in the problem (32a). However, in order to

satisfy (2b), we need to also satisfy (32b). The reason for adding (32b) is that if this constraint

is not satisfied in any time slot, the queue length will approach infinity. Constraints (32c) and

(32d) are feasibility conditions and remain the same as (2). Hence, by solving (32) in each time

slot, the original problem (2) will be solved.

Nonetheless, problem (2a) is not a convex optimization problem, due to the fact that it is

a mixed integer problem and its complexity increases exponentially with the number of users.

Since (2a) needs to be solved at each time slot, this exponential order of complexity makes the

implementation infeasible. Consequently, we should use a dual decomposition method to break

down optimization problem (32) to smaller subproblems, and find the optimal solution to (32)

using a low complexity method.

It is rather challenging to solve (32) using a dual decomposition method, as the structure of

yi(t) makes it infeasible to decompose the objective function for each resource block. In order
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to overcome this challenge, we convert (32) to a decomposable form. Then, we will show that

this converted problem is equivalent to (32).

For this purpose, the Lagrangian for problem (32) is written as

V
∑

i,j

pij(t) +
∑

i∈M∪H

yi(t)Fi(t) +
∑

i∈M∪H

λi
(

ai(t)− ri(t)
)

, (33)

where λi is the Lagrange multiplier. As we know, yi(t) = e−
(

ri(t+1)−ai(t+1)
)

Dmax

i − ǫ. Therefore,

the only decision variables are allocation of resource blocks to the users and allocating power

to each resource block. Although Fi(t) is a function of yi(t), it is not a decision variable and is

treated as a constant. Hence, (33) can be rewritten as

V
∑

i,j

pij(t) +
∑

i∈M∪H

e−
(

ri(t+1)−ai(t+1)
)

Dmax

i Fi(t) +
∑

i∈M∪H

λi
(

ai(t)− ri(t)
)

. (34)

The main optimization problem consists of two components. First, minimizing the total power

of the BS with weight V , and second, minimizing the summation
∑

i∈M∪H e
−ri(t+1) which has

a weight Fi(t)e
−ai(t+1)Dmax

i for each user i.

As we can see, (34) is not decomposable for each resource block. Here we will have an

approximation of (32) and then propose an algorithm to solve this approximation efficiently. In

this C-additive approximation,
∑

i∈M∪H e
−
(

ri(t+1)−ai(t+1)
)

Dmax

i Fi(t) in (34) is substituted with

its linear approximation of exponential term e−x at x = 0.

∑

i∈M∪H

−
(

ri(t+ 1)− ai(t + 1)
)

Fi(t). (35)

In the original problem, if yi(t) starts to become greater than zero for user i, then Fi(t) will

increase and it will give more weight to the term e−
(

ri(t+1)−ai(t+1)
)

Dmax

i . As a result, the algorithm

allocates more resources to user i such that it minimizes e−
(

ri(t+1)−ai(t+1)
)

Dmax

i for user i, and

accordingly, yi(t) decreases. Hence, Fi(t)e
−
(

ri(t+1)−ai(t+1)
)

Dmax

i plays the role of feedback in the

system. As we can see from (35), this approximation will not change this feedback mechanism

and plays the same role in the system. Therefore, we can write

min
P ,ρ

{

V
∑

i,j

pij(t) +
∑

i∈M∪H

−
(

ri(t + 1)− ai(t+ 1)
)

Dmax
i Fi(t)

}

< C +min
P ,ρ

{

V
∑

i,j

pij(t) +
∑

i∈M∪H

e−
(

ri(t+1)−ai(t+1)
)

Dmax

i Fi(t)
}

. (36)
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Using this C-additive approximation, it can be easily proved that all terms are mean-rate stable.

Hence, (2b) in the original problem is satisfied [25]. Finally, problem (2) can be presented as:

min
ρ(t),P (t)

V
∑

i,j

pij(t)−
∑

i∈M∪H

(

ri(t+ 1)− ai(t+ 1)
)

Dmax
i Fi(t),

s.t. ri(t) > ai(t), (37a)

P n
i (t) ≥ 0, ∀i ∈ H ∪M, n ∈ N , (37b)

ρni (t) ∈ {0, 1}, ∀i ∈ H ∪M, n ∈ N , (37c)

∑

i∈H∪M

ρij(t) = 1, ∀j ∈ K. (37d)

In order to solve this problem, we can decompose it into K subproblems. Since these subproblems

are coupled through constraint (37d), we use the dual decomposition method for solving (37)

[27]. First, the Lagrangian is written for problem (37), and in the second step, it is decomposed

for each resource block. After that, the resource block allocation and the power of each RB are

found in terms of the Lagrange multiplier λ. Finally, λ is calculated using an ellipsoid method.

