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Abstract—One of the fundamental challenges to realize massive
multiple-input multiple-output communications is the accurate
acquisition of channel state information for a plurality of users
at the base station. This is usually accomplished in the UpLink
direction profiting from the Time Division Duplexing mode. In
practical base station transceivers, there exist inevitably non-
linear hardware components, like signal amplifiers and various
analog filters, which complicates the calibration task. To deal
with this challenge, we design a deep neural network for channel
calibration between the uplink and downlink directions. During
the initial training phase, the deep neural network is trained
from both uplink and downlink channel measurements. We
then leverage the trained deep neural network with the instan-
taneously estimated uplink channel to calibrate the downlink
one, which is not observable during the uplink transmission
phase. Our numerical results confirm the merits of the proposed
approach, and show that it can achieve performance comparable
to conventional approaches, like the Agros method and methods
based on least squares, that however assume linear hardware
behavior models. More importantly, considering generic nonlin-
ear relationships between the uplink and downlink channels, it
is demonstrated that our deep neural network approach exhibits
robust performance, even when the number of training sequences
is limited.

Index Terms—Channel calibration, deep learning, massive
MIMO, multilayer neural networks, nonlinear hardware model.

I. INTRODUCTION

Massive Multiple-input Multiple-Output (MIMO) is already
considered as a core physical layer component for fifth Gener-
ation (5G), and beyond, broadband wireless networks [1]–[3].
It refers to the deployment of very large number of antenna
elements at the Base Station (BS), which are intended to
simultaneously serve multiple User Equipments (UEs). As it
has been shown, massive MIMO can drastically improve the
spectral efficiency of cellular networks [3], [4]. To achieve
its theoretical gains, this technology necessitates accurate
knowledge of the channels between the BS and each user,
in order for the former to realize optimum DownLink (DL)
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precoding. Leveraging the Time Division Duplexing (TDD)
mode [2], this knowledge can be efficiently acquired from
the UpLink (UL) direction via orthogonal training signals
simultaneously sent from the UEs to BS. The UL channels
are first estimated, and then exploiting channel reciprocity [5],
they are mapped to DL channels.

In practice, however, although in TDD mode the UL and DL
wireless propagation channels are physically reciprocal [6], the
analog front-end circuitry for transmission and reception at
the BS and users are not in general [7]–[9]. This complicates
the application of the massive MIMO paradigm, rendering
the effective baseband-to-baseband UL and DL channels non-
reciprocal. To rely on the channel reciprocity assumption,
and consequently, utilize the UL Channel State Information
(CSI) estimation to compute the DL precoding vectors, the
non-reciprocal transceiver responses need to be appropriately
calibrated [10]–[15]. This process is often termed as channel
calibration, and usually includes two procedural steps: i)
estimation of the calibration coefficients between the UL and
DL channels; and ii) calibration compensation by applying
those coefficients to the UL channel estimates in order to
obtain the estimation of the DL channels.

Channel calibration of TDD MIMO channels with small
numbers of antennas has been a matter of study in recent
years. Depending on the system setup and requirements, the
approach adopted can take many forms. For example, [7]
proposed a methodology based on bidirectional measurements
between the two ends of a MIMO link to estimate suitable
reciprocity calibration coefficients. This calibration approach
falls into the class of Over-The-Air (OTA) calibration schemes,
where users are involved in the calibration process. Recently,
the authors in [16] working on the massive MIMO Argos
prototype performed OTA calibration with the help of a
reference antenna. The Argos calibration approach, however,
is sensitive to the location of the reference antenna, and as a
consequence, it is not suitable for distributed massive MIMO
scenarios. As an improved method, [17] proposed a novel
family of calibration schemes based on antenna grouping,
which can greatly speed up the calibration process with respect
to the classical approaches. In addition, some experimental
data about the calibration coefficients were recently reported
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Figure 1. The considered model for bidirectional links (DL and UL direc-
tions) between a M -antenna base station and single-antenna user equipment.

in [17], [18], giving an insight on how the impairments evolve
in the time and frequency domains as well as with temperature.
In the latter two papers, the hardware characteristics behind
those coefficients were also discussed.

