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Abstract 
Load shifting, peak shaving and nighttime setback are 

key demand-side management measures to make the 

operation of District Heating Systems (DHSs) more 

flexible and efficient. These goals can be achieved 

through appropriate control strategies exploiting the 

building’s and space heating system’s thermal inertia. 

To ease the development of such an advanced controller, 

we programmed a detailed dynamic simulator 

representative of French multi-stories radiator-heated 

residential buildings. We parametrized the simulator to 

vary the factors influencing the flexibility potential of a 

building (e.g. envelope properties, additional internal 

mass such as partition walls and furniture, the heating 

system…). This helped us designing a reduced-order 

building model relevant to our application and setting up 

a robust identification method for its parameters. We 

finally used the detailed simulator to test an optimal 

space-heating controller, thereby allowing many 

incremental improvements without jeopardizing end-

users thermal comfort. This simulation work paves the 

way to considering the actual implementation of our 

advanced controller on a real building.  

Keywords:     District Heating System, Building 
Simulation, Optimal Control 

1 Introduction 

1.1 Context of this research 

District Heating (DH) has been known for many years 

as an efficient mode for space heating and domestic hot 

water preparation in dense urban areas. District Heating 

Systems (DHSs) have genuinely an important role to 

play in the future of sustainable energy systems (Lund 

et al., 2014, 2010) as they allow greater integration of 

renewable power and recycling of low-temperature 

excess heat; therefore, a substantial reduction in fossil 

fuel consumption, 𝐶𝑂2 emissions as well as heat 

production costs can be achieved by converting from 

individual to district heating. Yet exploiting the full 

potential of a DHS relies on advanced management at 3 

levels: production, distribution and demand. Demand-

Side Management (DSM) of DHSs is a key measure for 

peak load shaving. It consists in modulating the heat 
demand for buildings’ space heating by using the 

available thermal inertia for a free short-term heat 

storage. Relying on this technology at a city scale, DH 

production load could be reduced at peak hours thus 

avoiding the start-up of expensive and pollutant fossil 

fuel generation units.  

Our research group is implied in the design of an 

optimal space-heating controller for residential 

buildings connected to DHS. Within the FP7 City-Zen 

project (“http://www.cityzen-smartcity.eu/,” 2018) we 

will demonstrate the use of this controller on a building 

located in the city of Grenoble, France. To support our 

work during the design and validation phases, we 

developed a detailed building dynamic simulator. This 

paper reports on the development of the simulator and 

its use in the research context we have just described. 

1.2 Structure of this paper 

We organized the remaining part of this paper as 

follows. Section 2 gives an overview of the 

programming languages and simulation environments 

suitable to our application. We then describe the detailed 

building simulator in section 3. In section 4 we present 

how we used the simulator to develop and assess an 

optimal space-heating controller. In section 5, we 

discuss the obtained results and conclude our study.  

2 Simulation environments 

This part is focusing on building thermal simulation and 

more broadly on platforms integrating Building Energy 

Model (BEM). Figure 1 shows examples of applications 

and related simulation tools. It also indicates an order of 

magnitude of the number of buildings modeled for each 

of the applications and the category to witch the building 

model belong. BEM could be split into two categories, 

the classic and the simplified.  

The classic approach is originally designed for a 

stand-alone building: TrnSys, EnergyPlus, Pleiade, 

IDA-Ice, BuildSysPro, Buildings…  The building is 

broken down into a set of walls and volumes. The 

geometric description can be very realistic. The main 

assumptions that are made are the unidirectional 

conductive transfers, and uniform variables on the air 

volumes. A detailed description of modeling methods is 

proposed in (Clarke, 2001) and (Peuportier, 2016). 

These simulation tools have been the subject of 

numerous benchmarks (Judkoff, 2013), (Brun, 2009) 

and experimental validations.  



The simplified approach generally uses analogy 

between electricity and heat transfer to represent models 

as an electrical circuit. This type of modeling assumes a 

linearization of the long wave radiative transfers and 

constant heat transfer coefficient. (Foucquier 2013) 

presents and assess other simplifications that are 

generally made: merging thermal zones, merging walls 

and reducing walls discretization. This approach is used 

in building control-command, energy diagnosis but also 

when the number of building is important (network 

control, micro-climat, urban energy flow). There is a 

wide variety of RC scheme and no dedicated 

benchmark. 

               

Figure 1. Building simulation environments for 

various applications and number of buildings. 

