
HAL Id: hal-02078353
https://centralesupelec.hal.science/hal-02078353v1

Submitted on 25 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hybrid Lower Bound for Parameter Estimation of
Signals With Multiple Change-Points

Lucien Bacharach, Mohammed Nabil El Korso, Alexandre Renaux, Jean-Yves
Tourneret

To cite this version:
Lucien Bacharach, Mohammed Nabil El Korso, Alexandre Renaux, Jean-Yves Tourneret. A Hybrid
Lower Bound for Parameter Estimation of Signals With Multiple Change-Points. IEEE Transactions
on Signal Processing, 2019, 67 (5), pp.1267-1279. �10.1109/TSP.2018.2890029�. �hal-02078353�

https://centralesupelec.hal.science/hal-02078353v1
https://hal.archives-ouvertes.fr


1

A Hybrid Lower Bound for Parameter Estimation
of Signals with Multiple Change-Points

Lucien Bacharach, Mohammed Nabil El Korso, Alexandre Renaux, and Jean-Yves Tourneret

Abstract—Change-point estimation has received much atten-
tion in the literature as it plays a significant role in several sig-
nal processing applications. However, the study of the optimal
estimation performance in such context is a difficult task since
the unknown parameter vector of interest may contain both
continuous and discrete parameters, namely the parameters
associated with the noise distribution and the change-point
locations. In this paper, we handle this by deriving a lower
bound on the mean square error of these continuous and
discrete parameters. Specifically, we propose a Hybrid Cramér-
Rao–Weiss-Weinstein bound and derive its associated closed-
form expressions. Numerical simulations assess the tightness
of the proposed bound in the case of Gaussian and Poisson
observations.

I. INTRODUCTION

Non-stationary signals are often encountered in signal
processing applications. Abrupt changes are a common cause
of such non-stationarity. The latter occurs when statistical
properties of random observations change abruptly, i.e.,
quickly with respect to (w.r.t.) the sampling rate. In this
scenario, the so-called change-point problem can be divided
into two categories: i) on-line processing, in which one
aims at detecting or estimating the change-point locations
from data received sequentially; ii) off-line processing, in
which the (possibly multiple) change-point locations are
inferred from a batch of data. Typical applications involving
on-line change-point estimation include system monitoring
and fault detection [1], whereas off-line processing has
been used successfully for astronomical or biomedical and
image processing [2]–[4]. This paper focuses on the off-line
change-point estimation problem and aims at determining a
performance measure for this problem. Note that we are not
only interested in the change location estimation, but rather
in the joint estimation of the change locations and the signal
parameters on each segment (i.e., between each change).

In the parameter estimation framework, the maximum like-
lihood estimator (MLE) is a commonly used algorithm due
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to its interesting asymptotic statistical properties (asymptotic
efficiency and normality under mild conditions) [5]. Never-
theless, such regularity conditions are not met in the change-
point scenario since the change locations (main parameters
of interest) are discrete and thus the corresponding likelihood
is not differentiable w.r.t. these parameters. Consequently,
this leads to considerable difficulties in characterizing the
behavior of the MLE. As an example, the seminal work of
Hinkley derived the MLE’s asymptotic distribution (semi
closed-form) in the case of mean value changes in Gaussian
observations [6]. Several decades later, Fotopoulos et al.
derived the exact asymptotic distribution of the MLE for a
single change-point affecting the mean of Gaussian sequences
[7]. To the best of our knowledge, this analysis has never
been carried out in the case of multiple change-points, which
is the main objective of the paper.

A useful alternative to the study of the asymptotic behavior
of some estimators is to focus on the second-order moments,
by resorting to lower bounds on the mean squared error
(MSE). These bounds offer a convenient way to characterize
the inherent limitations, in terms of MSE, of parameter
estimators for a given model. In this paper, we aim at deriving
lower bounds on the MSE of parameter estimators, for signals
including multiple change-points. The Cramér-Rao bound
(CRB) is the most widely used lower bound in estimation
theory since it provides, under some regularity conditions
(see [8]), the asymptotic variance of the MLE, and generally
leads to interesting closed-form expressions. Because of the
discrete nature of the change-points, we remind that the
required regularity conditions are not met, and the CRB
of these parameters cannot be derived. To overcome this
issue, there exist other lower bounds on the MSE which do
not require the differentiability of the log-likelihood. One
can cite deterministic lower bounds including the family of
Barankin bounds [9]–[12], and Bayesian lower bounds such
as Weiss-Weinstein bounds [13], [14].

Some of the aforementioned lower bounds have been
derived for the change-point estimation problem. Specifically,
regarding deterministic lower bounds, Ferrari and Tourneret
derived the Chapman-Robbins bound (a specific type of
Barankin bound) for a single change-point estimation [15].
This work was later extended by La Rosa et al. to the case
of multiple change-points [16]. Since these deterministic
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bounds only give a coarse insight on the change-point
estimation behavior, we recently proposed the use of Bayesian
lower bounds such as the Weiss-Weinstein bound (WWB),
both for a single change [17] and multiple changes [18].
It is worth mentioning that to the best of our knowledge,
most of the derived bounds in the literature considered the
change-points as the only unknown parameters, meaning
that all the other parameters were assumed to be known
(e.g., in [18], the means and variances of the Gaussian
distributions associated with the different segments were
assumed to be known). In this paper, we fill this void. More
precisely, we propose a hybrid bound for multiple change-
point estimation when the discrete change locations and
the continuous parameters of the distributions associated
with the different segments are both unknown. To achieve
this, we propose the “Hybrid Cramér-Rao–Weiss-Weinstein
bound” (HCRWWB, later abbreviated as HB for “hybrid
bound”, for sake of simplicity), in which the CRB part is
associated with the continuous parameters, and the WWB
part is associated with the discrete parameters. Note that a
Bayesian Cramér-Rao–Weiss-Weinstein bound was proposed
in [19] in a fully Bayesian context. In contrast to this bound,
whose determination required a numerical integration, we
investigate in this paper an HB, which can be determined
using closed-form expressions.

This paper is structured as follows: in Section II, we
expose the observation model used throughout the paper. In
Section III, we give the general expression of the proposed
bound. This bound is derived for some specific change-point
problems in Section IV, namely, for Gaussian and Poisson
observations. Simulation results illustrating the interest of
the proposed bound are presented in Section V. Finally, our
conclusions and future works are reported in Section VI.

II. PROBLEM STATEMENT

This section introduces the observation model used through-
out this paper. We consider a time series x = [x1, . . . , xN ] ∈
Ω with independent random variables xn ∈ Ω′ (Ω ⊂ RN
denotes the observation space for x, and Ω′ denotes the
observation space for one observation xn, i.e., Ω = (Ω′)N =
Ω′ × . . .× Ω′). This time series x is subjected to multiple
abrupt changes, that arise at unknown time instants t1, . . . , tQ,
also referred to as change-points or changes. The total number
of changes Q is assumed to be known. Thus, the observation
model can be written as

xn ∼ f(xn ;η0) for n = 1, . . . , t1,

...
...

xn ∼ f(xn ;ηQ) for n = tQ + 1, . . . , N,

(1)

in which f(xn ;ηq) denotes the distribution of the random
variables xn in the (q + 1)-th segment, namely the segment

delineated by the two consecutive change-points tq and tq+1,
with q ∈ J0 , QK (that is the set of integers between 0 and
Q), t0 , 0 and tQ+1 , N . These distributions f(. ;ηq) are
parameterized by parameter vectors ηq = [ηq1 , . . . , ηqL ]T ∈
RL (for instance, in the Gaussian case, L = 2 and the
parameter vector ηq includes the mean and the variance of
the Gaussian distribution for the (q + 1)-th segment). We
assume that all the distributions f(. ; ηq), for q ∈ J0 , QK,
belong to the same family.

