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A SWITCHED DYNAMIC MODEL FOR POINTING TASKS

WITH A COMPUTER MOUSE

STANISLAV ARANOVSKIY, ROSANE USHIROBIRA, DENIS EFIMOV, AND GÉRY
CASIEZ

Abstract. In this paper, we study one of the most fundamental tasks in
human-computer interaction, the pointing task. It can be described simply as

reaching a target with a cursor starting from an initial position (e.g. executing

a movement using a computer mouse to select an icon). In this paper, a
switched dynamic model is proposed to handle cursor movements in indirect

pointing tasks. The model contains a ballistic movement phase governed by a

nonlinear model in Lurie form and a corrective movement phase described by
a linear visual-feedback system. The stability of the model is first established

and the derived model is then validated with experimental data acquired in

a pointing task with a mouse. It is established that the measured data of
pointing movements of different types can be fitted within the proposed model.

Numerical comparison against pointing models available in the literature is also
provided.

1. INTRODUCTION

The domain of human-computer interaction (HCI) covers a great deal of different
tasks that can be performed by a user, the pointing task being one of the most
frequently executed. In a graphical interface of any interactive system, the task of
pointing for a user consists in displacing the pointer from a starting point to a final
point in order to select a target (e.g. for instance, to select another window). It can
be perceived and executed in different ways, depending on the used system, and the
interaction may be direct or indirect. In direct interactions, users interact with a
touch screen by moving hands and fingers, this input follows then different layers of
hardware and software processes to produce the final visual response on the same
screen. Indirect interactions deal with human inputs coming from an independent
device, such as a computer mouse or a touchpad, based on visual information on a
screen, that go through similar processes as in the direct interactions, ending with
a visual response on the same screen. In the case of direct interactions the pointer
is displayed on the same screen where the user interaction takes place while in the
case of indirect interactions, the user controls the pointer displayed on a screen by
the means of a different tool.

The pointing transfer function (PTF) corresponding to the pointing task is char-
acterized by the ratio of the amount of movement of an input device (e.g. a mouse)
and the controlled object (e.g. a cursor). In early graphical user interfaces, PTF
were typically chosen as a constant control-to-display (CD) gain, while modern

Key words and phrases. Pointing motion, modeling, human-computer interaction, switched

model, pointing transfer function.
This work was supported by ANR (TurboTouch, ANR-14- CE24-0009). Stanislav Aranovskiy

is supported by the Russian Science Foundation grant (project 17-79-20341).

1



2 STANISLAV ARANOVSKIY, ROSANE USHIROBIRA, DENIS EFIMOV, AND GÉRY CASIEZ

graphical user interfaces, such as Windows, OS X, and Xorg, track the input de-
vice velocity and dynamically adjust the CD gain over time [1]. The idea behind
such an adjustment is to provide small amplification for low input velocities to
improve pointing accuracy, and to provide high amplification for high input ve-
locities to reduce traveling time. Experimental studies [2] report that the choice
of a PTF affects human-computer interaction performance, and users get better
performance using switching PTF. However, despite all the research on evaluation
and reverse-engineering of the existing PTF, the problem of PTF design and opti-
mization continues to exist since there are no actual dynamical models for human
pointing.

Models of pointing dynamics would also be of interest for endpoint prediction
techniques [3], where the system attempts to predict the target cursor position
from the beginning of the pointing movement. Such a prediction is further used
to dynamically modify the visual interface (e.g. to reduce the distance to the
target or increase its width). Some techniques and methods can be found in [4],
and a toolbar with dynamically expanding icons represents an example of such
an approach [5]. Some other challenging applications where dynamic models of
(pointing) movements can be relevant include analyses of mouse movements for user
identification [6], in robotics for motion planning [7, 8] and for human movement
estimation [9], e.g. for manipulators teleoperation [10].

Models of pointing movements. Models used in the Human-Computer Inter-
action (HCI) community are mainly focused on static characteristics. They do not
describe how exactly a movement is performed or what is its velocity profile, but
rather describe static relationships between averaged values: average movement
time, target width and traveled distance. The most popular model is the Fitts’
law. It was presented in the ’50s by Fitts in his seminal paper [11] and claims the
following:

(1) MT = a+ b ID,

where MT represents the movement time, a and b are positive constants and ID
is the index of difficulty of the pointing task. Different formulations exist for the
ID but the most commonly used was defined by MacKenzie [12] as follows:

ID := log2

(
D

W
+ 1

)
,

where D is the distance from the starting point to the target center, and W is the
target width. In the next decades, it was found that the relation (1) holds in many
experimental studies [12]. One of the first attempts to explain the Fitt’s law is
the Impulse Variability model proposed by Schmidt et al. [13] that credits almost
entirely the motion to an initial muscle impulse.

