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I. INTRODUCTION

T HE electrical energy of electric and hybrid vehicles is stored in battery-packs made of numerous electrochemical cells. Lithium-ion cells are the most commonly used, and are one another connected in series and parallel. These battery-packs require an enhanced monitoring performed by a dedicated controller called Battery Management System (BMS) [START_REF] Guzzella | Vehicle Propulsion Systems: Introduction to Modeling and Optimization[END_REF]. The BMS is in charge of three types of tasks: Data measurement (current, voltages and temperatures),isolation resistance estimation, various states of the battery estimation and alert elaboration, management of the quantity of usable energy (cells balancing function). Efficient use of the batterypack requires the monitoring of different variables such as: State of charge (SoC), State of health (SoH), the acceptable/available power when charging/discharging, the charge capacity and the internal resistance. Unfortunately these variables are not directly measurable. The BMS has to estimate each of them, thanks to measured data cited above, and state observers [START_REF] Plett | Method and system for joint battery state and parameter estimation[END_REF], [START_REF] Plett | System and method for estimating a state vector associated with a battery[END_REF]. Besides, these parameters change over time and charge-discharge cycles. These changes have to be taken into account by the BMS to insure a maximal level of performance, throughout the life of the battery [START_REF] Waag | Adaptive algorithms for monitoring of lithium-ion batteries in electric vehicles[END_REF].

Accuracy of estimations provided by the BMS depends on the chosen battery model. Also, the BMS operates on-line leading to limited computational resources. Several models can be found in the literature, such as Equivalent Electric Circuit (EEC) [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background[END_REF]- [START_REF] Plett | Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation[END_REF], Electrochemical Model (EM) [START_REF] Doyle | Design and Simulation of Lithium Rechargeable Batteries[END_REF], Fractional Order Model (FOM) [START_REF] Sabatier | Lithium-ion batteries modeling: A simple fractional differentiation based model and its associated parameters estimation method[END_REF]- [START_REF] Wang | State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model[END_REF] and Neural Network models (NN) [START_REF] Bhatikar | Artificial Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles[END_REF]. EEC models are the most commonly used and are easy to operate. Electrochemical models are commonly used for design purposes and are not suitable for on-line applications. There were several attempts to simplify these models leading to Single Particle models (SP) [START_REF] Bizeray | Advanced battery management systems using fast electrochemical modelling[END_REF], [START_REF] Chaturvedi | Algorithms for Advanced Battery-Management Systems[END_REF]. Nevertheless there is no electrochemical operated BMS to our knowledge. It has been argued that solving SP models leads to FOM. Also the impedance frequency response of a Li-ion battery displays at low frequencies behaviours that are easily captured by constant phase elements (CPE). Neural Network models produce satisfying results if enough training data are used. Quite often this approach lacks robustness and requires high computational resources. When dealing with a batterypack, EEC models are the most suitable models to cope both with accuracy and computational issues. There are several approaches in the literature to further reduce the computational burden caused by the number of cells. Plett [START_REF] Plett | Efficient Battery Pack State Estimation using Bar-Delta Filtering[END_REF] developed at first the "bar-delta" algorithm that successfully in any batterypack estimates all cell SoC and SoH values using only slightly more computation than for a single cell. That approach was reused under different names and slight modifications such as "mean + difference" [START_REF] Zheng | Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using meandifference model[END_REF]. Wang [START_REF] Wang | State-of-Charge Estimation for Lithium-Ion Batteries Based on a Nonlinear Fractional Model[END_REF] developed the "mtop/bottom" method consisting in the detection of limiting cells in order to reduce the number of observed cells. The aim of this paper is to propose an enhancement of the "mtop/bottom" and the "bar-delta" methods based on a first order EEC model. This paper is organized as follows. The next section describes the first order EEC model. Section III presents an example of joint SoC and parameter estimation for this EEC model. A presentation of "m-top/bottom" and "bardelta" methods and their improvement is done in Section IV. Finally conclusions are drawn in Section V.