The parameter estimation problem in such scenario consists
in estimating i) the change-point locations tq , q = 1, . . . , Q,
and ii) the parameter vectors ηq , q = 0, . . . , Q. Thus, the un-
known parameter vector to estimate is θ = [ηT, tT]T ∈ Θ ⊂
RL(Q+1)+Q, with η = [ηT

0 , . . . ,η
T
Q]T ∈ Θη ⊂ RL(Q+1) and

t = [t1, . . . , tQ]T ∈ Θt ⊂ ZQ. The sets Θ, Θη and Θt
denote the parameter spaces for θ, η and t, respectively, that
is, Θ = Θη ×Θt.

The purpose of this paper is to assess estimation per-
formance for the parameter vector θ by providing lower
bounds on the mean squared error (MSE) for a family
of estimators θ̂(x) of θ. As explained in Section I, we
provided in [18] a lower bound on the estimation error
for the vector t only (parameter vectors ηq were assumed
to be known), assuming t is a random vector (Bayesian
lower bound). In [19], addressing a specific type of data
(namely, a time-series with Poisson entries), the (scalar)
parameters ηq were assumed unknown and random, i.e., a
fully Bayesian point of view for the estimation of t and η
was considered. In this paper, we fill the gap between [18]
and [19] by generalizing the work presented in [19] to any
pre-specified signal distribution f(. ;ηq) (parameterized by
unknown vectors ηq; see Section IV-A). In this sense, the
bound derived in this paper is more general – for applications
to specific usual distributions, see Section IV-B. Another
difference is the estimation framework: while in [19] we used
a fully Bayesian point of view, we now consider a hybrid
context, in the sense that the parameter vectors ηq stacked in
η are assumed unknown and deterministic, with true values
η?q (accordingly, the true value of the full parameter vector
is denoted by η?), and the parameter vector t is assumed
random. Consequently, the estimator θ̂(x) is hybrid as well,
for example it can be the ML-MAP estimator (Maximum
Likelihood-Maximum A Posteriori) [20, p. 12], [21]. The
context of hybrid estimation is appropriate in cases where
no a priori information is available on some of the unknown
parameters. In addition, interestingly, the hybrid point of
view makes it possible to get rid of some integrals that were
evaluated numerically in [19]. Finally, the interest of the
hybrid set-up lies in the resulting trade-off between tightness
of the bound and its computational complexity: thanks to the
contribution of the Weiss-Weinstein bound, which is known
to be one of the tightest bounds, the proposed bound is
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tight, but it also entails a reasonable computational cost, as
closed-form expressions for its elements can be obtained (see
Section IV).

Since the parameter vector t is random, in agreement with
the Bayesian framework, it is assigned a prior distribution
denoted by π(t). Note that this distribution is assumed to
be independent of η. In this paper, since the number of
changes Q is assumed to be known, we choose a convenient
prior that is compatible with this assumption: we assume
that the change-points are drawn according to a uniform
random walk. In other words, tq is assumed to be given
by tq = tq−1 + εq, q = 1, . . . , Q, where t0 , 0 and εq are
i.i.d. uniformly distributed random variables on the set of
integers Jd ,DK. The values of d and D can be freely chosen
as long as d ≥ 1, d < D, and the last change tQ occurs
at least before the end of the observation window, i.e., the
maximum possible value for D is Dmax = b(N − 1)/Qc,
with b.c denoting the floor function. Thus, the joint (discrete)
prior distribution for the parameter vector t is given by

π(t) =
1

∆Q

Q∏
q=1

1Jtq−1+d,tq−1+DK(tq), (2)

in which we have defined ∆ , D−d+1. The support of this
prior distribution is denoted by T ′ ,

{
t = [t1, . . . , tQ]T ∈

ZQ
∣∣∀q ∈ J1 , QK, tq ∈ Jtq−1 + d , tq−1 +DK, t0 = 0, tQ <

N
}

, and it corresponds to the set of the possible segmen-
tations of the observation window J1 , NK into exactly Q
segments, with maximum length D and minimum length d.
This prior distribution offers an interesting trade-off between
the exploration of the parameter space and the computational
complexity of the resulting bound. The results of this paper
could be extended to other prior distributions, without any
guarantee that closed-form expressions of the bound would
be obtained.

From model (1) and the aforementioned assumptions, the
likelihood of the observations can be written as

f(x | t ;η) =

Q∏
q=0

tq+1∏
n=tq+1

f(xn ;ηq), (3)

with t0 , 0 and tQ+1 , N . Note that from (2) and (3), it
is also possible to write the joint distribution between the
observations x and the parameter vector t, for some given
parameter vector η, as f(x, t ;η) , f(x | t ;η)π(t).

As already mentioned, the number of changes Q is assumed
to be known and the estimation of Q is beyond the scope
of this paper. The estimation of Q is often referred to as a
model dimension estimation problem (see e.g., [22], [23]).
In array processing, the model dimension corresponds to the
number of sources [24], and it is very classical to assume
that it is known [25]. In our problem, since Q determines
the size of the unknown parameter vector, it implies a

strong link between Q, t1, . . . , tQ and η0, . . . ,ηQ, and it
becomes necessary to fix the value of Q in order to assess
the estimation performance of θ. As we will see hereafter,
although Q is known, the derivation of lower bounds provides
important information on how difficult the estimation problem
is.

Note that the random variable xn can be either absolutely
continuous or discrete, depending on the application. In the
following, we will assume that it is continuous. However, the
extension to the discrete case is straightforward: an example
of discrete observations is investigated in Section IV-B2 of
this paper. We now present the lower bound on the MSE
which we derive thereafter.

III. PROPOSED BOUND

This section presents the lower bound on the mean square
error derived in this paper (the derivation itself, for the
problem introduced in Section II, is carried out in Section IV).
We first recall a general inequality leading to the proposed
lower bound, namely the covariance inequality.

A. Background on the covariance inequality

We consider an estimation problem, with an unknown
parameter vector θ ∈ Θ which can be either deterministic,
or random, or hybrid – the latter case being considered in
this paper. Let θ̂(x) an estimator of θ, i.e., a measurable
function Ω → Θ. Let v(x,θ) a real measurable function,
such that (i) the covariance matrix E{v(x,θ)vT(x,θ)} is
positive definite, and (ii) the matrices E{θ̂(x)vT(x,θ)} and
E{θvT(x,θ)} have finite elements. The following matrix
inequality then holds and is commonly referred to as the
covariance inequality [5], [20]:

E
{(
θ̂(x)− θ

)(
θ̂(x)− θ

)T}
< CV −1CT, (4)

in which C , E{
(
θ̂(x) − θ

)
vT(x,θ)}, V ,

E{v(x,θ)vT(x,θ)} and the matrix inequality A < B
denotes the so-called Löwner partial ordering, i.e., the
difference A − B is a nonnegative matrix. As explained
in details in [20], the covariance inequality (4) corresponds
to the vector extension of the Cauchy-Schwarz inequality
(see also [20, p. 33] for a proof of (4)).

At this point, it is worth noticing that, without any further
assumptions on the vector function v(x,θ), the matrix C in
(4) generally depends on θ̂(x), hence the right-hand side of
(4) is not an interesting lower bound on the MSE of θ̂(x).
However, for some well-chosen vector functions v(x,θ), and
for some adequate set of estimators θ̂, it is possible to obtain
a matrix C that does not depend on θ̂(x). In that case, the
right-hand side of (4) is a lower bound on the MSE and
applies to any estimator in the aforementioned set. We now
explain how we define the vector functions v(x,θ) to obtain
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the lower bound derived in this paper. For other examples
explaining how to define v(x,θ) and lower bounds stemming
from the covariance inequality, see [20, pp. 35–53].