The Lagrangian for problem (37) is

L(P , ρ, λ) = V
∑

i,j

pi,j(t) +
∑

i∈M∪H

−
(

ri(t)− ai(t)
)

Dmax
i Fi(t)− λi

(

ri(t)− ai(t)
)

= V
∑

i,j

pi,j(t)−
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

ri(t)− ai(t)
)

. (38)

One major difference between our problem and conventional power minimization problems is

that there is an additional term Dmax
i Fi(t) added to the Lagrange multiplier (the shadow price).

In this problem, Dmax
i Fi(t) plays the role of a bias term. Therefore, a new hypothetical Lagrange

multiplier λ′i is assumed and defined as

λ′i = λi +Dmax
i Fi(t). (39)

This means that adding constraint (2b) to the problem instead of constraint (37a) increases the

shadow price by a factor of Dmax
i Fi(t). Increasing the shadow price for a constraint makes it

looser. As a result, in many time slots, constraint (37a) will not be a tight constraint and the

Lagrange multiplier will be set to λi =
[

λ′i −Dmax
i Fi(t)

]+
. the Lagrange dual function is

g(λ) = min
ρ(t),P (t)

L(P ,ρ, λ). (40)
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The minimization problem (40) can be decomposed to K subproblems. g′j(λ) can be written as

g′j(λ) = min
P (t)

V
∑

i

pi,j −
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

W log2(1 +K
hi,jpi,j

σ2
)
)

, (41)

where D is a set of feasible pijs in which for RB j, there is only one i that pij 6= 0. Hence,

g(λ) is

g(λ) =
∑

j

g′j(λ) +
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

ai(t)
)

. (42)

If λ is fixed, g′j(λ) is a convex function of P . Therefore, P is found by taking a derivate with

respect to pij and setting it to zero. This results in

pij =
[

(

λi +Dmax
i Fi(t)

)

W

V log2
−

σ2

Khij

]+

. (43)

The optimal RB allocation for RB j is k(j), and can be written as

k(j) = argmin
i

V
∑

i

pi,j −
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

W log2(1 +K
hi,jpi,j

σ2
)
)

, (44)

g′j(λ) = min
i
V
∑

i

pi,j −
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

W log2(1 +K
hi,jpi,j

σ2
)
)

. (45)

Thus, ρ∗ij and p∗ij will be given by:

ρ∗ij =











1, i = k(j),

0, otherwise.

p∗ij =











pij, i = k(j),

0, otherwise.

(46)

Hence, the optimal rate becomes r∗i =
∑

jW log2(1 + K
hi,jp

∗

i,j

σ2
). The only parameter that

affects this joint RB and power allocation is λ. As the number of RBs increases, the duality gap

in this problem approaches zero [27]. We know that the optimal value is found by maximization

of g(λ) with respect to λ. In order to find λ, we use the ellipsoid method [28], and to do so,

we have to find the sub-gradient for the dual objective g(λ). The following theorem will show

that the subgradient for (38) is a vector with elements di = ai − ri.

Theorem 3. The subgradient of the dual optimization problem with dual objective defined in

(42), is the vector d whose elements di, ∀i ∈ H ∪M are given by:

di =











ai − r∗i , ai ≥ r∗i ,

0, ai < r∗i .

(47)

Proof: Since

g(λ) = min
P ,ρ

L(P ,ρ,λ) = L(P ∗, ρ∗,λ), (48)
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we have:

g(δ) ≤L(P ∗, ρ∗, δ)

=V
∑

i,j

p∗i,j(t)−
∑

i∈M∪H

(

δi +Dmax
i Fi(t)

)(

r∗i (t)− ai(t)
)

=V
∑

i,j

p∗i,j(t)−
∑

i∈M∪H

(

λi +Dmax
i Fi(t)

)(

r∗i (t)− ai(t)
)

+ (λi − δi)
(

r∗i (t)− ai(t)
)

= g(λ) + (λ− δ)Td′, (49)

where

d′ =
[

r∗1 − a1 · · · r∗N+M − aN+M

]T

. (50)

However, because of the term Dmax
i Fi(t), when λ = 0 and ai < r∗i , then the direction of

d′ is infeasible. Using the projected subgradient method [29], we can transform this infeasible

direction to a feasible one. The update rule for projected subgradient is:

λ(k+1) = Π(λ(k) − αkd
′
k) (51)

where αk is the step size and Π is the Euclidan projection on the feasible set. Since the feasible

set is λi > 0, we can see that

Π(λ(k) − αkd
′
k) = λ(k) − αkdk, (52)

where:

di =











d′i, d′i ≥ 0

0, d′i < 0
=











ai − r∗i , ai ≥ r∗i ,

0, ai < r∗i .