On the other hand, the Iterative Corrections model proposed in [14] describes the
pointing motion as controlled only by a visual feedback. Nevertheless, it was shown
that neither of these models takes in consideration all different effects perceived in
experiments. The hybrid Optimized Initial Impulse model developed by Meyer
et al. [15] is now accepted by the HCI community as the most well-established
explanation for Fitts’ law [4]. According to Meyer’s model, pointing motion can be
separated into two distinguishable stages: a rapid and large movement to bring the
pointer close enough to the target without visual tracking (ballistic phase), and a
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slower corrective movement to reach the target under feedback control (corrective
phase). Moreover, it should be stressed the models in [13–15] do not use differential
equations to describe the motion, but mainly determine verbally possible pointing
scenarios.

In these days, Fitts’ law and the Optimized Initial Impulse model are still the
most broadly accepted models of pointing motions within a static point of view. In
recent years, most progress in pointing model design are concentrated in extending
these two models. For instance, the distribution of MT for computer mouse move-
ments is studied in [16], targeted-tracking tasks are considered in [17], and a model
for analyzing rapid point-and-click motions taking into consideration human effects
has been proposed recently in [18].

Concerning the ballistic phase, the authors in [19] have observed in experiments
that for pointing tasks with low difficulty (i.e. with relatively large values of W ),
the target may be selected during the ballistic phase only, and in such cases, the
dependence of the movement time MT on the target width W is weak, and MT
is mostly proportional to

√
D. This observation also explains why Fitts’ law (1)

matches poorly experimental data for low values of ID [20].
Many researchers tried to reconstruct the ballistic movement as a solution of an

optimal control problem. A well-known result is the minimum jerk model proposed
by Hogan in [21], which claims that the ballistic movement is performed in such
a way that the total jerk cost along the trajectory is minimized. As it was shown
in [22], the minimization of the jerk cost leads to more plausible results than the
use of acceleration or snap cost functions. The main drawback of the minimum jerk
model is the implied symmetry of the velocity profile that is not often observed in
experiments. To this end, a novel discontinuous absolute work cost function has
been recently proposed in [23–25] yielding asymmetrical velocity profile. However,
this model is applied only to describe vertical arm movements in gravitation field,
which is not the case for HCI pointing tasks.

The modeling of the ballistic movement as a sensorimotor feedback control for
motor coordination in stochastic environment is discussed in [26, 27]. As noted in
[27], the magnitude of motor noise is proportional to muscle activation, so minimum-
variance models adjust well with the minimum-jerk curves.

To model the tracking stage, the linear time-varying or -invariant models are
typically applied. The crossover model [28] is a classic model used in pilot behavior
studies and is given by the transfer function

(2) C(s) := Ke−sT0
T1s+ 1

(T2s+ 1) (T3s+ 1)
,

where K ≥ 0 and Ti ≥ 0, i = 0, . . . , 3 are model parameters.
Another second-order model resembling a spring-mass-damper system (second

order lag) was recently used in [29] to examine pointing dynamics in reciprocal
pointing with pointer acceleration.

The goal of the Vector Integration To Endpoint (VITE) model introduced in [30]
is to describe a motion controlled by an agonist-antagonist pair of muscles, e.g.
wrist rotation. Considering only one muscle, the VITE model is given by

Ṗ (t) = G(t)[V (t)]+,(3)

V̇ (t) = γ (−V (t) + T − P (t)) ,(4)
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where P (t) is the pointer position, V (t) is the pointer velocity, T is the target
(desired) position, γ > 0 is a constant, [·]+ denotes a positive projection:

[V ]+ =

{
V for V ≥ 0,

0 for V < 0,

and the GO signal G(t) launching the movement execution is a positive constant
or a step function.

Assuming that the considered two muscles are equivalent, the projection in (3)
can be relaxed, and the VITE model yields a second-order linear time-invariant
system, where the stable equilibrium point is P = T , V = 0. In [31], the authors
used a modified version of the VITE model substituting G(t) ≡ 1 to analyze the
sensorimotor integration in absence of a visual feedback. In robotics, the VITE
model can be applied to design human-like pointing movements [7].

The VITE model has been extended quite recently in [32] to study pointing
transfer functions. In this paper, the GO signal G(t) in (3) has been substituted
by a function of motion acceleration G(‖V ‖). In addition, with no feedback delay
and a non-decreasing G(‖V ‖) function, the closed-loop stability has been proven.