B. The hybrid Cramér-Rao–Weiss-Weinstein bound (HCR-
WWB)

In order to make the formulation of the bound more
generic, we use notations that slightly differ from those in
Section II. Let us consider an R-dimensional hybrid unknown
parameter vector θ = [θTd ,θ

T
r ]T belonging to the parameter

space Θ ⊂ RR. Note that the term “hybrid” here means that
θd is deterministic, belonging to a subset Πd of RP , and
whose true value is θ?d , while θr is random, belonging to RQ
(such that R = P+Q). For a given value of the deterministic
parameter vector θd, we define a prior distribution π(θr ;θd)
for the random parameter vector θr, whose support is
denoted by Πr ⊂ RQ. Note that the prior might explicitly
depend on θd in some cases, see [26]. Let us denote by
f(x |θr ;θd) the likelihood of the observations, so that the
function f(x,θ) , f(x,θr ;θd) = f(x |θr ;θd) π(θr ;θd)
denotes the joint probability density function (p.d.f.) of x
and θr parameterized by θd. The following relations can be
established between these notations and those from Section II:
θd ≡ η, θr ≡ t, P ≡ L(Q+1), Q ≡ Q, R ≡ L(Q+1)+Q,
π(θr ;θd) = π(θr) ≡ π(t) and Πr ≡ T ′. Let us define
Θ′ , {θ ∈ Θ | f(x,θ) > 0, for almost all x ∈ Ω}. The
statistical expectation of a vectorial functional gθd(x,θr)
parameterized by θd, w.r.t. the joint p.d.f. f(x,θ) =
f(x,θr ;θd) is denoted by Ex,θr;θd{gθd(x,θr)}. Finally, let
us denote by θ̂ , θ̂(x) = [θ̂Td , θ̂

T
r ]T a joint (hybrid)

estimator of [θTd ,θ
T
r ]T, i.e., θ̂d , θ̂d(x) is an estimator

of the deterministic parameter vector θ?d and θ̂r , θ̂r(x) is
an estimator of a realization of the random vector θr.

In order to obtain a lower bound on the estimation error
of the hybrid parameter vector θ, the idea is to combine two
different lower bounds w.r.t. θd and θr respectively. This
results in a “hybrid” lower bound for the estimation of the
parameter vector θ. Such kind of lower bound has already
been proposed in the literature [27]–[29]. In this paper, we
propose to combine the (deterministic) Cramér-Rao bound
[30], [31, Chap. 32], [8, p. 300] with the (Bayesian) Weiss-
Weinstein bound [13]. A fully Bayesian version of this bound
was first proposed in a recursive form in [32], and was
recently adapted to the off-line change-point problem for
Poisson data in [19].

In order to derive the proposed hybrid bound, the vector
function v(x,θ) : Ω×Θ→ RR is constructed in two parts
since the estimation is hybrid: the P first components of
v(x,θ) are related to the deterministic parameters, while the
Q last components of v(x,θ) (P +Q = R) are related to

the random parameters. For p = 1, . . . , P , we set [33]

[v(x,θ)]p =


∂ ln f(x,θr;θd)

∂θd,p

∣∣∣
θd=θ?

d

, if θ ∈ Θ′

0, if θ /∈ Θ′,
(5)

in which θd,p denotes the p-th component of the deterministic
parameter vector θd, and the derivatives are evaluated at the
true value θ?d of the parameter vector θd. For q = P +
1, . . . , R, we set [13], [29]

[v(x,θ)]q

=

{
fsq (x,θr+hq ;θ?

d )
fsq (x,θr;θ?

d ) − f1−sq (x,θr−hq ;θ?
d )

f1−sq (x,θr;θ?
d )

, if θ ∈ Θ′

0, if θ /∈ Θ′,
(6)

in which sq ∈ ]0 , 1[, and the vector hq is constrained to
belong to the set Hθr ,

{
h ∈ RQ

∣∣θr + h ∈ Πr

}
. Any

values of sq ∈ ]0 , 1[ and hq ∈ Hθr lead to a lower bound
for the MSE, but not necessarily the tightest (see Section
III-C for a method to find suitable values of sq and hq).

Without any further assumption, the matrix C in (4) still
depends on θ̂(x), which is unwanted. We then make the two
following additional assumptions:
1- We consider the class of estimators that are unbiased w.r.t.
θd, i.e.,

Ex,θr;θ?
d
{θ̂(x)− θ|θ?

d
} = [0T,dT]T (7)

in which d is an arbitrary vector with size Q, independent
of θ.
2- As for the classical CRB, we assume that, for any θd ∈ Πd,

Ex|θr;θd

{
∂ ln f(x |θr;θd)

∂θd

}
= 0. (8)

Thus, assuming that both conditions (7) and (8) are
satisfied, it can be proved that the matrix C is block diagonal
and given by C = bdiag {I,C22}, where I denotes the
P × P identity matrix and the columns of C22 are given,
for 1 6 q 6 Q and θ ∈ Θ′, by

cq = Ex,θr;θ?
d

{[
θ̂r(x)− θr

]
×
[
fsq (x,θr + hq;θ

?
d)

fsq (x,θr;θ?d)
− f1−sq (x,θr − hq;θ?d)

f1−sq (x,θr;θ?d)

]}
= hq µ(sq,hq), (9)

in which θ̂r(x) denotes the estimate of θr obtained by
selecting the appropriate components of θ̂(x). In (9), we
also have defined, for hr ∈Hθr and s ∈ ]0 , 1[,

µ(s,hr) ,
∫∫

Ω×RQ

fs(x,θr + hr ;θ?d) f1−s(x,θr ;θ?d) dx dθr

= Ex,θr;θ?
d

{
fs(x,θr + hr;θ

?
d)

fs(x,θr;θ?d)

}
. (10)
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The proof that the upper-left block in C is the identity can
be found in [8, Sec. 4.3.3.1], while (9) is obtained by using
the change of variables θ′r = θr − hq. The same type of
considerations leads to the expression of the matrix V :

V =

[
V11 V12

V T
12 V22

]
, (11)

in which
i) (block V11) for (p, p′) ∈ J1 , P K2 and θ ∈ Θ′, the

element [V11]p,p′ in the matrix V is given by

[V11]p,p′ = Ex,θr;θ?
d

{
∂ ln f(x,θr;θd)

∂θd,p

∣∣∣
θ?
d

∂ ln f(x,θr;θd)

∂θd,p′

∣∣∣
θ?
d

}
= −Ex,θr;θ?

d

{
∂2 ln f(x,θr;θd)

∂θd,p∂θd,p′

∣∣∣
θ?
d

}
, (12)

in which the last equality holds only if f(x,θr;θd) is
twice differentiable w.r.t. the vector θ. Note that this block
corresponds to the so-called “modified Cramér-Rao lower
bound” for the estimation error of an unbiased estimator
of θd [34];

ii) (block V22) for (q, q′) ∈ JP + 1 , RK2 and θ ∈ Θ′,

[V22]q,q′ = Ex,θr;θ?
d

{[
fsq (x,θr+hq ;θ?

d )
fsq (x,θr;θ?

d ) − f1−sq (x,θr−hq ;θ?
d )

f1−sq (x,θr;θ?
d )

]
×
[
f
s
q′ (x,θr+hq′ ;θ

?
d )

f
s
q′ (x,θr;θ?

d )
− f

1−s
q′ (x,θr−hq′ ;θ

?
d )

f
1−s

q′ (x,θr;θ?
d )

]}
= ξ(sq, sq′ ,hq,hq′) + ξ(1− sq, 1− sq′ ,−hq,−hq′)
− ξ(sq, 1− sq′ ,hq,−hq′)− ξ(1− sq, sq′ ,−hq,hq′), (13)

in which we have defined

ξ(α, β,ha,hb)

, Ex,θr;θ?
d

{
fα(x,θr + ha;θ?d) fβ(x,θr + hb;θ

?
d)

fα+β(x,θr;θ?d)

}
. (14)

This block corresponds to the usual Weiss-Weinstein lower
bound for the estimation error associated with an estimator of
θr [13]. Note that µ(s,h) = ξ(s, 0,h,0). Thus, only the cal-
culation of ξ(α, β,ha,hb) is required for the determination
of the elements in this block.

iii) (block V12) for (p, q) ∈ J1 , P K × JP + 1 , RK and
θ ∈ Θ′

[V12]p,q = Ex,θr;θ?
d

{
∂ ln f(x,θr;θd)

∂θr,p

∣∣∣∣
θ?
d

×
[
fsq (x,θr + hq;θ

?
d)

fsq (x,θr;θ?d)
− f1−sq (x,θr − hq;θ?d)

f1−sq (x,θr;θ?d)

]}
.(15)

This block corresponds to the cross-terms between the
Cramér-Rao and the Weiss-Weinstein lower bounds.