Deep learning methods have demonstrated significant im-
provements in various application fields in the last years.
These methods are capable of outperforming human-level
object detection in some tasks [19], and achieve state-of-the-
art results in machine translation [20] and speech processing
[21]. Additionally, deep learning combined with reinforcement
learning techniques was able to beat human champions in
challenging games, such as the Go [22]. Very recently, deep
learning methods have been also proposed for communication
systems. For instance, various channel decoders using deep
learning techniques were proposed in [23], [24]. In [25], it was
proposed to learn a channel auto-encoder via deep learning
tools. However, the use of deep learning methods for channel
calibration in MIMO systems has not been investigated, yet.

In this paper, we propose a deep learning framework for
calibration between UL and DL channels in massive MIMO
systems. The proposed framework is rather general, targeting
at training a Deep Neural Network (DNN) to learn the,
possibly nonlinear, relationship between UL and DL channels.
To this end, our designed DNN can be applied to generic TDD
and Frequency Division Duplexing (FDD) massive MIMO
systems with nonlinear hardware transceivers. During the
training phase, the DNN is trained from both UL and DL
training measurements. Then, the trained network is used to
carry out the calibration task for yet unobserved channels.
Compared with existing methods [16], [17] that are limited
to linear UL/DL relationships, it is shown via simulations that
our DNN design approaches the Cramér-Rao Bound (CRB).
Moreover our DNN approach exhibits robust performance,
even when the number of training sequences is limited.

II. SYSTEM MODEL

In this section, we introduce our considered generic massive
MIMO system model together with the special case of linear
channel model for TDD operation.

A. Generic System Model

In practical communication systems, the UL and DL
baseband-to-baseband channels between any pair of nodes are
usually nonlinear, due to the front-end hardware at Transmitter
(TX) and RX. For example, nonlinear solid-state devices,
like signal power and low noise amplifiers, are modeled as

memoryless devices whose nonlinearity appears when the
instantaneous input signal power fluctuates and approaches
the saturation level of the device [26]. Other nonlinear devices,
such as fiber optics, are usually modeled as nonlinear functions
with memory, and their nonlinear effects originate from the
physical limitations of the communication channel [27].

Let us consider the bidirectional link depicted in Fig. 1 be-
tween an M -antenna BS and a single-antenna User Equipment
(UE). The upper part of the figure showcases the DL commu-
nication from BS to UE, whereas the lower part illustrates the
UL communication from UE to BS. The M ×M complex-
valued matrices TDL and RUL represent the responses of
the BS Radio Frequency (RF) front-ends of the transmit
and receive modes, respectively. The diagonal elements in
these matrices represent the linear effects attributable to the
impairments in the TX and RX parts of the RF front-ends,
respectively, whereas their off-diagonal elements correspond
to RF crosstalk and possible antenna mutual coupling. The
complex scalars tDL and rUL represent the responses of the UE
RF front-end of the transmit and receive modes, respectively.
Notations cDL ∈ C1×M and cUL ∈ CM×1 denote the OTA
wireless propagation channels in the DL and UL directions, re-
spectively. Without loss of generality, in this paper, we assume
frequency flat channels, as typically occuring in narrowband
communications or in a single subcarrier of a multi-carrier
system. We have used hDL ∈ C1×M and hUL ∈ CM×1 to
indicate the DL and UL propagation channels, respectively, in
digital baseband. Finally, wUL ∈ CM×1 denotes the Additive
White Gaussian Noise (AWGN) vector at BS, while the
complex scalar wDL is the AWGN at the UE side.

Suppose that N single UEs simultaneously transmit or-
thogonal pilot symbols in the UL to the M -antenna BS.
By collecting all pilot symbols in the vector xUL ,
[x

(1)
UL x

(2)
UL · · · x

(N)
UL ]T , where x(n)UL denotes the pilot symbol of

the n-th UE with n = 1, 2, . . . , N , the M -element complex-
valued received signal at the BS antenna elements can be
expressed in the general case as

yUL = f(HUL,xUL) +wUL, (1)

where HUL , [h
(1)
UL h

(2)
UL · · · h

(N)
UL ] ∈ CM×N (column con-

catenation) with h
(n)
UL , [h

(1,n)
UL h

(2,n)
UL · · · h(M,n)

UL ]T ∈ CM×1

being the channel between BS and the n-th UE. Also, f(·)
denotes a general nonlinear function of HUL and xUL.