Since for linear systems the transient time is logarithmically related with the
traveled distance, then the asymptotic behavior of such models reproduces Fitts’
law (1). Nevertheless, these models are only able to describe the corrective phase
of the pointing movement, and they cannot model the ballistic part, where the
movement time is proportional to the square root of the traveled distance.

To the best of our knowledge, the first attempt to handle both ballistic and
tracking phases with a single model was taken almost fifty years ago in [33], and
the result is referred to as the Surge model. This model describes the ballistic
movement as a time-optimal bang-bang acceleration curve, and the tracking part is
governed by the crossover model (2). Switching between these two models occurs
when a linear combination of velocity and position error crosses a threshold. The
Surge model was applied for a target following task with abrupt jumps of the target,
where only qualitative comparison of the model’s prediction with the measured data
was given. It is also worth noting that the target following task considered in [33]
was not in the domain of HCI, thus no PTF was involved in the model design.

As discussed in [34], control theory is a powerful tool to empower the design
of computer systems. Particularly, in [35] an experimental comparison of some of
the models described above is presented, confirming that control theory offers a
promising complement to Fitts’ law based approaches in HCI.

Problem statement. In this paper, our objective is the dynamic model identifi-
cation of pointing motions based on an experimental data acquired with a computer
mouse from [1], within a control theory framework. Inspired by the Optimized Ini-
tial Impulse model [15] and the Surge model [33], the obtained model would have
hybrid or switching nature to represent both ballistic and visual tracking phases.
In addition, the model should consider the pointing transfer function (PTF) of the
operating system as in [32]. The resulting model can be used to design PTF that
may improve the user performance in pointing tasks.

It is worth noting that some types of human movements may be considered
as parts of unstable trajectories, e.g. throwing or hitting. However, for pointing
motions considered in this paper it is natural to expect a trajectory with smooth
velocity acceleration and deceleration at the start and the end of the movement,
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without abrupt changes. This natural considerations confirmed by experimental
observations motivate us to search for a stable dynamical model of the pointing
movement.

The abridged version of this paper appeared in [36]. The main added values of
this submission are: 1) Proposition 1 of this manuscript is stronger than the one
of [36]; 2) the proof of Proposition 3 is not given in [36]; 3) significantly extended
experimental and numerical results; 4) a comparison against pointing models avail-
able in the literature.

The outline of this work has the following structure. In Section 2, the experi-
mental data used in our studies is described. Then in Section 3, the proposed model
and an analysis of its properties are given. The results of the experimental valida-
tion are illustrated in Section 4. Finally, in the results of experimental validation,
conclusions and a discussion of future research directions are provided.

2. DESCRIPTION OF THE EXPERIMENTAL DATA

The model proposed in this paper is based on the experiment described in [1],
where the authors considered a one-dimensional pointing task and compared the
performance of pointing transfer functions used by default in modern operating
systems (OS X, Windows and Xorg). To provide a baseline for comparison, a
constant CD gain function was also considered by the authors. In this experiment,
a 400 counts-per-inch corded USB Logitech mouse was used by the participants to
select targets on a 23” display. The targets presented to the participants where
solid vertical bars of 4 possible widths: 1 pixel (0.26mm), 3 pixels (0.77 mm), 6
pixels (1.55 mm), and 9 pixels (2.32 mm) with the distance between the bars equal
to 1163 pixels (300 mm). More details about the hardware setup and experimental
procedure can be found in [1].

To eliminate all uncertainties related to dynamically adjusted PTFs and to fo-
cus on modeling human movements, only the static gain PTF is chosen for this
paper. Notice that such a static PTF is not used by default by modern operat-
ing systems [1], and it has less motion acceleration than a PTF with dynamically
adjusted gains. As a result, this choice of a PTF becomes important during the
ballistic phase since this phase is not visually tracked. To bring the cursor close to
the target position, some participants made a usual wrist-elbow gesture, but then
they did not find the cursor where expected due to the less than usually perceived
motion acceleration. Thus, they had to perform several ballistic motions before
the corrective phase began. As participants adapted their gestures to the constant
PTF, the number of repetitive ballistic motions reduced. An example of trajecto-
ries of non-trained, partially trained, and trained participants are given in Fig. 1,
where multiple ballistic phases are observed for non-trained and partially trained
participants. Further, only trained participants will be considered.