Finally, for each value of H , [h1, . . . ,hQ] and
s , [s1, . . . , sQ]T, we obtain a lower bound W (H, s) ,
CV −1CT on the mean square error. The proposed bound,

that is the hybrid Cramér-Rao–Weiss-Weinstein bound (HCR-
WWB, from now on abbreviated as HB), is defined as the
tightest of these lower bounds;

HB = sup
H∈HQ

θr

s∈]0,1[Q

W (H, s), (16)

where the order relation underlying the supremum operation
is the Löwner ordering. Since the Löwner ordering is
only a partial ordering, the uniqueness of the supremum
is not guaranteed. Consequently, the maximization operation
required in (16) is not trivial and can be very time consuming.
For this reason, we describe in the next section a method to
make this computation feasible, leading to a suitable HB.

C. Practical computation of the bound

Without any further assumption, obtaining closed-form
expressions for W (H, s) in (16) and computing the supre-
mum are infeasible tasks, even for simple problems. In order
to overcome this issue, two solutions are commonly adopted:
(i) the set HQ

θr
is restricted to diagonal matrices H , i.e., the

components of hq are all zero, except its q-th element [13],
[16]; and (ii) it has been noticed after extensive numerical
experiments that the value sj = 0.5, for all j ∈ J1 , QK, leads
to the tightest WWB [13], [20, p. 41], [35], which reduces
the task dimensionality by a factor Q. We therefore suggest
to set this value for the HB as well. It is also worth noticing
that, in the change-point context, the set HQ

θr
is countable and

finite, since it is defined from the (discrete) set T ′ (Πr ≡T ′

for the change-point problem).
For some given value of s ∈ ]0 , 1[

Q (e.g., sq = 0.5, ∀q,
as suggested), the supremum operation is computed, w.r.t.
the Löwner partial ordering, over the set of matrices Ws ,{
W (H, s) ∈ SR+ ; H ∈ HQ

θr

}
, in which SR+ denotes the

set of nonnegative matrices with size R×R. Note that Ws
is a discrete and finite subset of SR+. As stated above, the
uniqueness of the supremum of Ws might not be guaranteed.
However, if a unique supremum exists, it may:
– either belong to Ws, in which case it is the greatest element;
– or not belong to Ws, in which case it is the least element
in the set of upper bounds to Ws.
Otherwise, a unique supremum does not exist, but the set
Ws may have several maximal elements (A is a maximal
element of Ws if there is no A′ ∈ Ws such that A′ � A).
In such a case, we have to find a minimal element in the
set of upper bounds of Ws. Formally, such a minimal upper
bound B verifies B < Ws (upper bound) and, if there
exists a smaller element B′ such that B < B′ < Ws, then
necessarily B′ = B (minimal). Here again, B may not be
unique without any additional constraint (if it is unique, then
it is the unique least upper bound of Ws, that is its unique
supremum).
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Despite the previous comments, following [16, Sect. III.D.],
one way of obtaining a suitable minimal upper bound of Ws,
defined in a unique manner, is explained hereafter. For each
matrix A ∈ SR+, one can associate a centered hyper-ellipsoid,
defined as the set E(A) ,

{
y ∈ RR

∣∣yTA−1y 6 1
}

.
Referring to [16, Lemma 3], one can show that, for any
positive definite matrices A and A′, we have the equivalence:
A 4 A′ iff E(A) ⊆ E(A′). Thus, given any finite family
of matrices {Ai}i∈I (with I some finite set), one can find
the minimum volume hyper-ellipsoid, denoted E(ALJ), that
covers the union of the hyper-ellipsoids E(Ai), associated
with matrices Ai. The minimum volume ellipsoid E(ALJ)
is called the Löwner-John ellipsoid for

⋃
i∈I E(Ai), and one

can show that the matrix ALJ is a minimal upper bound
of the set {Ai ; i ∈ I} (see [16, Theorem 4]). Finding
ALJ corresponds to a convex optimization problem [36,
p. 411] that can be solved efficiently using a semidefinite
programming procedure, such as those provided by the CVX
package [37].

Hence, to approach the HB defined in (16), we compute
a suitable minimal upper bound of Ws, namely the matrix
WLJ associated with the Löwner-John ellipsoid covering the
set
⋃
H∈HQ

θr

E(W (H, s)).
We have presented the general expression of the bound,

that is applicable to any hybrid estimation problem, and have
explained how this bound can be computed. We now give
its expression for the problem exposed in Section II.

IV. EXPRESSIONS OF THE HB FOR THE CHANGE-POINT
PROBLEM

A. General case

Let us derive the expression of the HB for signals modeled
by (1), i.e., signals which include a given number Q of
abrupt changes. We first do it in the general case, i.e., for
any distribution of the observations f(.;ηq) (assumed to
be known). We proceed in the following way: first, we
derive the block V11 as given by (12). Then, we compute the
block V12 in (13). Finally, we give the general expression
of ξ(α, β,ha,hb) from (14), which enables us to obtain the
expressions of blocks C22 and V22 according to equations
(9) and (13), respectively.

1) Block V11: In this section, we give the expression of
the elements of block V11 for signals which include abrupt
changes, i.e., those associated with model (1). Rewriting
equation (12) with notations from Section II, and setting
the index changes p = Lq + ` and p′ = Lq′ + `′, with
(q, q′) ∈ J0 , QK2 and (`, `′) ∈ J1 , LK2, we have [V11]p,p′ =

−Ex,t;η?

{
∂2 ln f(x,t;η)
∂ηq,`∂ηq′,`′

∣∣∣∣
η=η?

}
. In Appendix A, we show

that the matrix block V11 is block-diagonal, i.e., can be
written

V11 = diag

(
d+D

2
F (η?0), . . . ,

d+D

2
F (η?Q−1),

(
N − Q(d+D)

2

)
F (η?Q)

)
, (17)

in which F (ηq) is the (L × L) Fisher information matrix
for ηq ∈ RL, and for one observation in the q-th segment,
i.e., for q ∈ J0 , QK and (`, `′) ∈ J1 , LK2,[

F (ηq)
]
`,`′

= −Ex;ηq

{
∂2 ln f(x ;η)

∂ηq,`∂ηq,`′

}
= −

∫
Ω′

∂2 ln f(x ;ηq)

∂ηq,`∂ηq,`′
f(x ;ηq) dx. (18)

Invoking the block diagonal structure of the block matrix
V11 leads to a decoupling between parameter vectors ηq
associated with each segment.

2) Blocks V22 and C22: As mentioned earlier, this block
corresponds to the Weiss-Weinstein bound on the MSE of
the parameter vector t for given parameters η0, . . . ,ηQ. In
other words, we follow exactly the same methodology as
in [18]. The main result of that paper states that the block
V22 is tridiagonal, i.e., for any (q, q′) ∈ J1 , QK2 such that
|q − q′| > 1, we have

[V22]q,q′ = 0. (19)

The diagonal terms of V22 correspond to the numerator of
(26) in [18], i.e., are defined as

[V22]q,q = uD(∆, hq)

×
(
ρ|hq|
q (εhq

(2sq)) + ρ|hq|
q (εhq

(2sq − 1))
)

− 2uD(∆, 2hq) · ρ2|hq|
q (εhq (sq)), (20)

in which, i) for ∆ ∈ N, q ∈ J1 , QK and hq ∈ Z,

uD(∆, hq) ,


(∆− |hq|)2

∆2
if q < Q and |hq| < ∆

∆− |hQ|
∆

if q = Q and |hQ| < ∆

0 if |hq| > ∆,

(21)

ii) for q ∈ J1 , QK and s ∈ ]0 , 1[,

ρq(s) ,
∫

Ω′
fs(x ;η?q−1) f1−s(x ;η?q ) dx, (22)

and iii) for h ∈ Z and s ∈ ]0 , 1[,

εh(s) ,

{
s if h > 0
1− s if h < 0. (23)