We can notice that our field of application is the one 

for which some tools are based on a detailed modeling 

and others on a simplified modeling. There is currently 

no consensus on the approach to be used. (Frayssinet, 

2017) shows that more detail envelope meshing than 

usual simplified BEM is needed when studding power 

demand.  (Perez 2015) present the R7C4 mono-zone 

model developed to consider the major phenomena in 

the DIMOSIM simulation platform. In their opinion, 

classic BEM is not appropriated to simulate a lot of 

building at the same time due to their high 

computational time and/or required parameters. 

(Nageler 2018) presents a study with 34 buildings 

modeling by means of classic BEM and data driven 

method. There show that this is technically feasible. 

(Ribault, 2017) showed that Energyplus has interesting 

feature for decision-support tools for urban 

densification in a 22 buildings model district. The ease 

of implementation of distributed computing tends to 

move the boundary and allow the use of detailed models 

in large numbers. 
In view of the above, we used the Modelica language 

that allowed us to implement both approaches.  A classic 

BEM for the building simulator (see section 3) and a 

simplified approach for the optimal space-heating 

controller (see section 4.1). 

3 The building simulator 

3.1 Generalities 

The building simulator is a generic, easily 

parameterized Modelica model of a multi-storeys 

building with the main vocation of generating reliable 

data in replacement of real in-situ measurements. We 

made some simplifications to obtain representative 

results while maintaining the parametrization burden 

tractable. An important design goal of our simulator is 

the ability to produce numerical results at the expense of 

reasonable simulation run times.  

We built our simulator as a pile of thermally 

connected identical floors. For simplicity, we 

considered a rectangular footprint and we discretized 

each floor into 4 thermal zones, with configurable 

surface fractions, as shown in Figure 2. The orientation 

of the building simulator is set using the Θ azimuth angle 

between the North direction and the building main axis 

(see Figure 2). The default value of 0 for Θ can be used 

to represent and “ideal” orientation where equivalent 

Night, Day, Kitchen and Bathroom zones are facing 

North, South, West and East, respectively. 

               

Figure 2. Spatial discretization of one floor (top view) 

showing the thermal phenomena considered in the 

simulator. 

We represent each thermal zones using a MixedAir 

model from the Modelica Buildings library (Wetter, 

2013). Thus, our simulator considers transient heat 

conduction through opaque walls, heat transfer through 

glazed surfaces (with consideration of solar and infrared 

irradiations), and external/internal convective and 

radiative heat transfers. Our simulator also includes a 

hydronic space-heating system composed of a 

centralized production unit, distribution pipes and 

radiators each equipped with a thermostatic valve. We 

used the RadiatorEN442_2 model from the Buildings 
library and models from our own Modelica 

DistrictHeating library (Giraud et al., 2015) for the 
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distribution pipes, the centralized production unit and 

the thermostatic valves.  

We also implemented a stochastic model of internal 

gains at the thermal zone level. We statistically model 

the signal for each zone by combining three heat sources 

related to occupancy profile, electric appliances and 

domestic hot water use at a 10 minutes time step. 

Finally, we expose the simulator to meteorological 

boundary conditions; we used the ReaderTMY3, a 

weather file reader from Buildings in which we can 

upload Typical Meteorological Year (TMY) data for 

various cities in France and Europe. An interested reader 

will find further modelling details in the following 

sections. 

3.2 The envelope and the internal structures 

Material 
𝐤 

(𝐖 𝐦 ∙ 𝐊⁄ ) 
𝐜 

(𝐉 𝐤𝐠 ∙ 𝐊⁄ ) 
𝛒 

(𝐤𝐠 𝐦𝟑⁄ ) 
𝐦 

(𝐤𝐠 𝐦𝟐⁄ ) 
𝛆 

(𝐦𝐦) 

Metal 60 450 8000 25 3 

Wood / 
Plastic 

0.2 1400 800 25 18 

Ceramic / 

Glass 
1.25 950 2000 5 10 

Light 
material 

0.03 1400 80 15 120 

Light 

partition 
walls 

0.015 1150 384 25 100 

Table 1. Properties of the internal mass equivalent 

slabs: Thermal conductivity (k), Specific heat capacity 

(c), Density (ρ), Mass per zone area (m) and thickness (ε). 