(53)

B. Complexity Analysis

Next, we find the complexity of our algorithm which needs to be run in each iteration. There

are K RBs in our problem, for each of which (44) needs to be evaluated for M + N users.

It takes O
(

(M +N)K
)

times to solve a primal problem. Subsequently, the dual problem will

be solved, which gives us the optimal value of λ in an M + N dimensional space and has a

complexity of O
(

(M + N)2
)

. Therefore, the overall complexity should be O
(

(M + N)3K
)

.

However, as mentioned before, adding Dmax
i Fi(t) to the Lagrange multiplier sets a major part

of it to zero, and as a result, the order of complexity will decrease to O
(

(M +N)K
)

.
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Figure 4: Distribution of βi for the 1000 users in dataset.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider the dataset in [22] to model the delay perception of a human

user. In [22], the authors conducted human subject studies using 30 human users, where each

subject is asked to rate the quality of 5 movies while the delay and packet loss in the system is

being increased. We used the average score of each human user to estimate their delay perception.

We also used a variation of the bootstrap method [30] to increase the number of data points to

1000. We can see the histogram of the delay perception for these 1000 data points in Fig. 4.

Also, since the dataset has no features for each user, we attributed three random continuous

features to each user. Hence, each user is associated with a vector w ∈ R4.

We consider a network with a bandwidth of 10 MHz, ai(t) = 1 Mbps, σ2 = −173.9 dBm, and

ǫ = 0.05. We use a circular cell with the cell radius of 1.5 km. We set the path loss exponent

to 3 (urban area) and the carrier frequency to 900 MHz. The packet length is an exponential

random variable with an average size of 10 kbits. We use 5 MTD and 5 UE in the system and

we set Dmax
i to 20 ms for them, unless otherwise mentioned. For the brain aware users, we

arbitrarily select 5 UE in the system out of all data points.

Fig. 5 shows the within cluster point scatter for the EM algorithm in our dataset. This within

cluster point scatter for a clustering C is defined as [30]:

W (C) =
1

2

n
∑

k=1

∑

c(i)=k

∑

c(i′)=k

d(xi, xi′), (54)



21

1 2 3 4 5 6 7 8 9 10
Number of clusters

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
ith

in
 c

lu
st

er
 p

oi
nt

 s
ca

tte
r

108

Figure 5: Within point scatter for the EM clustering method on the datasest.

where d is an arbitrary distance metric. In essence, the within cluster point scatter is a loss

function that allows the determination of hyper-parameters in the clustering algorithm. The hyper-

parameter that we seek to find here is the number of clusters in the dataset. As we can see from

Fig. 5, after the number of clusters reaches 5, increasing the number of clusters does not decrease

the within cluster point scatter substantially. Hence, the optimal number of clusters with is 5.

Fig. 6 shows the total BS power resulting from the proposed brain-aware case and from a

brain-unaware case in which UEs have a fixed constraint (2b) with Dmax
i between 10 ms to

60 ms. Here, the total power is the objective of main optimization problem (2). Fig. 6 shows

that, as the latency increases, the total power decreases, because it is easier to satisfy constraint

(2b) at higher latencies. Also, at higher delays, being brain-aware will no longer yield substantial

gains, since βi(t) and Dmax
i become close to each other and learning βi(t) cannot save resources

for the system. In contrast, in Fig. 6, we can see that for stringent low-latency requirements, the

proposed brain-aware approach yields significant gains in terms of saving power. In particular,

for 10 ms delay in (2b), Fig. 6 shows that the BS in brain-unaware approach uses 44 % more

power compared to the brain-aware case. These results stem from the fact that a brain-aware

approach can minimize waste of resources and provide service to the users more precisely based

on their real brain processing power. Fig. 7 shows average BS power for different number of

MTDs. As we can see from Fig. 7, the brain-aware approach will always outperform the brain-

unaware approach as the number of MTD increases. For the case of 30 MTD user, the BS in

brain-unaware approach uses 16 % more power compared to the brain-aware case. This is due
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as function of different latency requirements

for the users.
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Figure 8: Average power usage of the system for different number of UEs.

to fact that brain-aware approach can allocate resources more efficiently in case of a shortage

in resources.