From the terms in the block V22, we can compute the
block C22 since we have seen that µ(s,h) = ξ(s, 0,h,0). In
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addition, due to the structure chosen for vectors hq , namely
only its q-th component is nonzero, the block matrix C22

is diagonal. The resulting expression of µ(s,h) corresponds
to equation (15) in [18]. After plugging this expression into
(9), we obtain

[C22]q,q = hq uD(∆, hq) ρ
|hq|
q (εhq (sq)). (24)

Finally, the remaining nonzero terms in the block V22

are the superdiagonal ones (which equal, by symmetry, the
subdiagonal ones). Referring to [18, equations (31) and (32)],
the superdiagonal terms in the block V22 are given, for
q ∈ J1 , Q− 1K, by

[V22]q,q+1 = sign(hq hq+1)uS(∆, hq, hq+1)

× Υq(d, sq, sq+1, hq, hq+1) (25)

× ρ|hq|
q (εhq

(sq)) ρ
|hq+1|
q+1 (εhq+1

(sq+1)),

in which we have used the following definitions: i) d ,
[d,D]T, ii) for q ∈ J1 , Q− 1K and (hq, hq+1) ∈ Z2,

uS(∆, hq, hq+1) (26)

,



(∆− |hq|)(∆− |hq+1|)
∆3

if q < Q

and max(|hq|, |hq+1|) < ∆
∆− |hQ|

∆2
if q = Q and |hQ| < ∆

0 if max(|hq|, |hq+1|) > ∆,

iii) for q ∈ J1 , Q− 1K and (s, s′) ∈ ]0 , 1[
2,

rq(s, s
′) ,

∫
Ω′
fs(x ;η?q−1) fs

′
(x ;η?q ) f1−s−s′(x ;η?q+1) dx,

(27)
iv) for q ∈ J1 , Q− 1K and (s, s′) ∈ ]0 , 1[

2,

Rq(s, s
′) ,

ρq(s) ρq+1(s′)

rq(s, s′ − s)
, (28)

and v) for q ∈ J1 , Q−1K, (hq, hq+1) ∈ Z2 and (sq, sq+1) ∈
]0 , 1[

2, and defining (x)
+ , max(x, 0) x ∈ R,

Υq(d, sq, sq+1, hq, hq+1) , 2(∆− |hq| − |hq+1|)+

− (D − |hq| − |hq+1|+ 1)
+ − (∆−max(|hq|, |hq+1|))+

−
1−Rd−min(|hq|,|hq+1|)

q

(
εhq

(sq), εhq+1
(sq+1)

)
1−Rq

(
εhq (sq), εhq+1(sq+1)

) , (29)

if min(|hq|, |hq+1|) > d+ 1, or

Υq(d, sq, sq+1, hq, hq+1) , 2(∆− |hq| − |hq+1|)+

− 2(∆−max(|hq|, |hq+1|))+, (30)

if min(|hq|, |hq+1|) 6 d.

3) Block V12: In this section, we are interested in the
elements of the block V12. For p ∈ J1 , L(Q + 1)K and
q ∈ J1 , QK, and setting p = Lq̃ + ` with q̃ ∈ J0 , QK and
` ∈ J1 , LK, (15) can be rewritten as

[V12]p,q = Ex,t;η?

{
∂ ln f(x, t;η)

∂ηq̃,`

∣∣∣∣
η?

×
[
fsq (x, t+ hq ;η?)

fsq (x, t ;η?)
− f1−sq (x, t− hq ;η?)

f1−sq (x, t ;η?)

]}
.

(31)

As shown in Appendix B, the matrix block V12 has the
form

V12 =


v1 . . . 0

w1
. . .

...
...

. . . vQ
0 0 wQ

 , (32)

where, for q ∈ J1 , QK, the L × 1 vectors vq and wq have
components that can be written, for ` ∈ J1 , LK, on the one
hand, as (see (B.58))

vq,` = [V12]L(q−1)+`,q = −hq uD(∆, hq)

× ρ|hq|−1
q (εhq

(sq))ϕηq−1,`,q(εhq
(sq)),

(33)

and, on the other hand, (see (B.59))

wq,` = [V12]Lq+`,q = hq uD(∆, hq)

× ρ|hq|−1
q (εhq (sq))ϕηq,`,q(εhq (sq)),

(34)

where, for j ∈ J1 , QK, ̃ ∈ {j − 1, j}, k ∈ J1 , LK, and
s ∈ ]0 , 1[, ϕη̃,k,j(s) is defined by

ϕη̃,k,j(s) ,
∫

Ω′

∂ ln f(x ;η̃)

∂η̃,k

∣∣∣∣
η?

fs(x ;η?j−1) f1−s(x ;η?j ) dx.

(35)
To conclude, equations (17), (19), (20), (24), (25), (32),

(33) and (34) provide all the expressions necessary to
determine the elements of the matrix W (H, s) , CV −1CT

in (16). It is worth noticing that, due to the structure of the
matrices V11, V12 and V22, the inversion of V should not
be particularly difficult from a computational point of view.

In the next section, we give more explicit expressions of
these elements for widely encountered distributions in signal
processing applications, namely, Gaussian [1], [3], [38]–[40]
and Poisson [2], [41]–[43] distributions.

B. Gaussian and Poisson distributions

For each of these cases, we give closed-form expressions
for i) F (ηq), defined in (18) and which leads to (17); ii)
ρq(s), defined in (22), which directly leads to (20) and (24),
and partly to (25), (33) and (34); iii) Rq(s, s′), defined in (27),
which leads to (25); and finally for iv) ϕηq,`,q′(s), defined
in (35), which leads to (33) and (34).
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1) Gaussian case: The Gaussian distribution has perhaps
the widest range of applications (see for instance [1], [3],
[7], and references therein for an overview of the potential
applications). In such cases, the model (1) is relevant: we
can consider that the signal is piecewise Gaussian, i.i.d., that
is, for q ∈ J0 , QK and n ∈ Jtq + 1 , tq+1K (with t0 , 0 and
tQ+1 , N ), we have xn ∼ N (µq, σ

2
q ). In other words, both

mean and variance are likely to change from one segment to
another, which means that L = 2 and the parameter vector
ηq , [µq, σ

2
q ]T includes the mean µq and the variance σ2

q of
the signal on the (q + 1)-th segment (q ∈ J0 , QK).

Straightforward computations lead to the following explicit
expressions
• for F (ηq), q ∈ J0 , QK,

F (ηq) = diag

(
1

σ2
q

,
1

2(σ2
q )2

)
, (36)

• for ρq(s), q ∈ J1 , QK, s ∈ ]0 , 1[,

ρq(s) =

√ (
νvq−1,q

)s
s νvq−1,q+ 1− s

exp

{
−

s(1− s) νmq−1,q

2(s νvq−1,q+1−s)

}
,

(37)
in which we have defined the following two quantities, for
(q, q′) ∈ J0 , QK2:

νmq,q′ ,
(µq′ − µq)2

σ2
q

and νvq,q′ ,
σ2
q′

σ2
q

, (38)

which correspond to the squares of the so-called “amount
of change” (also sometimes referred to as “magnitude of
change” or “signal-to-noise ratio”) for the mean and variance,
respectively.
• for Rq(s, s′), q ∈ J1 , Q − 1K and (s, s′) ∈ ]0 , 1[

2, after
tedious computations

Rq(s, s
′) =

√
s νvq−1,q+1 + (s′ − s) νvq,q+1 + 1− s′

(s νvq−1,q + 1− s)(s′ νvq,q+1 + 1− s′)

× exp

{
− s(1− s′)

2(s νvq−1,q+1 + (s′ − s) νvq,q+1 + 1− s′)

×

(
s νvq−1,q+1 + 1− s
s νvq−1,q + 1− s

νmq−1,q

+
s′ νvq−1,q+1 + 1− s′

s′ νvq,q+1 + 1− s′
νmq,q+1 − νmq−1,q+1

)}
, (39)

• for ϕµq̃,q(s), q ∈ J0 , QK, ` ∈ J1 , LK, q̃ ∈ {q − 1, q},
s ∈ ]0 , 1[, we obtain:

ϕµq̃,q(s) =
ρq(s)

σ2
q̃

(
sµq−1 ν

v
q−1,q + (1− s)µq

s νvq−1,q + 1− s
− µq̃

)
, (40)

and

ϕσ2
q̃ ,q

(s) =
ρq(s)

2σ2
q̃

((
sµq−1 ν

v
q−1,q + (1− s)µq

)2
σ2
q̃ (s νvq−1,q + 1− s)2

+
σ2
q − 2µq̃(sµq−1 ν

v
q−1,q + (1− s)µq)

σ2
q̃ (s νvq−1,q + 1− s)

+
µ2
q̃

σ2
q̃

− 1

)
. (41)

Using these expressions and plugging them into the appro-
priate equations from Section IV-A lead to the HB for a
Gaussian signal submitted to Q abrupt changes.