External walls forming the envelope integrate glazing 

systems of specific height and width, with neither 

overhangs nor side-fins. Thermal zones are separated by 

bearing walls. As for the zones’ interior, we carried out 

the modelling of internal partition walls and furniture 

with special attention since their mass is potentially a 

significant contributor to short-term storage. In fact, 

many studies have found that thermal inertia of 

building’s internal mass has the potential, under certain 

conditions, to maintain a decent comfort level inside the 

building for hours after cutting off, or reducing, the 

heating power (Antonopoulos and Koronaki, 2000; Le 

Dréau and Heiselberg, 2016; Wolisz et al., 2015). 

Therefore, empty zones would not reflect the correct 

dynamics of the building. Furnishing elements and light 

partition walls are modelled as horizontal and vertical 

slabs, respectively with the properties listed in Table 1. 

We referred  to (Johra and Heiselberg, 2017), a survey 

on the internal mass and its equivalent heat capacity 

found in residential and single office buildings in 

Denmark, to set these material properties, mass and 

dimensions of furniture equivalent slabs. 

3.3 Thermal phenomena within the zones 

This section details the physical modelling of the 

considered thermal phenomena, symbolically depicted 

in Figure 2. 

Object-oriented Modelica language allows reusability of 

pre-developed and validated components. In our 

simulator, we rely on a thermal zone model, called 

MixedAir found in the Modelica Buildings library and 

we use to it model each of the building’s zones. 

MixedAir is a volume of homogenous medium, typically 

ambiance air, with boundary elements including walls, 

slabs, windows, floor and ceiling. These construction 

elements, also found in Buildings library, may be 

exposed to external meteorological conditions via a 

weather bus reading a weather file, or boundary 

conditions of adjacent thermal zones in the case of a 

shared wall, or the boundary conditions of the same 

thermal zone in the case of internal partition walls. 

Under dynamic simulation and due to temperature 

differences, the volume of air exchanges heat with its 

surroundings, thus affecting its thermal states and those 

of the surroundings elements. Here is a concise 

description of the thermal phenomena that are modelled 

within MixedAir, further details may be found in 

(Wetter, 2013): 

 

 Convection 

Thermal convection on both sides of each construction 

element. Two options are available, either using a 

temperature, flow and tilt dependent convection 

coefficient or one with a fixed value. In our simulator, 

we selected a fixed coefficient of 3 𝑊/𝑚2 for internal 

convection and 10 𝑊/𝑚2 for external convection. 

 

 Conduction 

Thermal conduction through multi-layers construction 

elements is assumed to be mono-directional and 

computed by solving the heat equation after 

discretization into a number of states. For each layer, the 

number of states is proportional to the ratio between the 

layer thickness and the square root of the material’s 

diffusivity: 

 
𝑛𝑠𝑡𝑎 ∝ 𝜀 ∙ √

𝑐 ∙ 𝜌

𝑘
 (1) 

 

 Radiation 

MixedAir has a complex model for solar radiation 

thoroughly described in (Wetter, 2013). In short, solar 

radiation that penetrates the unshaded windows is 

computed. First it strikes the floor construction where 

part of it is absorbed and the rest is reflected towards the 

walls and the ceiling. Surfaces then exchange longwave 

radiation between each other according to the Stephan-

Boltzmann law which may optionally be linearized. 

Additionally, other sources of radiation may be injected, 

for instance radiative heat from internal gain or from a 

heating system. An interesting output from the radiation 

model embedded in MixedAir is the room’s radiative 

temperature roughly equal to the average temperature of 

all the internal surfaces. Note that in our simulator all 

windows are simulated with no shades for simplicity. 



 Mass transfer 

Although MixedAir is designed with a fluid port for 

explicit modelling of aeraulic flows, in our simulator 

direct heat transfer to the outdoor environment and 

between zones respectively due to ventilation and door 

opening is modelled as follows:  

 

o Simple-flux ventilation 

 

 Φ𝑧𝑜𝑛𝑒→𝑜𝑢𝑡𝑑𝑜𝑜𝑟 = 𝜌
𝑎𝑖𝑟 ∙ 𝑐𝑝

𝑎𝑖𝑟 ∙ 𝑉 ∙ 𝑛

∙ (𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟 − 𝑇𝑧𝑜𝑛𝑒) 
(2) 

 

where 𝑇𝑜𝑢𝑡𝑑𝑜𝑜𝑟 and 𝑇𝑧𝑜𝑛𝑒 are the  𝜌𝑎𝑖𝑟(𝑘𝑔/𝑚3) and 

𝑐𝑝
𝑎𝑖𝑟  (𝐽/𝑘𝑔 ∙ 𝐾) respectively stand for the density and 

specific heat capacity of air, 𝑉(𝑚3) is the air volume of 

the thermal zone and 𝑛 is the number of volume changes 

per second. In reality 𝑛 is often variable and should be 

stochastically modelled depending on tenant’s behavior, 

however in our work we assume it to be constant to a 

value recommended under European standards. A 

typical value for 𝑛 ranges from 0.2 to 0.6 volume changes 

per hour (ASHRAE Standard, 1989). The default value 

in the simulator is 0.3.  