3. MODEL

3.1. Model overview. The proposed model structure is given in Fig. 2. The dy-
namics of the pointing device (here, a mouse) is described by the double integrator:

Ṗm(t) = Vm(t),

V̇m(t) = Am(t),
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Figure 1. Pointing trajectories for differently trained partici-
pants, a constant-gain PTF. Cursor position (pixels) versus time
(seconds).

where Am(t) is the mouse acceleration, Vm(t) is the mouse velocity and Pm(t) is the
mouse position. The PTF G(·) maps the measured mouse velocity (counts/second)
to the cursor velocity Vc(t) (pixels/second) as Vc = G(Vm).

The following assumption implies that the PTF G(·) belongs to a certain sector
[kg, ∞), where kg > 0.

Assumption 1. There exists kg > 0, such that for all σ 6= 0, G(0) = 0 and

(5) (G(σ)− kgσ)σ > 0.

Since kg can be chosen arbitrary small, Assumption 1 is not restrictive and is
reasonable for practical applications. One possible choice of G is a constant-gain
PTF given by

(6) G(Vm) := g0Vm,

where g0 > 0 is a constant representing both counts-to-pixels scaling and velocity
amplification. The differential equation satisfied by the cursor position Pc(t) is

Ṗc(t) = Vc(t). The cursor position is visually observed yielding the perceived cursor
velocity Vper(t) and the perceived cursor position Pper(t). The perception process
can be described by the stable LTI first-order filter

(7)
Vper(t) =

1

τper
(Pc(t)− Pper(t)) ,

Ṗper(t) = Vper(t),

which is equivalent to

Pper(t) =
1

τperp+ 1
Pc(t); Vper(t) =

p

τperp+ 1
Pc(t),
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Figure 2. The proposed model structure.

where p = d
dt and τper > 0 is the perception time.

The observed position Pper(t) is then used to determine a switching instance of
time for the mouse acceleration Am(t). In the beginning of the pointing motion,
the movement is in the ballistic phase, and the mouse acceleration Am(t) equals
to the accelerations provided by the ballistic dynamics, Abal(t). When the cursor
reaches some predefined position Psw and the participant visually marks it, the
motion switches to the corrective phase governed by the visual tracking. This
switch is not instantaneous, and there exists the commutation period δsw > 0
when zero acceleration is applied. Define tsw > 0 as the first instant of time when
Pper(t) = Psw. Then

Am(t) =


Abal(t) for t < tsw,

0 for tsw ≤ t ≤ tsw + δsw,

Atr(t) for tsw + δsw < t,

where Atr(t) is the acceleration provided by the tracking dynamics.
The desired cursor position is the input reference signal T (in pixels), where for

pointing tasks it is assumed that T is a step function or a constant. Based on
the given value of T , the desired mouse displacement (in mm) is estimated by the
participant, Tm = Tm(T ). This mapping is based on the user’s experience with the
used PTF and it can be approximated as a constant gain,

(8) Tm(T ) := gmT, with gm > 0.

When the value Tm is set, the ballistic movement is initiated to bring the mouse
cursor sufficiently close to the desired position T . If the mapping Tm(·) is poor, i.e.
if the participant does not have sufficient experience with the given PTF, then the
resulting ballistic movement may be inaccurate, see Fig. 1a.

Next we will provide accelerations models for the tracking phase Atr and the
ballistic phase Abal.

Remark 1. As it is described in Section 2, only trained participants are considered
in this study. It is worth to notice that for trained users each motion phase is
activated just once, thus, there is no stability issue related to switching for the
considered scenario.
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3.2. Tracking dynamics. The tracking dynamics of the proposed model can be
seen as an extension of the VITE model (3), (4) taking into account the visual
perception (7). Consider

(9) Atr(t) := γ (−kvVper(t) + T − Pper(t)) ,
with the model parameter kv > 0. Assume that the model is in the corrective stage,
that is t > tsw+δsw, and combine together the mouse dynamics, the perception, the
cursor dynamics, and the tracking law (9). Then the resulting closed-loop system
is given by

(10)

Ṗper(t) =
1

τper
(Pc(t)− Pper(t)) ,

Ṗc(t) = G(Vm(t)),

V̇m(t) = γ

(
− kv
τper

(Pc(t)− Pper(t)) + T − Pper(t)

)
.

Proposition 1. Consider the system (10) with γ > 0, kv > τper > 0, and G(·)
satisfying Assumption 1. Then the system is globally asymptotically stable with the
equilibrium point Pper = Pc = T and Vm = 0.

Proof. Define P̃per(t) := Pper(t) − T and P̃c(t) := Pc(t) − T . Then the tracking
error model is

(11)

˙̃Pc(t) = G(Vm(t)),

˙̃Pper(t) =
1

τper

(
P̃c(t)− P̃per(t)

)
,

V̇m(t) = −γ
(
α1P̃c(t) + α2P̃per(t)

)
,

where α1 := kv
τper

and α2 := 1− kv
τper

.