2) Poisson case: The case of Poisson observations is also
of interest in a number of signal processing applications,
for instance for the segmentation of (possibly multivariate)
astronomical time series [2], [43].

Let us assume that the observations are modeled according
to (1), where the distribution on each segment is Poisson,
i.e., for q ∈ J0 , QK and n ∈ Jtq + 1 , tq+1K (with t0 , 0
and tQ+1 , N ), we have xn ∼ P(λq), or equivalently,
f(xn ;λq) = Pr(X = xn ;λq) = exp{−λq}λxn

q /xn!. In this
case, we have ηq , λq in the (q+ 1)-th segment, which is a
scalar parameter(L = 1). Similarly to the case of Gaussian
observations and after some computations, we obtain the
following explicit expressions:
• For F (λq), q ∈ J0 , QK, F (λq) = 1

λq
,

• for ρq(s), q ∈ J1 , QK, s ∈ ]0 , 1[,

ρq(s) = exp
{
−sλq−1 − (1− s)λq + λsq−1λ

1−s
q

}
, (42)

• for Rq(s, s′), q ∈ J1 , Q− 1K and (s, s′) ∈ ]0 , 1[
2, tedious

computations lead to

Rq(s, s
′) = exp

{
−λq

[
1−

(λq−1

λq

)s
−
(λq+1

λq

)1−s′

+
(λq−1

λq

)s(λq+1

λq

)1−s′
]}
,

(43)

• for ϕλq̃,q(s), q ∈ J0 , QK, ` ∈ J1 , LK, q̃ ∈ {q − 1, q},
s ∈ ]0 , 1[, tedious computations yield

ϕλq̃,q(s) = ρq(s)

(
λsq−1λ

1−s
q

λq̃
− 1

)
. (44)

We finally obtain the HB for a Poisson distributed
signal that includes Q change-points by plugging these last
expressions into the equations (17), (19), (20), (24), (25),
(32), (33) and (34) from Section IV-A, and by applying the
procedure described in Section III-C, which leads to the
tightest bound.

V. NUMERICAL RESULTS

This section presents some simulation results that enable us
to assess the tightness of the proposed bound. It is compared
in terms of global mean square error (GMSE) with the so-
called ML-MAP estimator, for the distributions discussed
in Section IV-B. All the cases discussed in this section
were simulated with N = 100 observations, Q = 2 or 3
changes, D = Dmax and d = 6 (except for Fig. 3), and the
GMSE of the ML-MAP estimator was obtained by computing
the empirical MSE through 1000 Monte-Carlo simulations.
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Figure 1. Empirical GMSEs and HBs for the mean estimates on each
segment, for Q = 3 changes in the mean of N = 100 Gaussian observations.

At each Monte-Carlo run, the Q = 2 or 3 changes were
generated according to the prior distribution (2). The figures
also display the “±2 standard deviations” error bars for the
estimated GMSE.

A. ML-MAP estimator

The ML-MAP estimator can be used when some elements
of the parameter vector are deterministic and the others are
random variables [20, p. 12], [21]. In our case, it is defined
as follows:

(η̂MLMAP, t̂MLMAP) , arg max
η,t

ln f(x, t ;η). (45)

Looking at (2), we can see that, as long as t belongs to its
support T ′, the expression of the prior function π(t) does not
explicitly depend on t. Consequently, the joint likelihood in
(45) can be replaced with the classical likelihood f(x | t ;η).
In addition, in the cases we study in the following sections
(i.e., Gaussian and Poisson distributions), the maximization
of the log likelihood w.r.t. η, for a given t, is not difficult
and results in classical expressions of the empirical mean
and/or variance for η̂(x ; t). Hence, it is possible to get rid
of the dependence on η in (45), so that we obtain t̂MLMAP

by using t̂MLMAP = arg maxt ln f(x | t ; η̂(x ; t))leading to
η̂MLMAP = η̂(x ; t̂MLMAP).

B. Changes in the mean of a Gaussian distribution

In this classical change-point estimation problem, the
parameter vector η contains the means µq, q = 0, . . . , Q
of each segment, and possibly the corresponding variances
σ2
q , q = 0, . . . , Q (even if they remain constant), depending

on whether they are assumed to be known or not. Extensive
simulations have shown that the bound obtained by setting
sq = 0.5, ∀q is tighter than with other values of sq. Such
simulations are not reported here due to the lack of space,
but are very similar to those presented in [18]. Figs. 1
and 2 display the GMSE and the associated HB for the
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Figure 2. Empirical GRMSEs and HBs for the change-point estimates, for
Q = 3 changes in the mean of N = 100 Gaussian observations.
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Figure 3. HBs for the change-point location estimates on each segment,
for Q = 2 changes in the mean of Gaussian observations (N = 100), as
a function of the prior average length of the segments Jtq−1 , tqK, q =
1, . . . , 3 (with the usual conventions t0 , 0 and t3 , N ).

means µ1, . . . , µ4 of each segment, and for the change-point
locations t1, t2, t3 as functions of the squared amount of
change ν, respectively. These quantities correspond to the
diagonal elements of the matrices in (4). Variations of the
variance estimates and their HBs are very similar to Fig. 1.
Due to the lack of space, such graphs are not reported here.
Note that the global root mean square error (GRMSE) of
the estimated change-point locations was plotted instead of
the GMSE, for a more relevant assessment of the gap with
the bound. The X-axis corresponds to νmq,q′ defined in (38),
quantifying the amount of change. More precisely, the Q
changes generated for this experiment have all an equal
amount of change, i.e., νm0,1 = νm1,2 = νm2,3 = νm for a given
νm such that µq = µq−1 + (−1)q−1νm for q = 1, . . . , Q,
according to (38).

Fig. 1 clearly shows a threshold effect for the ML-MAP
of the mean estimates, whose GMSEs move away from the
HB for ν < 15 dB. The threshold is lower regarding the last
segment mean, around 10 dB. The HB renders this behavior
very slightly, as can be seen from the tiny bulge in the
shape of the bound, for 0 dB 6 ν 6 5 dB. For ν > 15 dB,
the GMSEs and HBs become much closer one to the other.
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Figure 4. Empirical GMSEs and HBs for the variance estimates on each
segment, for Q = 3 changes in the variance of Gaussian observations
(N = 100).

The small gap remaining in between, at high amounts of
change, comes from the fact that the “CRB part” in the HB
actually corresponds, as already mentioned, to a so-called
modified CRB (MCRB), in the sense of [34]. Let us recall
that the MCRB cannot be expected to be as tight as the
classical CRB or the true Bayesian CRB, since the Fisher
information is averaged over all the possible values of the
nuisance parameter – in this case t.

Regarding the estimation performance of change-point
locations displayed in Fig. 2, both shapes of the GRMSEs
and HBs highlight the existence of a non-information zone
at low amounts of change, noticeable from the curve flatness.
In this area, the HB shows that the early changes are better
estimated than the later ones. This is an obvious effect of the
prior support, which is larger for the late changes. Outside
this non-information zone, the difference between GMSE
and HB decreases: it is of the order of 9 or 10 samples for
νm = 0 dB while it is lower than 2 samples for νm > 10 dB,
and lower than 0.1 samples for νm = 15 dB. Curves cannot be
shown for higher amounts of change because both empirical
GRMSE and HB tend drastically to zero, due to the discrete
nature of the change-point locations.