In Fig. 8, we show the average power usage of the system when the number of UEs increases

from 2 to 30 with Dmax
i set to 20 ms. As the number of users increases, the average power

consumption of the system will also increase. This is due to the fact that increasing the number

of users will decrease the bandwidth per user. Since the delay and rate requirements of each
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Figure 9: Transmit power for 4 different users.

The delay perception of two of the users is

learned.
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Figure 10: Transmission rate for four different

users. The delay perception of two of the users

is learned.

user are still unchanged, the system needs to use more power to compensate for the bandwidth

deficiency. From Fig. 8, we can see that, in the case of 30 users, the brain-aware system is able

to save 6.7 dB (78%) on average in the BS power. The brain-aware system can allocate resources

based on each user’s actual requirement instead of the predefined metrics and this leads to this

significant saving in the power consumption of the BS.

In Fig. 9, Fig. 10, and Fig. 11, we consider the case of 7 UEs and 5 MTDs. Two UEs are

chosen as brain-aware users and their delay perception is learned by the PDI method. One of

the brain-aware UEs has a delay perception of βi = 133.73 ms, and the other one has βi equal

to 26.8 ms. The system does not learn the delay perception of the 5 remaining UEs and, hence,

it allocates resources to them by using a predefined delay requirement (brain-unaware users).

As we can see in Fig. 9, the power consumption of the first two brain-aware users will be less

than that of the brain-unaware users. Moreover, the power consumption for a user with higher

delay perception will be less than that of a user with lower delay perception. This shows that

the system can successfully allocate resources according to the delay perception of the users.

Furthermore, the power consumption related to each user with predetermined delay requirements

is different, due to their different channel gains. However, as we will see later, the system is

robust to such differences and can guarantee the reliability and rate requirements for users having

different channel gains.
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Figure 11: Reliability for four different users.

The delay perception of two of the users is

learned.
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Figure 12: Effect of parameter V on the

convergence of the resource allocation

algorithm.

In Fig. 10, we show the transmission rate for four different users. We can see that the rate for

brain-unaware users with predetermined delay will converge to 2.5 Mbps. This rate will ensure

the reliability for these users. However, the rate of the users with learned delay perception

will converge to a smaller rate. This is due to the fact that these users’ actual requirements

are known to the system, and the system uses this knowledge to avoid unnecessarily wasting

resources. However, as we will see next, this rate reduction does not change the reliability for

these users.

Fig. 11 shows the reliability for the four aforementioned users. As we can see, the reliability

of all the users will converge to 95 %, which is the target reliability value for the users. We can

see that the system is able to ensure reliability for the users with identified delay perceptions as

well as the users with predefined delay requirements. However, the system used 45% less power

for those users for which the delay perception is learned.

Finally, Fig. 12 investigates the effect of parameter V for the system with 5 MTDs and 5 UEs.

We can see that, as V increases from 1 to 1.9, the convergence time decreases from 40 iterations

to 15 iterations. Nevertheless, increasing V will make the algorithm unstable, and as we can see,

increasing it to 2.2 will create an overshoot which is 11% higher than the final value. Hence,

parameter V , if adjusted correctly, can create a balance between stability and convergence rate

of our algorithm.
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VI. CONCLUSION

In this paper, we have introduced and formulated the notion of delay perception of a human

brain, in wireless networks with humans-in-the-loop. Using this notion, we have defined the

concept of effective delay of human brain. To quantify this effective delay, we have proposed a

novel learning method, named PDI, which consists of an unsupervised and supervised learning

part. We have then shown that PDI can predict the effective delay for the human users and

find the reliability of this prediction. Then, we have derived a closed-form relationship between

the reliability measure and wireless physical layer metrics. Next, using this relationship and the

PDI method, we have proposed a novel approach based on Lyapunov optimization for allocating

radio resources to human users while considering the reliability of both machine type devices

and human users. Our results have shown that the proposed brain-aware approach can save a

significant amount of power in the system, particularly for low-latency applications and congested

networks. To our best knowledge, this is the first study on the effect of human brain limitations

in wireless network design.