 

o Door opening 

 

 Φ𝑖→𝑗 = 𝜌
𝑎𝑖𝑟 ∙ 𝑐𝑝

𝑎𝑖𝑟 ∙ 𝑆𝐷𝑜𝑜𝑟 ∙ 𝑣𝑚𝑖𝑥
∙ (𝑇𝑧𝑜𝑛𝑒[𝑖] − 𝑇𝑧𝑜𝑛𝑒[𝑗]) 

(3) 

 

where 𝑆𝐷𝑜𝑜𝑟(𝑚
2) is the open area separating two adjacent 

zones, 𝑣𝑚𝑖𝑥(𝑚: 𝑠) is an equivalent mixing air velocity 

through the door opening. The default value for 𝑣𝑚𝑖𝑥 is  

0.13 𝑚/𝑠 (Van Schijndel et al., 2003). 

The MixedAir model can then be subject to external 

heat flows connected through two ports: one for 

convective heat and another for radiative heat. External 

heat sources are typically the heating system and the 

internal heat gain due to electric appliances and 

occupancy. The following sections describe how these 

latter sources have been modelled. 

3.4 The space-heating system 

This section describes the modelling of the heating 

system. The model is composed of radiators fed by a 

two-pipe distribution network that connects a 

centralized production unit, located in the building 

basement, to the heated rooms.  

As already stated in section 3.1, we used the 

RadiatorEN442_2 model from Buildings, which 

includes computation methods inspired by the EN-442 

European standard. To favor numerical efficiency, we 

limited the discretization level to 3 fluid control 

volumes. 

We developed a model of thermostatic valve to 
control the hydronic flow through each radiator. The 

first part of the model is a heat capacity exchanging heat 

with its environment and representing the sensing bulb 

of the valve. We defined the heat exchange coefficient 

using a standard correlation valid for natural convection 

flows around a vertical cylinder. In most practical 

situations, this leads to an equivalent thermal 

timeconstant (defined as the ratio between inertia and 

the sensing-bulb to environment thermal conductivity) 

of approximately 10 minutes. The second part of the 

model relates the position of the valve to the difference 

between the sensing bulb temperature and the set-point 

value. Our model fulfils the specifications of the 

European standards NF EN 215 to regulate the internal 

air temperature around a specific set point temperature.  

We also used pairs of pre-insulated tubes, available 

in our Modelica DistrictHeating library [Giraud et al., 
2015], to model the building’s internal space-heating 

network. These tubes account for the hydraulic head 

losses and thermal losses occurring in the system. The 

model also accounts for heat accumulation in the tubes. 

Figure 2 describes the model we used to represent the 

centralized production unit of the building’s space-

heating system. This unit can represent a sub-station 

when the building is connected to a DHS. As can be seen 

in the figure, the thermal power injected in the system, 

hereafter denoted Φ, is controlled by a cascade of two 

regulators. “Regulator 1” controls the supply 

temperature denoted 𝑇𝑠 by adapting Φ. The set-point 

value for 𝑇𝑠 is traditionally provided by a heating curve, 

whose output is noted 𝑇𝐻𝐶. In our case, the set-point 

value for 𝑇𝑠 can be lower than 𝑇𝐻𝐶 ; it is then provided 

by “Regulator 2” who is fed by a set-point value for Φ, 

denoted ΦSet Point, and an indirect measurement of Φ 

built upon the mass flow-rate (�̇� in the figure), and the   

supply and return (𝑇𝑟 in the figure) temperatures. The 

reasons that guided us to design this control strategy are 

twofold. First, it can be implemented on existing 

systems and second, its architecture allows shifting 

between a traditional temperature-driven mode to a 

more advanced mode where the heating power is 

planned using a model predictive control approach. This 

aspect is illustrated in section 4 of the present paper.     

3.5 Internal heat gain model 

Each zone in the building simulator receives a direct 

internal heat gain flux, half of which is assumed to be 

convective and the other half is radiative. MixedAir 

handles these heat fluxes and integrates them into the 

heat balances of the air and the radiative exchange 

respectively. MixedAir can also handle latent heat gain, 

yet it is not used in our work for simplification.  