It is worth mentioning that the gap between the change-
point location estimates and the bound is due to the discrete
nature of these parameters. Indeed, discrete parameter es-
timation is not the most usual estimation framework, and
the classical convergence theorems (regarding the MLE for
instance) no longer apply (see [44] for general considerations
on discrete parameter estimation).

In Fig. 3, we consider the case of Q = 2 changes, set
D = Dmax and ∆ = 10, and d varies. The HBs for both
changes t1 and t2 are displayed as a function of Et{tq −
tq−1} = (d+D)/2, q = 1, . . . , Q (with the usual conventions
t0 , 0 and tQ+1 , N ), that is the prior average length of the
segments Jtq−1 , tqK. As Et{tq−tq−1} increases, the distance
between the two changes t1 and t2 increases on average,
according to the prior (2). We can see that the HBs w.r.t. both
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Figure 5. Empirical GRMSEs and HBs for the change-point location
estimates, for Q = 3 changes in the variance of Gaussian observations
(N = 100).

changes t1 and t2 are higher for small values of Et{tq−tq−1}.
This observation is consistent with the intuition that the
closer the consecutive changes (or equivalently the smaller
Et{tq − tq−1}), the more difficult the estimation. For high
values of Et{tq − tq−1}, the HB w.r.t. t1 decreases, since
the number of observations used to infer it (on the first and
the second segment) grows on average. The behavior differs
regarding the second change t2, whose HB increases again
for high values of Et{tq − tq−1} (say Et{tq − tq−1} > 25).
It is due to the fact that an increase in Et{t2 − t1} implies
a decrease in the length of the last segment Jt2 , NK, thus
fewer observations of the last segment are used to infer the
position of the last change, making the estimation harder.

C. Changes in the variance of a Gaussian distribution

This case is treated similarly as the previous one, with
the only difference that instead of changes in the mean, we
study changes in the variance of the observations. Here, the
parameter vector η includes at least the variances on each
segment σ2

q , q = 0, . . . , Q, and possibly the means µq, q =
0, . . . , Q if they are unknown. The proposed simulations
were obtained for unknown means, all equal to 1. Here,
the amount of change corresponds to νvq,q′ defined in (38):
it is the amount of change in terms of variance such that
σ2
q = νv × σ2

q−1, for q = 1, . . . , Q, and for a given νv.
The estimated MSEs and the corresponding bounds for the
variances and change locations are displayed in Figs. 4-5.
Note that results for the mean estimates are not shown here
but are very similar to those obtained for variance estimates
in Fig. 4. The same remarks as those made for mean changes
(see previous subsection) are valid in the present case, with
the following slight differences: the non-information zone,
regarding the variance estimates σ̂2

2

MLMAP
and σ̂2

3

MLMAP
,

ranges from 0 dB to 25 dB, while it ranges from 0 dB to 15 dB
regarding σ̂2

1

MLMAP
. For σ̂2

4

MLMAP
, one cannot distinguish

such non-information zone. With regard to the change-point
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Figure 6. Empirical GMSEs and HBs for the mean rate estimates on each
segment, for Q = 3 changes in the mean rate of Poisson observations
(N = 100).
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Figure 7. Empirical GRMSEs and HBs for the change-point locations
estimates, for Q = 3 changes in the mean rate of Poisson observations
(N = 100).

location estimates, the gap between the GRMSEs and the
HBs becomes lower than 0.1 samples for νv > 25 dB.

D. Changes in the mean rate of a Poisson distribution

In the case of changes in the mean rate of a Poisson
distribution, the parameter vector η includes the mean rates
on each segment λq, q = 0, . . . , Q. The results regarding
mean rate and change-point estimates are displayed in Figs. 6-
7. Note that the amount of change in these figures corresponds
to the following definition (also used in [15], [16], [19])
νPq,q′ , (λq′ − λq)2/λ2

q . Hence, for a given νP , we have set
λq = λq−1(1 +

√
νP), q = 1, . . . , Q. The non-information

zone for the mean rate estimates corresponds to amounts of
change lower than 5 dB (see Fig. 6). According to Fig. 7,
the non-information zone for the change location estimates
corresponds to amounts of change lower than -15 dB. Other
comments made in the Gaussian case are valid here.

VI. CONCLUSION

In this paper, we derived closed-form expressions of
lower bounds on the MSE for parameter estimates of
signals subjected to multiple change-points. The problem

is challenging in that the unknown parameter vector contains
both continuous and discrete parameters. The proposed
approach consists in deriving the HB, which corresponds
to the combination of the classical Cramér-Rao bound, for
the (continuous) noise distribution parameters, with the
Weiss-Weinstein bound, for the (discrete) change location
parameters. Numerical simulations allowed the tightness
of the bound to be assessed in two interesting scenarios:
1) mean value and variance changes for Gaussian random
variables, and 2) mean rate changes for Poisson random
variables. The proposed bound can be used as a reference to
compare the performance of various parameter estimators for
signals subjected to multiple change-points. More importantly,
even if the bound is not rigorously attained, it provides a
good approximation of the asymptotic mean square error
of the unknown model parameters, i.e., the distribution
parameters in each segment and the change-point locations.
The expressions of the proposed bounds showed that the
performance of parameter estimators in the presence of
change-points is mainly driven by the signal-to-noise ratio of
each change (corresponding to the amount of change between
the different segments) and by the length of these segments.
As a consequence, these bounds can be used to assess the
difficulty of some change-point estimation problem.

Some aspects that have not been considered in this paper
could be the subjects of future works, such as the influence
of the sampling period, an unknown number of changes Q,
or non i.i.d. observations.

APPENDIX A
DERIVATION OF THE MATRIX BLOCK V11

Since f(x, t ;η) = f(x | t ;η)π(t), we have

∂2 ln f(x, t ;η)

∂ηq,`∂ηq′,`′
=
∂2 ln f(x | t ;η)

∂ηq,`∂ηq′,`′
,

due to the independence between the assumed change-point
prior and η. From (3), the log-likelihood is deduced as
ln f(x | t ;η) =

∑Q
q=0

∑tq+1

n=tq+1 ln f(xn ;ηq), thus its first
derivative w.r.t. ηq,`, with (q, q′) ∈ J0 , QK2 and (`, `′) ∈
J1 , LK2, can be written as

∂ ln f(x | t ;η)

∂ηq,`
=

tq+1∑
n=tq+1

∂ ln f(xn ;ηq)

∂ηq,`
. (A.46)

Hence, it can directly be noticed that

∀q′ 6= q,
∂2 ln f(x | t ;η)

∂ηq,`∂ηq′,`′
= 0, (A.47)

which leads to the block-diagonal structure of V11. We now
assume that q′ = q. By differentiating (A.46) w.r.t. ηq`′ , and
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taking the expectation w.r.t. the joint likelihood between x
and t, we obtain, by setting p = Lq + ` and p′ = Lq + `′,

[V11]p,p′ = −
∑
t∈ZQ

π(t)

tq+1∑
n=tq+1

∫
Ω

[
Q∏
i=0
i 6=q

ti+1∏
m=ti+1

f(xm ;ηi)

]

×

[ tq+1∏
m=tq+1
m 6=n

f(xm ;ηq)

∂2 ln f(xn ;ηq)

∂ηq,`∂ηq,`′
f(xn ;ηq)

]
dx,

(A.48)

by splitting the double product. Since variables are separated,
we can switch product and integral signs, leading to

[V11]p,p′

= − 1

∆Q

tj−1+D∑
tj=tj−1+d
j∈J1,QK

tq+1∑
n=tq+1

∫
Ω′

∂2 ln f(x ;ηq)

∂ηq,`∂ηq,`′
f(x ;ηq) dx,

(A.49)

by removing the integrals that equal 1. Note that the last
integral actually neither depends on n, nor on t, and that it
corresponds to the (`, `′) element of the Fisher information
matrix for the parameter vector ηq, for one observation in
the q-th segment, as defined in (18). Hence, we obtain

[V11]p,p′ =


d+D

2

[
F (ηq)

]
`,`′

if q < Q,(
N − Q(d+D)

2

)[
F (ηQ)

]
`,`′

if q = Q.
(A.50)