Define xtr(t) :=
[
Vm(t) −P̃per(t) −P̃c(t)

]>
and G†(σ) := G(σ) − kgσ, and

note that G† belongs to the [0, ∞) sector due to (5). The tracking error dynamics
(11) can be rewritten as

ẋtr,1(t) = γα2xtr,2(t) + γα1xtr,3(t),

ẋtr,2(t) = − 1

τper
xtr,2(t) +

1

τper
xtr,3(t),

ẋtr,3(t) = −G(xtr,1(t)) = −kgxtr,1(t)−G†(xtr,1(t)),

that is a nonlinear system in Lurie form,

(12)

ẋtr(t) = Assxtr(t) +Bssu(t),

y(t) = C>ssxtr(t),

u(t) = −G†(y(t)),

where

Ass :=

 0 γα2 γα1

0 − 1
τper

1
τper

−kg 0 0

 ,
Bss :=

0
0
1

 , Css :=

1
0
0

 .
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The transfer function of the linear part of the system (12) is

W (s) = C>ss(sI −Ass)−1Bss

=
γ (kvs+ 1)

τpers3 + s2 + kgγkvs+ kgγ
=:

BW (s)

AW (s)
,

and, applying the Routh-Hurwitz stability criterion, W (s) is Hurwitz for kv > τper.
Following the Popov criterion [37], the system (12) is absolutely stable for all G†

belonging to the [0, ∞) sector if there exists µ > 0, such that

• − 1
µ is not an eigenvalue of Ass;

• the transfer function (µs+ 1)W (s) is strictly positive real.

The latter condition is satisfied if for all ω ∈ R

(13) Re[W (iω)]− µωIm[W (iω)] > 0.

Since AW (s) is stable, it follows that |AW (iω)|2 > 0 for all ω, and inequality
(13) is replaced with

Re[BW (iω)AW (iω)]− µωIm[BW (iω)AW (iω)] > 0,

where (·) is the complex conjugate of (·). The inequality (13) is thus equivalent to
γ (µ (kv − τper)− kvτper)ω4 + γ

(
γkgk

2
v − 1

)
ω2 + γ2kg > 0. Since kv − τper > 0,

there exists

µ0 :=
1

kv − τper

(
kvτper +

(
γkgk

2
v − 1

)2
4γkg

)
,

such that the inequality (13) is satisfied for all µ > µ0. Therefore there exists
µ > µ0 satisfying the conditions of the Popov criterion, and the origin x = 0 of the
system (12) is globally asymptotically stable. �

Remark 2. It can be verified that if G(·) is chosen as (6), then the system (10) is
stable exponentially.

3.3. Ballistics. In contrast with the tracking phase, the ballistic movement is per-
formed without visual feedback, i.e. the cursor position is not observed by the user
in the ballistic phase. However, due to proprioception and sensorimotor integra-
tion, users sense the wrist displacement and velocity closing the sensorimotor loop,
see Fig. 2.

Study of the available experimental data (see Section 2) shows that a typical
ballistic movement of a trained participant can be approximated with the curve
given in Fig. 3, where both approximation and measured data are presented.

The acceleration profile of the approximating curve consists of two constant
values with a linear transient between them, see Fig. 3c. Note that this ballistic
movement is not finished, i.e. the participant’s wrist did not stop and the mouse
velocity did not reach zero. Indeed, as it is illustrated by Fig. 1a and Fig. 1c,
trained participants can notice the cursor (and switch to visual tracking) before
finishing the ballistic phase.

The ballistic movement model is proposed as:

(14)
˙̃Pm(t) = Vm(t),

V̇m(t) = Abal(t) = fbal(P̃m(t), Vm(t)),
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Figure 3. Approximation of the measured mouse trajectory for
an experienced participant.

where P̃m(t) := Pm(t)− Tm, and the function fbal(·, ·) is to be defined. The initial

conditions are P̃m(0) = −Tm and Vm(0) = 0.
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Define the acceleration profile, Fig. 3c, as

Abal(t) =


a1 for t < t1,

a1 + l(t− t1) for t1 ≤ t ≤ t2,
a2 for t > t2,

where a1, a2 and t2 > t1 > 0 are profile parameters, a1a2 < 0, and l := a2−a1
t2−t1 is

the slope of the linear part, a1l < 0. Define also

(15) η(t) := −P̃m(t)− kbalVm(t),

where the ballistic model parameter kbal > 0. It can be shown via some tiresome
but straightforward computations that

(16) kbal =
2a3

1 − 6a2
1lt1 + 3a1l

2t21 − 6l2Tm
3a1l(a1 − 2lt1)

ensures that for t ∈ [t1, t2] the following holds:

(17) η(t) = Abal(t)
(
p2A

2
bal(t) + p1Abal(t) + p0

)
,

where

(18) p0 :=
a1(a1 − 2lt1)

2l2
, p1 := −kbal

2l
, p2 := − 1

6l2
,

and p0 > 0, p2 < 0. Note that there always exists a value gm, see (8), such that
kbal computed as (16) is positive.