II. PARAMETER ESTIMATION FOR A SINGLE CELL

The first order EEC model consists in an ohmic impedance R 0 in series with a charge transfer impedance R 1 in derivation with a charge transfer capacity C 1 as displayed Fig. 1. There are two different ways to estimate the parameters of this model. Direct solution: a joint estimation of all parameters or indirect method: estimating R 0 separately whereas R 1 and C 1 are estimated jointly. A. Indirect method: R 0 separately

R 0 R 1 I(t) C 1 V t (t) V dif f (t) V z (t) + - OCV (t)
The ohmic impedance can be estimated using the battery current and voltage at some specific moments. Considering the EEC model, the ohmic impedance can be computed subsequently to a small pause followed by a current pulse excitation. These small pauses of up to 30s often occur in traffic. R 0 can then be computed using equation 1.

R 0 = V t [k] -V t [k -1] I[k] -I[k -1] (1) 
It is one simple way to estimate the battery ohmic resistance.

Once the ohmic impedance is estimated, the remaining voltage V dif f can be used to estimate charge transfer phenomenon.

Considering the first order EEC model, one can write the following transfer:

V dif f (s) I(s) = R 1 1 + R 1 C 1 s (2) 
Parameters R 1 and C 1 can be easily estimated using an Adaptive Recursive Least Square (RLS) algorithm with param-

eters Θ = [R 1 R 1 C 1 ] and measurements Φ = [I k V dif f,k-1 ] T . B. Direct method: R 0 + R 1 //C 1 jointly
The straightforward approach is to estimate simultaneously the three parameters R 0 , R 1 and C 1 . The transfer between the voltage and the current can then be written as follows:

V z (z) I(z) = α 0 + α 1 z -1 1 -βz -1 (3) 
       α 0 = R 0 + R 1 Ts Ts+τ1 α 1 = -R 0 τ1 Ts+τ1 β = τ1 Ts+τ1 τ 1 = R 1 C 1 (4)
with parameters from equation 4 with the sampling time T s = 100ms. Using an adaptive RLS algorithm one can estimate parameters

Θ = [α 0 α 1 β] with measurements Φ = [I k I k-1 V z,k-1 ] T .

III. CELL SOC ESTIMATION BASED ON KALMAN

FILTERING Using equation 5 jointly with the parameter estimator described in section II, one can estimate the SoC of the Li-ion cell as displayed Fig. 2. It is a dual estimator scheme with an RLS component that estimates the EEC model parameters using measured currents I k , I k-1 and the estimated state of charge SoC k-1 . A convergence test is run to retrieve converged parameters R 0,conv , R 1,conv and C 1,conv . These converged parameters are then used by the EKF observer to estimate the states:

[SoC k V dif f,k ] T .    SoC k V dif f,k = A SoC k-1 V dif f,k-1 + BI k V t,k = OCV (SoC k ) + V dif f,k + R 0 I k (5) 
Where

A = 1 0 0 e -Ts R 1 C 1 , B = η f Ts Q cell R 1 (1 -e -Ts R 1 C 1 )
, η f the Faraday efficiency and Q cell the charge capacity. The function OCV (SoC) is an optimized lookup table provided by the manufacturer of the Li-ion batteries used in this paper.

EKF RLS R 1,conv C 1,conv R 0,conv Convergence Test I k I k-1 I k I k-1 SoC k-1 SoC k V t,k V dif f,k V dif f,k-1 α 0,k β k α 1,k V t,k - + OCV (SoC k-1 ) Fig. 2. SoC estimation.
Using this scheme and data recorded from a Li-ion cell during highway driving cycle at 25 o C, both SoC and parameters of the first order EEC model were estimated for a Li-ion cell. Fig. 3 displays the input current whereas Fig. 4 displays the output voltage. The estimated parameters are displayed on Fig. 5. Ohmic impedance R 0 is displayed using blue solid line, charge transfer impedance R 1 is displayed using dotted blue line and finally, time constant τ 1 is displayed using the red dotted line, whereas the estimated state of charge and the estimation error are displayed on Fig. 6. The maximum SoC estimation error is 2%. 