The original stochastic internal gain signal, which is 

then divided into the two mentioned halves, is modelled 

beforehand, separately by combining three heat sources 

related to occupancy profile, electric appliances and 

domestic hot water use. Generating this signal requires 

a database with information concerning the presence 
schedule of occupants inside the building, and whether 

or not they are active or not (i.e. sleeping). In both cases, 



the occupants’ presence generates heat due to their 

metabolism, and furthermore when they are active, their 

presence triggers the possibility of using electric 

devices, such as stoves, ovens and laundry equipment. 

Whereas other appliances are independent of the activity 

of tenants, such as refrigerators. All appliances dissipate 

heat as a fraction of their power input and with a certain 

delay due to their relative thermal inertia. Domestic hot 

water usage and its temperature level also affect the 

signal of internal heat gain. Unfortunately, all the data 

needed to build the internal gain profile is not available 

for contemporary households in France. Luckily, a 

survey was carried out in the UK in 2000 and the 

collected data concerning the occupancy profiles and the 

electric devices usage is available for the modelling of 

internal gain signal of our work (Richardson et al., 2010, 

2008). We used Markov chains to model a realistic 

evolution of the signal based on these data. We referred 

to the work in (Paatero and Lund, 2006; Widén et al., 

2009; Yao and Steemers, 2005) for the modelling of the 

fraction of dissipated heat from the electric appliances 

and the domestic hot water. The model generates a 

signal per zone for a year with a 10 minutes step in 

accordance with the magnitudes found in the French 

thermal regulation 1. We then connect the profiles to the 

building simulator. 

3.6 Parametrization 

The simulator can be parameterized to describe 

various types of buildings. Yet there is one particular 

building of interest in our work for the upcoming 

experimental demonstration of the advanced control 

strategy; it is a newly built, 8 stories residential building 

called Le Salammbô, situated in the neighbourhood of 

                                                 
1 Arrêté Du 30 Avril 2013 Portant Approbation de La Méthode de Calcul 

Th-BCE 2012 Prévue Aux Articles 4, 5 et 6 de L’arrêté Du 26 Octobre 
2010 Relatif Aux Caractéristiques Thermiques et Aux Exigences de 

Performance Énergétique Des Bâtiments Nouveaux et Des Parties 

Nouvelles de Bâtiments. Annexe Détaillant La Méthode de Calcul Th-
BCE 2012. 2017 

Zac Flaubert in Grenoble – France. It has been 

constructed in accordance with the recommendations of 

the latest European standards related to buildings 

thermal consumptions (RT 2012 2) and consumes 20% 

less than the threshold set by the standards. It is 

connected to a low-pressure district heating loop and 

serves as a demonstrator in the European project City-

Zen (“http://www.cityzen-smartcity.eu/,” 2018). 

However, according to Tabula 3, a statistical study of 

the French residential buildings from a thermal point of 

view, Le Salammbô (constructed in 2016) is not 

representative of buildings of its category (multifamily 

house) in France (see Figure 4). 

 

Figure 4: Number of multifamily houses per 

construction period (Source Tabula 3). 

In order to carry out a more inclusive and 

representative research on advanced control strategies 

of space-heating demand in DHSs, we decided to 

parameterize 3 different simulators with the same 

geometric parameters as Le Salammbô but with different 

construction materials found in Tabula 3 representing:  

2
http://www.gbpn.org/databases-tools/bc-detail-

pages/france#General%20Information 
3

http://episcope.eu/fileadmin/tabula/public/docs/brochure/FR_TABULA

_TypologyBrochure_Pouget.pdf 
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Figure 3. Schematic view of the centralized space-heating production unit composed of hydraulic connections, a 

circulation pump, the heat generator (right) and the controllers (left). 

http://www.gbpn.org/databases-tools/bc-detail-pages/france#General%20Information
http://www.gbpn.org/databases-tools/bc-detail-pages/france#General%20Information
http://episcope.eu/fileadmin/tabula/public/docs/brochure/FR_TABULA_TypologyBrochure_Pouget.pdf
http://episcope.eu/fileadmin/tabula/public/docs/brochure/FR_TABULA_TypologyBrochure_Pouget.pdf


˗ A recent building constructed after 2012 because it 

is representative of Le Salammbô itself. 

˗ A building constructed between 1976 and 1981; 

this category is thermally interesting because it 

comes just after the year where the first European 

standards concerning buildings thermal 

performance (RT 1974) have been introduced. 