APPENDIX A

PROOF OF THEOREM 1

We assume that a single brain mode is dominant for each user at each time. We index this

single mode as k. For each user i with this dominant mode, wi = [w1, · · · , wn] has the following

probability density function:

f(wi) = |2πΣk|
− 1

2 exp
[

−
1

2
(wi − µk)

T
Σ

−1
k (wi − µk)

]

. (55)

We want to find the smallest region D in Rp+1, in which the delay perception lies with probability

γ, i.e.,
∫

· · ·

∫

D

f(w1, w2, . . . , wn) dw1· · · dwn = γ. (56)

D is not a unique region. However, the objective is to find the smallest region. To this end, we

need to find the region where f(w1, w2, . . . , wn) has the greatest value, i.e., if
∫

· · ·

∫

D1

f(w1, w2, . . . , wn) dw1· · · dwn =

∫

· · ·

∫

D2

f(y1, y2, . . . , yn) dy1· · · dyn, (57)

and also

f(y1, y2, . . . , yn) ≤ f(w1, w2, . . . , wn) ∀y ∈ D2, ∀wi ∈ D1, (58)



26

then
∫

· · ·

∫

D1

dw1· · · dwn ≤

∫

· · ·

∫

D2

dy1· · · dyn, (59)

which implies that the volume of the region D1 is smaller than the volume of D2. Hence, if we

find the region D for which (56) holds, and, using (58), show that all other regions for which

(56) holds have greater volumes, then, we would have found the smallest region D, in which

the human behavior will stay with the probability γ.

Since wi is distributed according to a multivariate Gaussian, we can find the region where it

has the highest probability density, i.e.,
{

wi|f(wi) > C1

}

. This region can be written as:
{

wi

∣

∣

∣

∣

|2πΣk|
− 1

2 exp
[

−
1

2
(wi − µk)

T
Σ

−1
k (wi − µk)

]

> C1

}

, (60)

which is equivalent to

D =
{

wi

∣

∣

∣
(wi − µk)

T
Σ

−1
k (wi − µk) < C2

}

, (61)

where C2 is a positive constant and equals − ln |2πΣk|
1

2C1. Since Σk is a positive definite matrix,

(61) is the inner volume of an ellipsoid in a p dimensional space.

We now conjecture that this ellipsoid D is the smallest region, in which the delay perception

lies with probability γ, i.e., the probability of wi being in this region is γ. We use a proof by

contradiction to show this. Consider that there exists any other space E which is smaller than D,

and the probability of wi being in this region is γ. We can partition E into two parts A = E ∩D

and E2 = E ∩ D′, where D′ is the complement of the set D. We also define D2 = D ∩ E ′. We

know that
∫

D

f(wi)dwi =

∫

A

f(wi)dwi +

∫

D2

f(wi)dwi (62)

=

∫

E

f(wi)dwi =

∫

A

f(wi)dwi +

∫

E2

f(wi)dwi (63)

=γ. (64)

Hence,
∫

D2

f(wi)dwi =
∫

E2
f(wi)dwi. Since

f(wi) < C1 ≤ f(y) ∀wi ∈ E2,y ∈ D2, (65)

using (57) and (58) we have
∫

E2

dwi <

∫

D2

dwi. (66)
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This means that the set E has a bigger volume than D, which is a contradiction to our first

assumption. This proves that region D is the smallest region in Rp+1 that has the probability γ.

Next, we find the relation between C2 and γ. γ can be defined as
∫

D
f(wi)dwi and can be

calculated using chi-square distribution [31]. The region D can be written as

D =
{

wi|(wi − µk)
T
Σ

−1
k (wi − µk) ≤ Qp(γ)

}

, (67)

where Qp(γ) is the quantile function of the chi-square distribution with p degrees of freedom.

It is defined as

Qp(γ) = inf
{

x ∈ R|Pc ≤

∫ x

0

χ2
p(u)du

}

. (68)

Having defined the confidence region based on γ, we now must find the edges of this ellipsoid.