To construct the function fbal(P̃m, Vm) we want to inverse (17) on the interval
[al, ar], where al := min(a1, a2) < 0 and ar := max(a1, a2) > 0. Equality (17)
defines the implicit function

h(Abal, η) = Abal(p2A
2
bal + p1Abal + p0)− η = 0.

Applying the Implicit Function theorem, the desired inversion exists if the partial
derivative

(19)
∂h(Abal, η)

∂Abal
= 3p2A

2
bal + 2p1Abal + p0

has no root in the interval [al, ar]. The right-hand side of (19) is a quadratic
polynomial with a negative leading coefficient. Its roots are

sl,r := −kball ±
√
a2

1 + k2
ball

2 − 2t1a1l.

Recalling a1l < 0, it follows that for any value kbal the roots are real and differ-
ent; without loss of generality we assume sl < sr. The following assumption is
instrumental to proceed.

Assumption 2. The parameters t1, a1, a2 and l are such that the inequality t1 >
a21−a

2
2

2a1l
holds.

Define

(20) k̄ :=
a2

1 − a2
2 − 2t1a1l

2a2l
,

where k̄ > 0 due to Assumption 2. It can be verified that any choice of 0 < kbal < k̄

yields sl < al < 0 < ar < sr, i.e. on the interval [al, ar] ⊂ [sl, sr],
∂h(Abal,η)
∂Abal

> 0

and (17) is invertible.
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Figure 4. The reconstructed fbal(η) function.

Define the inversion of (17) on the interval [al, ar] as Abal = φ(η), and denote
by ηl and ηr the solutions of equations h(al, ηl) = 0 and h(ar, ηr) = 0, respectively.
Now we can formulate the following proposition, whose proof follows from the
derivations above.

Proposition 2. Let Assumption 2 be satisfied and choose 0 < kbal < k̄, with k̄
as in (20). Then φ(η) for η ∈ [ηl, ηr] is a uniquely defined real-valued monotonic
function with φ(ηl) = al, φ(0) = 0 and φ(ηr) = ar.

Remark 3. From a practical point of view, both Assumption 2 and the inequality
kbal < k̄ are not restrictive. The Assumption 2 implies that the mouse velocity
does not return to zero before t2. As it is illustrated in Fig. 3, this assumption is
reasonable for practical ballistic movements and it was satisfied for all the studied
experimental trajectories.

The inequality kbal < k̄ limits how large the ballistic movement can be made
restricting the value of Tm, see (16). The practical meaning of this inequality is
that given the values of a1, t1, and l, the ballistic phase cannot achieve an arbitrary
far point.

Now the desired function fbal(P̃m, Vm) can be constructed. Choosing kbal, ηl, ηr
and φ(η) as suggested by Proposition 2 and recalling the definition (15), define

(21) fbal(η) :=


a2 for η < ηl,

φ(η) for ηl ≤ η ≤ ηr,
a1 for η > ηr.

Note that the function fbal(η) has the following properties: i) it is a continuous non-
decreasing function, ii) it is strictly monotonic on [ηl, ηr], and iii) fbal(0) = 0. The
function fbal(η) can be reconstructed based on an experimental trajectory data,
and an example of such a function is given in Fig. 4.

To summarize, the model of the ballistic phase is given by (14), (15) and (21).
Stability of this model is established by the following proposition.
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Proposition 3. Let Assumption 2 be satisfied and consider the system (14), (15)
and (21) with 0 < kbal < k̄. All the trajectories of the system are bounded, and the

equilibrium point P̃m = Vm = 0 is globally asymptotically stable.

Proof. Define x(t) := [P̃m(t), V (t)]>. The system (14), (15), (21) can be rewritten
as

ẋ1(t) = x2(t),

ẋ2(t) = fbal(η(t)),

η(t) = −x1(t)− kbalx2(t),

which is a Lurie system. Note that due to the properties of fbal(η) the following
holds

ηfbal(η) > 0 for η 6= 0.