˗ A building constructed before 1915, since it is the 

most commonly found in France.  

 

Table 2. Main thermal characteristics’ for 𝟑 building 

simulators. 

The main thermal characteristics of the simulators are 

reported in Table 2. Note that the sizing power is 

estimated as the building’s thermal losses under extreme 

conditions of -11°C external temperature (the sizing 

temperature used in the city of Grenoble) with no solar 

radiations of internal heat gain. 

3.7 Numerical performance 

In this section, we report on the numerical performance 

of the simulator. We monitored the numerical efficiency 

of a 8 stroreys building simulator, amounting 32 thermal 

zones and radiators. The corresponding computational 

problem weighs 79 𝑘 non-trivial equations. We 

translated the model using DYMOLA 2019, compiled it 

with Microsoft visual C++ build tools 2015, and 

executed it on a Dell Power Edge 𝑅640 server,  operated 

by Windows Server 2016 equipped with two Intel Xeon 

Gold 6154 3 GHz processors of 18 cores each. For 

numerical efficiency reasons, we disabled multi-

threading. We also decided to enable the Node 

Interleaving option thereby configuring the server as a 

Symmetric Shared Memory Multiprocessing (SMP) 

computer. These settings where found to be optimal for 

the parallel execution of a simple “for” loop with 

reduction using OpenMP.  

Our test consists in executing simulation runs using 

various solvers and computing options. The simulations 

are runned for typical winter meteorological conditions. 

The execution time is expressed under the form of an 

acceleration factor 𝐴𝑐𝑐𝑓 defined as the ratio between the 

simulated period to the execution time. Thus, 𝐴𝑐𝑐𝑓 = 168 

means that a simulation covering a period of 1 week 

lasts 1 hour since a week is composed of 168 hours. We 

limited the maximal time step used by the integrator to 

900 𝑠 by generating time events.  

 
 

Figure 5. Execution time, expressed as an acceleration 

factor with respect to real time, as a function of the 

number of cores and type of solver for a 𝟖  storeys 

building simulator. 

Figure 5 presents the obtained results. The simulation 

runs are generally shorter when the number of cores 

used for the calculation increases. Figure 5 shows a 

quasi-linear trend when the number of cores implied in 

the calculation is low. However, above 8 cores, there is 

no more benefits in parallelization. A second 

observation is that when appropriate solver settings are 

used, the model execution time can reach 𝐴𝑐𝑐𝑓 = 420. 

Such execution speed is well suited for control 

applications implying simulation periods in the day to 

week range. A reduction in the number of thermal zones 

and/or number of storeys would be necessary to perform 

annual simulations.      

4 Using the simulator to assess an 

optimal space-heating controller  

In this section, we describe how we used the simulator 

to design and test an optimal space heating controller 

enabling load shedding for DH network. More 

specifically, we used the simulator to perform three 

essential steps: 

1. Designing a reduced-order building model relevant 

to our application (section 4.1) 

2. Setting up a robust identification method for this 

model (section 4.2) 

3. Validating the obtained optimal space-heating 

controller, within our simulation tool Pegase 

(section 4.3) 

One important aspect to underline is that a key issue 
in the context of our application is the need to perform 

the building model identification as well as the optimal 
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control with very limited measurements inside the 

building itself. In particular, optimal space heating 

control would be very beneficial to DH operators, 

however they typically have no access to detailed 

information or measurements inside the building they 

are heating. In this context, the detailed and versatile 

building simulator described in the previous section 3 

provided a perfect environment for validating the 

proposed strategy on a range of different buildings, so 

that to ensure its reproducibility using real-world data. 

4.1 Design of a reduced-order building 

model (ROM) 

A first step in the proposed optimal control approach is 

the design of a reduced-order building model (ROM). In 

our case, we are especially considering linear or linear-

saturated models, which are suitable for a mixed-integer 

linear programming (MILP) optimization. Although 

various optimization techniques can be used to perform 

optimal control, the MILP formulation provides many 

advantages (proven optimality, short resolution times, 

easy deployment). It was also shown in previous work 

that these advantages greatly compensate for the small 

loss of precision compared to more detailed non-linear 

models (Ommen et al., 2014; Schütz et al., 2017). 

Simple building modelling is a well-researched topic 

(see section 2). RC modelling starts by defining the 

structure of the ROM; i.e. the number of elements we 

wish to represent for a belief that they might have a great 

influence in the desired application. The simulator 

comes in handy to test the influence of certain elements. 