When DL channel estimation is the objective, the BS
sequentially transmits the orthogonal pilot symbols vector
xDL , [x

(1)
DL x

(2)
DL · · · x

(M)
DL ]T to each of the N single-antenna

UEs, with x(m)
DL representing the pilot symbol transmitted from

the m-th BS antenna. In this case, the N -element complex-
valued vector including the received signals at all UE is given
by the general expression

yDL = g(HDL,xDL) +wDL, (2)

where g(·) is a general nonlinear function of the DL baseband-
to-baseband channel HDL , [h

(1)
DL; h

(2)
DL; · · · ;h

(N)
DL ] ∈

CN×M (row concatenation) and xDL, and wDL ,



[w
(1)
DL w

(2)
DL · · · w

(N)
DL ] ∈ CN×1 represents the vector with the

AWGN values at all N UEs.

B. Special Case: The Linear TDD Communication

State-of-the-art channel calibration methods [7], [16]–[18]
assume a linear relationship between the transmitted and
received signals. Then, recalling our frequency flat channel
model assumption, the received signals at the BS in the UL
direction and at all UEs in the DL direction can be respectively
expressed using (1) and (2) as

yUL = HULxUL +wUL, (3)
yDL = HDLxDL +wDL. (4)

By further assuming that our massive MIMO system operates
in TDD mode, channel reciprocity holds for every link be-
tween BS and the n-th UE, i.e., c(n)UL = (c

(n)
DL)

T . In this case,
the baseband DL and UL channels for every latter n-th link
are respectively given according to Fig. 1 as

h
(n)
DL = r

(n)
DLc

(n)
DLT

(n)
DL, (5)

h
(n)
UL = R

(n)
UL(c

(n)
DL)

T t
(n)
UL , (6)

and hence, they can be easily related as follows:

h
(n)
DL = r

(n)
DLc

(n)
DLT

(n)
DL,

= r
(n)
DL((R

(n)
UL)

−1h
(n)
UL(t

(n)
UL)

−1)TT
(n)
DL,

= r
(n)
DL(t

(n)
UL)

−1︸ ︷︷ ︸
,a(n)

(h
(n)
UL)

T (R
(n)
UL)

−TT
(n)
DL︸ ︷︷ ︸

,B(n)

,

= a(n)(h
(n)
UL)

TB(n). (7)

The OTA channel reciprocity calibration for the case of
massive MIMO TDD systems has the following two phases.
In the first phase, the calibration process is performed which
includes the estimations of the complex-valued scalar a(n) and
B(n) ∈ CM×M appearing in (7) ∀n. Then, during the second
data transmission phase, the latter matrices are used together
with the instantaneously measured UL channels h

(n)
UL ∀n to

estimate h
(n)
DL ∀n according to (7).

III. DNN-BASED CHANNEL CALIBRATION

In this section, we present a DNN-based channel calibra-
tion approach for generic massive MIMO systems, which is
fully data driven. It comprises a training phase to obtain the
designed DNN’s parameters, followed by the online channel
calibration phase that feeds UL channel estimation to the
DNN, which finally outputs the predicted DL channels.

A. Deep Learning Basics

Suppose that θ , {θ1, θ2, . . . , θL} includes L sets of pa-
rameters. A feedforward DNN (or multi-layer perceptron) with
L layers describes a mapping F (r0,θ) : RN0×1 7→ RNL×1 of
the input vector r0 ∈ RN0×1 to an output vector in RNL×1

through the following L iterative processing steps:

r` , f`(r`−1; θ`), ` = 1, 2, . . . , L, (8)
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Figure 2. The proposed Calinet DNN for channel calibration in generic
massive MIMO systems comprising of five layers.

where f`(r`−1; θ`) : RN0×1 7→ RNL×1 represents the mapping
carried out by the `-th DNN layer. This mapping depends on
the output vector r`−1 from the previous (`−1)-th layer and on
a set of parameters θ`. In general, the mapping f`(·; ·) can be
stochastic, i.e., it can be a function of random variables. The `-
th DNN layer is called dense or fully-connected if all neurons
in this layer are connected to all neurons in the following layer.
In this case, f`(r`−1; θ`) with θ` , {W`,b`} has the form:

f`(r`−1; θ`) = σ(W`r`−1 + b`), (9)

where W` ∈ RN`×(N`−1) denotes the neurons’ weights at
this layer, b` ∈ RN`×1 stands for the bias vector, and σ(·)
represents a so-called activation function.