APPENDIX B
DERIVATION OF THE MATRIX BLOCK V12

In this appendix, we derive the expression of the left-hand
side of (31). For this purpose, letting q̃ ∈ J0 , QK, ` ∈ J1 , LK
and q ∈ J1 , QK, we first derive the quantity

Ex,t;η
{
∂ ln f(x, t ;η)

∂ηq̃,`

fsq (x, t+ hq ;η)

fsq (x, t ;η)

}
=
∑
t∈ZQ

πsq (t+ hq)π
1−sq (t)

∫
Ω

tq̃+1∑
n=tq̃+1

∂ ln f(xn ;ηq̃)

∂ηq̃,`

× fsq (x | t+ hq ;η)f1−sq (x | t ;η) dx. (B.51)

On the one hand, from (3) and the form of hq , we can write
f(x | t+ hq ;η) =

∏Q
i=0

∏ti+1+δi,q−1hq

n=ti+δi,qhq+1 f(xn ;ηi), where
δi,q denotes the Krönecker delta (i.e., it equals 1 if i = q,
zero otherwise). Consequently, for any sign of hq ,

fsq (x | t+ hq ;η) f1−sq (x | t ;η)

=

(
Q∏
i=0

ti+1−δi,q−1(−hq)+∏
m=ti+δi,q(hq)++1

f(xm ;ηi)

)

×
tq+(hq)+∏
m=tq−(−hq)++1

fεhq (sq)(xm ;ηq−1) f1−εhq (sq)(xm ;ηq), (B.52)

where εhq
(sq) is defined in (23), and for x ∈ R, (x)

+ ,
max(x, 0).

On the other hand, from (2), we have

πsq (t+hq)π
1−sq (t) =

1

∆Q
1T′(t+hq) 1T′(t) =

1

∆Q
1S(t)

(B.53)
where S , (T ′−hq)∩T ′, with T ′ denoting the support of
the prior distribution π(t), and we use the abuse of notation
T ′−hq to refer to the translated set

{
t ∈ ZQ

∣∣ t+hq ∈T ′
}

.
From (B.52) and (B.53), we can continue the derivation

leading to (B.51), by considering the following three cases:
1) q̃ 6= q − 1 and q̃ 6= q, case referred to as “ULT” (for
“upper and lower triangles”);
2) q̃ = q − 1, case referred to as “D1” (for “1st diagonal”);
3) q̃ = q, case referred to as “D2” (for “2nd diagonal”).
These three cases are studied in the following sections.

A. Case ULT (q̃ 6= q − 1 and q̃ 6= q)
By plugging (B.52) and (B.53) into (B.51), and using the

same kind of manipulations as for (A.49), we obtain

Ex,t;η
{
∂ ln f(x, t ;η)

∂ηq̃,`

fsq (x, t+ hq ;η)

fsq (x, t ;η)

}
=

1

∆Q

∑
t∈ZQ

1S(t)

×
tq̃+1∑

n=tq̃+1


Q∏
i=0
i 6=q̃

ti+1−δi,q−1(−hq)+∏
m=ti+δi,q(hq)++1

∫
Ω′
f(xm ;ηi) dxm

×

(
tq̃+1∏

m=tq̃+1
m6=n

∫
Ω′
f(xm ;ηq̃) dxm

)∫
Ω′

∂ ln f(xn ;ηq̃)

∂ηq̃,`
f(xn ;ηq̃) dxn

×
tq+(hq)+∏
m=tq−(−hq)++1

∫
Ω′
fεhq (sq)(xm ;ηq−1) f1−εhq (sq)(xm ;ηq) dxm

.
(B.54)

Yet, as a consequence of (8) and the independence of the
observations, the integral

∫
Ω′

∂ ln f(xn;ηq̃)
∂ηq̃,`

f(xn ;ηq̃) dxn in
(B.54) is actually zero. Hence, for q̃ ∈ J0 , QK, ` ∈ J1 , LK,
p = Lq̃ + `, and q ∈ J1 , Q − 1K such that q̃ 6= q − 1 and
q̃ 6= q, we obtain [V12]p,q = 0.

B. Case D1 (q̃ = q − 1)
For this case, the derivation of (B.51) depends upon

whether hq > 0 or hq < 0.
• Let us first assume hq > 0. This case is treated exactly as
in Appendix B-A, i.e., one can rewrite (B.54) similarly just
by appropriately replacing q̃ with q − 1, and we also find

Ex,t;η?

{
∂ ln f(x, t ;η)

∂ηq−1,`

fsq (x, t+ hq ;η)

fsq (x, t ;η)

}
= 0. (B.55)
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• We now assume hq < 0 (for convenience, we replace
“hq” with “−|hq|”). In equation (B.54), we have to split the
discrete sum w.r.t. index n, so that rewriting (B.54) yields

Ex,t;η
{
∂ ln f(x, t ;η)

∂ηq−1,`

fsq (x, t+ hq ;η)

fsq (x, t ;η)

}

=
1

∆Q

∑
t∈ZQ

1S(t)

 tq−|hq|∑
n=tq−1+1


Q∏
i=0
i 6=q−1

ti+1∏
m=
ti+1

∫
Ω′
f(xm ;ηi) dxm

×

(
tq−|hq|∏

m=tq−1+1
m 6=n

∫
Ω′
f(xm ;ηq−1) dxm

)∫
Ω′

∂ ln f(xn ;ηq−1)

∂ηq−1,`

× f(xn ;ηq) dxn

×
tq∏

m=tq−|hq|+1

∫
Ω′
f1−sq (xm ;ηq−1) fsq (xm ;ηq) dxm


+

tq∑
n=tq−|hq|+1

 Q∏
i=0

ti+1−δi,q−1|hq|∏
m=ti+1

∫
Ω′
f(xm ;ηi) dxm

×
tq∏

m=tq−|hq|+1
m 6=n

∫
Ω′
f1−sq (xm ;ηq−1) fsq (xm ;ηq) dxm

×
∫

Ω′

∂ lnf(xn ;ηq−1)

∂ηq−1,`
f1−sq (xn ;ηq−1) fsq (xn ;ηq) dxn


.

(B.56)

Note that the sum indexed by n ∈ Jtq−1 + 1 , tq − |hq|K
in (B.56) is similar to (B.54) and consequently equals zero,
still because of the regularity condition (8). The second sum,
indexed by n ∈ Jtq − |hq|+ 1 , tqK, is nonzero and by using
the definitions (22) and (35), and evaluating (B.56) in η?,
we obtain

Ex,t;η?

{
∂ ln f(x, t ;η)

∂ηq−1,`

∣∣∣∣
η?

fsq (x, t+ hq ;η?)

fsq (x, t ;η?)

}
=
|hq|
∆Q

ρ|hq|−1
q (1− sq)ϕηq−1,`,q(1− sq)

∑
t∈ZQ

1S(t). (B.57)

We complete the calculation by noticing that
1

∆Q

∑
t∈ZQ 1S(t) = 1

∆Q

∑
. . .
∑
t∈S 1 = uD(∆, hq),

thus

Ex,t;η?

{
∂ ln f(x, t ;η)

∂ηq−1,`

∣∣∣∣
η?

fsq (x, t+ hq ;η?)

fsq (x, t ;η?)

}
= |hq|uD(∆, hq) ρ

|hq|−1
q (1− sq)ϕηq−1,`,q(1− sq). (B.58)

After plugging (B.55) and (B.58) into (31), we obtain (33).

C. Case D2 (q̃ = q)
The derivation of (B.51) also depends upon whether hq > 0

or hq < 0. Actually, those two cases are treated very similarly

as in the previous case D1, so that we finally obtain, as in
Appendix B-B,

Ex,t;η?

{
∂ ln f(x, t ;η)

∂ηq,`

∣∣∣∣
η?

fsq (x, t+ hq ;η?)

fsq (x, t ;η?)

}
=

{
|hq|uD(∆, hq) ρ

|hq|−1
q (sq)ϕηq,`,q(sq) if hq > 0,

0 if hq < 0.
(B.59)

After plugging (B.59) into (31), we obtain (34).
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