We know that the center of this ellipsoid is µk. We need to solve the following optimization

problem:

min
wi

or max
wi

eTi wi, s.t. wi ∈ D, (69)

where ei is a unit vector in Rp, having 1 in its ith element and zero otherwise. Using KKT

conditions for solving the above problem, we have:

ei + λΣ−1
k (wi − µk) = 0, (70a)

(wi − µk)
T
Σ

−1
k (wi − µk) ≤ Qp(γ), (70b)

λ
(

(wi − µk)
T
Σ

−1
k (wi − µk)−Qp(γ)

)

= 0, λ ≥ 0. (70c)

The inequality in (70b) is tight. With some algebraic manipulation, we have wi−µk(i) =
1
λ
Σei,

and so, 1
λ2
e
T
i ΣkΣ

−1
k Σkei = Q(γ). Therefore,

wi = ±

√

Q(γ)

eTi Σk ei
Σkei + µk, (71)

λ = ±

√

eTi Σkei

Q(γ)
, (72)

e
T
i wi = ±

√

Q(γ)eTi Σkei + µk(i). (73)

If λ is positive, we can find the maximum which is +
√

Q(γ)eTi Σkei + µk(i), and if λ is

negative, we can find the minimum which is −
√

Q(γ)eTi Σkei + µk(i). Here, µk(i) is the ith

element of µk. If we set i = p+1, then the delay perception of user i is in the following range:

−
√

Q(γ)eTp+1Σkep+1 < βi − µDk <

√

Q(γ)eTp+1Σkep+1, (74)
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at least with probability γ. Hence, Theorem 1 is proved.

APPENDIX B

PROOF OF THEOREM 2

Since the queuing delay is much smaller than the duration of each time slot, we can assume

that each packet arriving at a specific time slot will be served at the same time slot. For analyzing

the packet delay, we consider a packet that just arrives in the system in time slot τk, and find

Pr(D > Dmax
i ) for this packet. When this packet arrives, there are m packets in the system.

From lemma 1, we know that the serving time will be an exponential random variable. Since

the exponential distribution is memoryless, there is no distinction between a packet already in

service and the other packets. Therefore, the waiting time for the packet that has just arrived is

the summation of m exponential distributions. Also, the transmission delay for this packet will

be another exponential random variable. Hence, the delay of a packet which arrives at time slot

τk while there are m packets in the system can be written as:

d(τk, m) = ts + t1(τk) + t2(τk) + · · ·+ tm−1(τk) + tc(τk), (75)

where ti(τk) is the service time for packet i in the queue, and tc(τk) is the service time for

packet already in service. Also, ts is the service time for the packet that has just arrived. we

seek to find Pr(d(τk, m) > Dmax
i ) which can be written as

Pr
(

d(τk, m) > Dmax
i

)

=
∑

m,k

Pr(D > Dmax
i |m, τk)Pr(m, τk)

=
∑

m,k

Pr(D > Dmax
i |m, τk)Pr(m|τk)Pr(τk). (76)

The probability that there are m users in an M/M/1 queue at time slot τk, i.e. Pr(m|τk), can be

written as (see [32]):

Pr(m|τk) =

(

ai(τk)

ri(τk)

)m(

1−
ai(τk)

ri(τk)

)

. (77)

Since we assumed the time slots have equal lengths, the packets arrive at each time slot with

equal probability of Pr(τk) =
1
t
, where t is the total number of time slots.

The sum of m+ 1 identically independent exponential random variables with the mean 1
ri(τk)

is a gamma random variable. Consequently, if the users arrive at time slot τk while there are m

users in the system at the time of arrival, the distribution of delay is

fD(φ|m, τk) =
ri(τk)

m+1

Γ(m+ 1)
φme−ri(τk)φ. (78)
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As a result, we can write the probability of delay exceeding a threshold Dmax
i as

Pr(D > Dmax
i ) =

∫ ∞

Dmax

i

∑

m,k

fD(φ|m, τk)Pr(m|τk)Pr(τk)dφ (79)

=

∫ ∞

Dmax

i

1

t

∑

m,k

ri(τk)
m+1

m!
φme−ri(τk)φ(

ai(τk)

ri(τk)
)m(1−

ai(τk)

ri(τk)
)dφ (80)

=
1

t

t
∑

k=1

∫ ∞

Dmax

i

(ri(τk)− ai(τk))e
−ri(τk)φ

∞
∑

m=0

(

φai(τk)
)m

m!
dφ (81)

=
1

t

t
∑

k=1

∫ ∞

Dmax

i

(ri(τk)− ai(τk))e
−
(

ri(τk)−ai(τk)
)

φdφ (82)

=
1

t

t
∑

k=1

e−
(

ri(τk)−ai(τk)
)

Dmax

i , (83)

which proves the theorem.
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