B. Proposed DNN Massive MIMO Channel Calibration

According to the universal approximation theorem [28], a
feed-forward neural network with a fully-connected single hid-
den layer can approximate continuous functions on compact
subsets of RN×1. As a standard multi-layer processor, a DNN
is capable of approximating any continuous function to any
desired degree of accuracy. Our proposed DNN for channel
calibration in generic massive MIMO systems, named Calinet,
is illustrated in Fig. 2. It consists of five layers; namely,
the input layer, three hidden layers, and the output layer. In
particular, there exist multiple neurons in each hidden layer,
and each layer’s output is a nonlinear function of a weighted
sum of the values of the neurons at the input of this layer. As
shown in Fig. 2, Calinet’s input layer consists of MN neurons,
which forward the instantaneous channel coefficients in HUL

to the first hidden layer l1. The role of the hidden and output
layers is to capture the relationship between HUL and HDL.
In all layers, we have used tanh(·) as activation function σ(·),
since it works well with approximations of nonlinear functions
and provides full mapping in [−1, 1].

The proposed DNN-based massive MIMO channel calibra-
tion works as illustrated in Fig. 3. First, the DNN of Fig. 2
undergoes a training phase, and then, the trained DNN is used
for online channel calibration. More specifically:
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Figure 3. Schematic of the proposed procedure for deep learning based
massive MIMO channel calibration using the Calinet DNN in Fig. 2.

1) Training Phase: In this phase, pilot signals are used
in both the DL and UL directions to obtain P pairs
of bidirectional channel estimations; let (HDL,p,HUL,p)
denote the p-th pair, with p = 1, 2, . . . , P , of UL and DL
channel estimations. Then, this P -element training set
is fed to Calinet and a training algorithm is deployed to
adjust the DNN’s parameters θ. This process is detailed
in the following subsection.

2) Channel Calibration Phase: The trained Calinet from the
previous phase is used to predict DL channels from UL
channel estimations. The UL channel estimation HUL

obtained from UL pilots is fed to Calinet that outputs
the predicted DL channels. We denote those channels by
ĤDL , [ĥ

(1)
DL; ĥ

(2)
DL; · · · ; ĥ

(N)
DL ] ∈ CN×M .

C. DNN Training Process

In the beginning of the training phase, the desired inputs
{HUL,p}Pp=1 and desired outputs {HDL,p}Pp=1 of the DNN
Calinet are obtained via dedicated channel sounding. After-
wards, the weights and bias of Calinet’s layers are designed in
order to minimize the Minimum Mean Squared Error (MMSE)
between the P actual outputs {ĤDL,p}Pp=1 of the DNN and
the P desired outputs {HDL,p}Pp=1, namely

L(ĤDL,p(θ),HDL,p) =

=

P∑
p=1

‖vec(ĤDL,p(θ))− vec(HDL,p)‖2 (10)

where θ , {θ1,θ2, . . . ,θ5} with θ` = {W`,b`}. Notation
ĤDL,p(θ) indicates that the actual DNN vector output is a
function of the network’s parameters θ and of course its input
vector HUL,p.

In order to minimize (10) with respect to θ, several off-the-
shelf training algorithms can be used, that employ variations
of the stochastic gradient descent methods, where at each step
the gradient of the cost function is estimated from a randomly-
selected subset of training samples, called mini-batch. Thus,
at each gradient iteration, the DNN parameters are updated as

θ = θ − η∇̂L(θ), (11)

where ∇̂L(θ) denotes the estimated gradient, and η the
algorithm learning rate. Moreover, at each step, gradients are

Table I
PARAMETERS FOR CALINET DESIGN AND SIMULATIONS

Parameters Values
Input layer dimension : 32
Learning rate: 0.01
Optimization algorithm: Adagrad [31]
Number of data damples : 10240
Epoch: 256
Activation function: tanh(·)
rDL, tUL for all UEs: CN (0, 1)
RUL, TDL at BS: All elements in CN (0, 1)
Validation split ratios: 0.4
Batch size: 4
SNR during training: 0dB-40dB
HUL, HDL : All elements in CN (0, 1)
AWGN Distribution: CN (0, 1/SNR)
Pilot symbols xDL and xUL: Unit magnitudes, phases in [−π, π]

efficiently computed by means of the backpropagation method
[29]. Specifically, the proposed DNN Calinet has been trained
by means of the Adagrad algorithm [31].