In this section, a parametric study performed using the 

simulator and which has helped setting the ROM 

structure is described. 

We shall first recall that the ROM will be used to 

apply and assess DSM measures. For instance, during 

load shifting, we want to rely on this model to optimally 

plan the heat delivered to the building without 

jeopardizing the thermal comfort. We expect the real 

building inertia to delay the mean internal temperature 

drop, thus offering heat demand flexibility. Therefore, a 

reliable ROM structure should well predict these delays. 

In simplified RC models, thermal delays are created by 

introducing thermal capacitances (C). The simulator 

will help us determine, per building class, which 

element in the building is worth being represented by a 

“C” in the RC model for MPC applications. 

To answer this question we considered the 3 building 

simulators already presented in section 3.6 and Table 2. 

For each of these buildings we considered 3 levels of 

internal mass by simply modifying the parameter of the 

mass density per m² of furniture-equivalent slabs: 

˗ Empty zones with no internal mass 

˗ Light internal mass of a total of 70 kg/m² (see 

Table 1) 

˗ Heavy(double) internal mass of a total of 140 

kg/m² 

For each case we considered 3 simulations to assess the 

influence of the heating circuit inertia: 

˗ A simulation where the heating system model 

is omitted and heat is directly injected into the 

zones through the internal air node. 

˗ A simulation with low temperature radiator 

system having a supply water at 50°C 

˗ A simulation with high temperature radiator 

system having a supply water at 70°C 

 

 

Figure 6: Structure of ROM proposed in light of the 

parametric study performed using the building 

simulator. 

Using the thus derived versions of the simulator, we 

could record the effect of shutting down the heating 

power to characterize the building’s time constants, 

using the following simulation protocol: 

1. Reaching steady state conditions, for an internal 

temperature set-point of 20°C 

2. Cutting out the power supply at the DH substation 

level 

3. Record the internal temperature drop, up to a 1°C 

drop from the set point.  

4. Compare the time constants sensibility obtained for 

each insulation class to the addition of internal 

mass and the heating system’s inertia. 

From this study we could conclude that taking into 

account both the space-heating circuit and the internal 

thermal mass were of prime importance for load 

shedding for all building classes. Therefore, we propose 

the structure depicted in Figure 6 for MPC applications. 

The ROM features a heat capacitance for the internal 

mass and another for the heating circuit, along with the 

heat capacitance of air and that of the envelope which 

are commonly found in most ROM in the literature, e.g. 

(Zayane, 2011). These aspects are rarely modeled in 

other studies, but the flexibility of Modelica enabled us 

to model them and assess their importance in a single 

tool. 

The obtained detailed results can also be compared to 

previous experimental work (Kensby et al., 2015), in 

which conclusions could only be reached about the need 

for considering several time constants. In our study, 
using a detailed and realistic simulator provides us with 

much more specific results, which are hardly accessible 

experimentally. 



4.2 Reduced-order model identification  

After the structure definition comes the parameters’ 

identification. This step requires historical data to tune 

the parameters of the ROM (Figure 6) with the goal of 

obtaining an optimal set of parameters that best fits that 

historical data. In our work, historical data is replaced 

by data generated by the building simulator, and we 

restrain it to real-world data accessible to DH operators 

which is mostly found at the substation level, i.e. outside 

the building. This means we need to identify the 

parameters based on the space-heating load power at the 

substation, and without continuous and intrusive 

internal temperature measurements. 

The detailed building simulator was again of great 

help for this task, as it enabled us to test several 

identification methods as well as to verify the results on 

the internal temperature behavior (which would not be 

available in the real world). 

The identification method itself is based on the 

GenOpt optimisation toolkit, and will be described in a 

future publication. Although more detailed results are 

out of scope of this paper, we could in particular 

highlight the following two results:  

 The chosen ROM performs better at describing the 

internal temperature behavior when identified with 

only load power at substation, compared to other 

model structures. Interestingly, most previous work 

considering identification using internal 

temperature measurements had different findings, 

which are not exploitable in our case. 

 The correlation between the load power error and 

the internal temperature error only appears for very 

low load power errors, meaning that a set of 

identified parameters may seem to perform 

correctly when looking at load power error, but may 

be performing poorly when looking at internal 

temperature error. A more specific characterization 

of this result is under study. 

4.3 Validation of an optimal space heating 

controller  

Based on the previous steps and on other work, we 

were able to design an optimal space heating controller. 