Define a positive definite Lyapunov function

W (x) :=
1

2
x2

2 +

∫ η(x)

0

fbal(s)ds.

Its time derivative is (the argument of time is omitted)

dW (x)

dt
= x2ẋ2 + η̇fbal(η)

= x2fbal(η) + (−x2 − kbalfbal(η)) fbal(η)

= −kbalf2
bal(η) ≤ 0.

Using standard Lyapunov arguments we conclude that η(t), x2(t), and so x1(t), are
bounded, and η(t)→ 0 as t→∞. Note that the origin x = 0 is the only invariant
solution in the set {x | η(x) = 0}. Applying LaSalle’s Invariance Principle, the
global asymptotic stability of the equilibrium point x = 0 follows. �

Propositions 1 and 3 ensure that as long as the model parameters are chosen to
satisfy the assumptions, all trajectories generated by the proposed switched model
will remain bounded and will converge to the target. From this point of view, these
propositions may be considered as defining the set of feasible parameters.

4. EXPERIMENTAL VALIDATION

In this section, we present the experimental verification of the proposed switched
model. From the considered dataset (see Section 2) we have chosen 7 trained par-
ticipants and 3 trajectories for each of them, that is 21 trajectories in total. All the
trajectories correspond to the constant-gain PTF (6) having 1.5 times velocity am-
plification. The mouse has 400 counts per inch, and the display admits resolution
98.5 pixels per inch. Therefore, the gain of the used PTF equals g0 = 1.5 98.5

400 , pro-
viding both counts-to-pixels scaling and velocity amplification. The measurements
are performed with the sampling frequency 125Hz.

For each of the chosen trajectories we have identified parameters of the proposed
model; see Table 1 for a list of the parameters. The identification was performed as
follows. First, we separate the full movement into ballistic, switching and tracking
phases, where the switching phase is defined as an interval with zero acceleration.
Second, for the ballistic part we tune the parameters listed in the first row of
Table 1 with a nonlinear optimization routine in order to minimize a quadratic
approximation error cost function. Next, for the tracking part we use classic linear
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Table 1. Model parameters.

Ballistics a1, a2, t1, t2, gm, kbal
Switching Psw, δsw
Tracking τper, kv, γ
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Figure 5. Comparison of the proposed model output with the
measured data, trajectory #1.

system identification tools to tune the parameters listed in the last row of Table
1. Finally, we slightly adjust the switching time instance to match the velocity
measured during the switching interval.

Figures 5, 6, and 7 present a comparison of the proposed model outputs with
the measured data. Three types of trajectories are considered, where the first
one corresponds to a typical pointing movement, the second trajectory type is a
movement with an overshoot due to a long ballistic phase, and the third trajectory
presents a relatively short ballistic movement. As it can be seen from the figures,
all these different types of pointing motions are handled by the proposed model
fitting well the measurements.

The same 21 trajectories are also used to identify and evaluate two alternative
models: the ballistic model given by the minimum jerk principle [21], and a linear
tracking model.

The minimum jerk principle claims that the ballistic cursor movement can be
described with the curve Pc(t) minimizing the total jerk cost functional

(22) J [Pc] :=

∫ tf

0

(
P (3)
c (t)

)2

dt,

where tf is the time instance when the movement stops. The Euler-Lagrange

equation for (22) yields d6

dt6Pc(t) ≡ 0 and given the boundary conditions Pc(0) =

P
(1)
c (0) = P

(2)
c (0) = 0 the desired curve is Pc(t) = c5t

5 + c4t
4 + c3t

3. The constants

c3, c4 and c5 can be computed given the boundary conditions P
(1)
c (tf ) = P

(2)
c (tf ) =

0 and Pc(tf ) = T , where the values tf and T are specific for the exact trajectory.
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Figure 6. Comparison of the proposed model output with the
measured data, trajectory #2.
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Figure 7. Comparison of the proposed model output with the
measured data, trajectory #3 [36].

Straightforward computations yield

(23) Pc(t) = T

(
6

(
t

tf

)5

− 15

(
t

tf

)4

+ 10

(
t

tf

)3
)
.

Fig. 8 presents comparison of the measured data with the ballistic model outputs
for a typical pointing movement. One can see that the curve predicted with the
minimum jerk ballistic model has significant deviations from the measured one, and
this model cannot reconstruct the measured velocity profile.