IV. NUMERICAL RESULTS

For our numerical analysis, we consider a massive MIMO
system comprising a BS with M = 32 antenna elements and
N = 4 single-antenna UEs. Considering the linear TDD case
of Sec. II-B, we compare the performance of the Argos [16]
method and the Norm plus Phase Constraint First Coefficient
(NPC FC-II) [17] method, as well as the method in [11] with
that of the proposed DNN approach presented in Secs. III-B
and III-C. Moreover, we also report the CRB, which can be
obtained in closed form following similar steps as in [17].
We have also investigated the calibration performance of the
proposed DNN approach for generic nonlinear scenarios, for
which no other method is available. The simulation parameters
and the parameters for the designed Calinet are summarized
in Table I, where SNR denotes the Signal-to-Noise Ratio
and CN (0, λ) represents the circularly symmetric complex
Gaussian distribution with zero mean and variance λ. A
total of 500 independent channel realizations were generated
for the results that follow, which were obtained using the
deep learning library TensorFlow [32] and MATLABTM. For
the DNN approach, the considered data set was randomly
partitioned into the training set (60% of the total samples)
and the test set (40% of the total samples).

In Fig. 4, the Mean Squared Error (MSE) performance
between the actual HDL and the ĤDL obtained using all
considered calibration methods is plotted as a function of the
SNR in dB. As shown, all methods share the same decreasing
MSE trend when SNR increases. Although the NPC FC-
II algorithm achieves the best MSE performance since it
is sufficiently close to CRB, the proposed DNN approach
outperforms the Argos method and the approach from [11],
exhibiting only a limited gap from CRB, despite the limited
size of the training set. In Fig.5, we sketch the iteration
behavior of the DNN training process for three different SNR
values. It can be seen that MSE decreases drastically with
more iterations and reaches a floor that becomes lower as the
SNR increases. In addition, the lower the SNR the faster is
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Figure 4. MSE comparison of various channel calibration schemes for a
linear TDD massive MIMO system with M = 32 and N = 4.
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Figure 5. MSE performance convergence of the training process with the
proposed DNN approach in Fig. 4 for different SNR values.

the convergence. These results showcase that higher operating
SNR values grant better DNN-based performance, but this
happens at the price of a longer training time.

The MSE performance versus the SNR in dB of the pro-
posed DNN-based channel calibration approach for generic
massive MIMO scenarios is depicted in Fig. 6. We have
assumed that the DL and UL channels between BS and each n-
th UE exhibit the one linear (for TDD mode) and two nonlinear
relationships, namely:

h
(n)
DL = c(n)(h

(n)
UL)

TD, (12)
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Figure 6. MSE performance of the proposed DNN-based channel calibration
approach for generic massive MIMO scenarios with M = 32 and N = 4.

h
(n)
DL = c(n)tanh(h

(n)
UL)D, (13)

h
(n)
DL = c(n)(h

(n)
UL)

2D, (14)

where c(n) is a complex scalar distributed as CN (0, 1) and
D ∈ CM×M is a unitary matrix. As shown in this figure,
the MSE performance improves as the SNR increases for all
considered linear and nonlinear scenarios. Moreover, it can
be seen that the prediction error is larger for the nonlinear
scenarios, especially the Power-Type one given by (14).

Finally, Fig. 7 compares the actual and predicted values of
the squared moduli of the channel coefficient h(2,3)DL between
the 2-nd BS antenna and the 3-rd user’s single-antenna. The
nonlinear Tanh-Type massive MIMO scenario (13) of Fig. 6
was considered and the operating SNR was set to 20dB. As
shown in the figure, all predicted channel values sufficiently
match the actual ones.

V. CONCLUSION

A deep-learning-based method for channel calibration in
generic massive MIMO systems is proposed and compared
against traditional calibration methods. Unlike existing meth-
ods that assume linear relationships between DL and UL
channels, the proposed DNN method can operate also in non-
linear setting, performing close to the Cramér-Rao bound in
the linear scenario. More importantly, it exhibits robustness in
generic nonlinear scenarios even when the number of training
sequences is limited. Our results indicate that deep learning-
based methods can have significant potential in many param-
eter estimation problems for communications, e.g., nonlinear
channel estimation in massive MIMO systems.
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Figure 7. Predictions of a DL channel coefficient using the proposed DNN
approach for the nonlinear Tanh-Type massive MIMO scenario (13) of Fig. 6
with operating SNR= 20dB.
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