The space-heating controller is designed to act at the 

district heating substation level.  

As explained in section 4.1, this controller is based 

on a MILP problem formulation, as well as on a 

receding horizon principle. More specifically, it 

performs the following operations at regular time 

intervals (here 15 minutes):  

1. Collect data available at substation level (esp. load 

power), as well as weather and energy cost 

predictions. The hypothesis here is that energy 

provision costs are variable over the day, either 

because of renewable energy usage or by taking 

into account variations in the global network load 

leading to various generator use. 

2. Formulate a MILP optimization problem, aiming 

especially at controlling the power injected at 

substation level while minimizing energy provision 

costs and over/under-heating inside the building. 

Part of this MILP problem is obtained from the 

reduced-order building model, which describes the 

expected thermal behavior of the building. 

3. Solve the MILP optimization problem over the a 

given horizon (typically 24h), in order to define the 

optimal trajectory of the control variable (here the 

power injected at substation level) 

4. Apply the obtained set point for the next time 

interval (here 15 min), before performing the 

optimization again to adjust for prediction changes 

and real system behavior. 

 

At the validation step, the obtained set points are not 

applied to the real building, but instead to the building 

simulator. This particularly enables us to validate that 

the internal temperature constraints and thermal comfort 

are respected.  

We used our optimal control tool called Pegase. 

Pegase is based on the Functional Bloc Simulation 

Framework (FBSF, 2018) which provides a very 

efficient C++ co-simulation master fully compatible 

with the FMI 2.0 standard. Pegase also embeds MILP 

formulation capacities based on the Eigen linear algebra 

library (Eigen, 2018), and is integrated with numerous 

MILP solvers. Using this tool, each iteration step 

(problem formulation, resolution and building 

simulation) is performed in a few seconds on a standard 

PC, using the GLPK open source solver in this case 

(GLPK, 2018). A real-world deployment of the 

controller is also available, in which case the building 

simulator FMU is simply replaced with communication 

to the real system in place.  

Figure 7 presents some first results obtained with the 

optimal space-heating controller. In Figure 7, the 

predictive quantities, the outputs of the controller and 

the results of the detailed building simulator are 

respectively plotted with dot-dashed lines, dotted lines, 

and solid lines. From top to bottom, the first 3 graphs 

present the evolutions of the external temperature, the 

total solar irradiation and the energy costs respectively.  

We then present the planned sub-station power and the 

internal building mean temperature. The bottom plot 

shows the evolutions of the supply and return 

temperature of the space-heating system. To enable the 

comparison with a standard control strategy, we also 

plotted the supply temperature provided by the 

buildings’ heating-curve (see section 3.4).  

Figure 7 shows that our controller is able to adapt the 

substation heating power to the actual heating needs of 
the building. This leads to a decrease of the supply 

space-heating temperature when solar gains contribute 



to space heating. Another interesting feature is that the 

controller is able to decrease the internal building 

temperature when energy prices are high thereby 

demonstrating that the space-heating strategy considers 

a balance between the energy purchase costs and the 

end-users’ thermal comfort.    

5 Concluding remarks  

In this paper, we present a Modelica-based building 

simulator and show how it can efficiently support the 

development of demand-side management control 

strategies. Based on the MixedAir model available in the 

Modelica Buildings library, we designed a customizable 

simulator for multi-stories radiator-heated residential 

buildings, representative of the French district heating 

sector. By using Modelica as a support language, we 

were able to model not only the building envelope, but 

also to other relevant elements such as the internal mass 

and the radiator heating system, both of which play an 

important role when considering load shifting.  

 

We also assessed the numerical performance of this 

building simulator, especially the parallelization 

features of the Dymola simulation tool. Although the 

results show some limitation in the parallelization, we 

could reach an acceleration factor of 420, meaning that 

420 hours can be simulated in 1 hour, in our case using 

8 cores in parallel. Such execution speed is well suited 

for control applications implying simulation periods in 

the day to week range. A reduction in the number of 

thermal zones and/or number of storeys would be 

necessary to perform annual simulations.      

 

Finally, we illustrate how we used the building 

simulator to design and assess an optimal space-heating 

controller. In particular, we used the simulator to 

perform three essential steps: designing a reduced-order 

building model relevant to our application; setting up a 

robust identification method for this model; validating 

the obtained optimal space-heating controller. In all 

these tasks, being able to define various building models 

with different parameters, as well as to check the results 

of the optimal space-heating controller on the simulator 

were essential. 
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