As a linear tracking model we use the 3rd order transfer function from the input
T to the output Pc

(24) Wtrc(s) :=
a3s+ a0

s3 + a2s2 + a1s+ a0
,
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Figure 8. Comparison of the ballistic model (23) output with the
measured data, trajectory #1.
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Figure 9. Comparison of the linear tracking model (24) output
with the measured data, trajectory #1.

where the coefficients a0, a1 and a2 are such that the transfer function is stable, and
a3 ≥ 0. These coefficients are tuned with standard linear system identification tools.
It is worth noting that the general structure (24) can incorporate the tracking model
(10), the crossover model [28], the VITE model [30] and the VITE-like model [32]
with a constant-gain PTF. Fig. 9 presents comparison of the measured data with
the linear tracking model outputs for a typical pointing movement. The curve
predicted with the linear model has smaller deviations from the measurements
than the ballistic model (23). However, as expected, the switching velocity profile
cannot be reconstructed with the model (24).

For quantitative evaluation of the models we use the following metrics:

• Mean Absolute Error (MAE) is computed as

MAE :=
1

N
‖Pc,meas − Pc,pred‖1,
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Table 2. Models performance comparision.

MAE
min. max. avg.

Ballistic model 46.9 242.9 109.1
Linear model 3.4 27.1 9.3
Switched model 1.1 6.1 3.0

ME
min. max. avg.

Ballistic model 119.8 621.7 280.0
Linear model 9.0 74.4 26.7
Switched model 4.3 26.5 11.1

NRMSE
min. max. avg.

Ballistic model 0.142 0.737 0.334
Linear model 0.010 0.083 0.029
Switched model 0.004 0.022 0.010

where N the number of measurements, Pc,meas the measured cursor posi-
tion, and Pc,pred the cursor position predicted with a model under evalua-
tion;
• Maximum Error (ME) is computed as

ME := max |Pc,meas − Pc,pred|;
• Normalized Root Mean Square Error (NRMSE) is computed as

NRMSE :=
‖Pc,meas − Pc,pred‖2

‖Pc,meas −mean{Pc,meas}‖2
.

This value varies from zero to infinity, where zero means perfect fit, and if
NRMSE equals to 1, then Pc,pred matches Pc,meas no better than a straight
line.

These metrics are computed for each of the chosen 21 trajectories, the minimum,
maximum and average values among these trajectories are given in Table 2 for
the ballistic model (23), linear tracking model (24), and for the proposed switched
model given in Fig. 2. The histograms of the MAE, ME and NRMSE metrics
are shown in Figs. 10–12. The results illustrate that the proposed switched model
significantly outperforms ballistic and linear ones.

5. CONCLUSIONS

In this work, the problem of modeling a pointing task with a computer mouse
was studied. Based on the Optimized Initial Impulse model [15] and on the Surge
model [33], the pointing movement was separated into three distinct steps: a bal-
listic phase, followed by a commutation phase with no acceleration, finished with a
tracking phase. The obtained model is then a switching system. In the first stage,
there is no visual guidance to the user, only a sensorimotor feedback is available,
and a nonlinear system of Lurie form is used to model this part. The commutation
phase happening when the approach of the final cursor position is perceived by the
user, it triggers the switching to the tracking phase. In this last phase, thanks to the
visual perception of the cursor position by the user, an extended VITE model [30]
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Figure 10. Histogram of the MAE metric.
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Figure 11. Histogram of the ME metric.

is used to model the tracking dynamics (a linear filter is applied to model the visual
perception). We have shown that both ballistic and tracking dynamics are globally
asymptotically stable under some established mild conditions. In this note, only
trained users were considered, so each phase was activated only once, therefore the
problem of instability caused by commutation was not analyzed here.

A series of experiments were performed to validate the model showing that it
fits well different types of pointing movements and outperforms pure ballistic and
tracking models.
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Figure 12. Histogram of the NRMSE metric.

This first dynamical model for pointing tasks presented in our work, opens nat-
urally new research directions. In the paper, the experimental validation has been
performed for static-gain PTFs only. More realistic PTFs depending both on cursor
velocity and position are an expected extension of our work. In addition, another
extension would include the analysis of non-adapted users behavior that will natu-
rally demand an extended stability analysis in the presence of switching. Moreover,
the effect of delays on the closed-loop stability and the pointing task performance
itself should be analyzed.

Another interesting research direction is to consider the proposed model from
the biomechanical prospective and compare it with the dynamic models for wrist
motions [38, 39] to see possible connections, e.g. velocity and acceleration limita-
tions.

Finally, an automatic tuning of the interface to match the user type should
be studied in order to identify users in terms of their experience by applying the
proposed model. Further works may also be directed towards the proposition of a
somehow optimal PTF design given a user model, and the extension of the approach
to other pointing devices.
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CS 47061 Avenue de la Boulaie, 35576 Cesson-Sévigné, France, and with Department of
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