IV. BATTERY-PACK SOC ESTIMATION

During charge/discharge, there are upper/lower bounds for the terminal voltage and SoC for each cell in the battery-pack. For example, when discharging the battery, there is a limit voltage not to be reached (V t,min = 2.8V ). Also, the final user is only interested in the SoC of the pack. It has been argued by Plett [15] that the best way to monitor the SoC of a batterypack is to estimate the SoC of the less/most charged cell during discharge/charge. In fact, considering 3 cells connected in series where SoC 1 = 98%, SoC 2 = 47% and SoC 3 = 2% as displayed Fig. 7, it is obvious that we can not assume that the global SoC is the average one 49%. But it is crucial to be aware that Charging process should stop as soon as Cell 1 has acquired 2% charge. Similarly, discharging process should stop as soon as Cell 3 reaches V t,min or SoC min . Therefore, 

C n,3 C n,2 C n,1 SoC 1 = 98% SoC 2 = 47% SoC 3 = 2% Cell 1 Cell 2 Cell 3

A. Limiting cells detection

It is often assumed that the cell with the lowest voltage is more likely to have the lowest SoC [START_REF] Liu | State-of-Charge estimation for power Liion battery pack using Vmin-EKF[END_REF], [START_REF] Truchot | State-of-charge estimation and uncertainty for lithium-ion battery strings[END_REF]. That assumption is not always true especially if there is a significant discrepancy among internal impedances inside the battery-pack, which often happens subsequently to ageing. "M-top/bottom" is an attempt by Wang [START_REF] Wang | Efficient multi-cell SOC estimation for electrified vehicle battery packs[END_REF] to cope with the detection of the cell presenting the lowest/highest SOC. The idea is to select the m lowest (bottom) voltage cells and estimate their SoC. The lowest SoC in the pack is assumed to be the lowest SoC among the m selected cells. The same argument applies for the m highest (top) voltages, leading to the name "m-top/bottom". This method produces satisfying results as m tends to the total number of cells in the pack. The drawback is the increase of computational burden as the value of m increases. In this paper, we propose an enhancement of this method. Given that there is a direct relation between the SoC and the OCV of each Li-ion cell, we try to approach the value of the OCV by subtracting the ohmic resistance component from the terminal voltage using equation 6.

ÔCV -V dif f = V t -R 0 I (6) 
To estimate the ohmic resistance R 0 , we use the equation 1 from section II. R 0 value is estimated after small pauses of 30s that occur in traffic. We then base our choice on the approximate value of the Open Circuit Voltage : V t -R 0 I, assuming a small discrepancy among V dif f values. In fact, fast dynamics of urban driving cycles input currents only slightly trigger diffusion components of the battery. We define the success rate as the ratio between the number of times the actual limiting cell belongs to the m selected cells and the total number of measurements. We ran the test for a batterypack under urban driving cycle current input at 25 o C and 0 o C. Using this approach leads to a significant improvement of the limiting cells detection. This method is a major improvement compared to the straightforward method. Even with m = 2, the success rate improvement is approximately 10% with almost 90% chance to successfully detect the limiting cell as laid down in Table I. On Fig. 8 is displayed the success rate improvement obtained using this new method at 0 o C and 25 o C instead of the original one. Similar results improvement are obtained for both temperature conditions. Unfortunately for this approach only the m selected cells are monitored.

To go further, the next approach will be about reducing the computational burden while monitoring all the cells in the battery-pack. [START_REF] Plett | Efficient Battery Pack State Estimation using Bar-Delta Filtering[END_REF], [START_REF] Plett | System, methode, and article of manufacture for determining an estimated battery cell module state[END_REF]. He argued that pack SoC does not make any sense but limiting SoC does. To that extent it is mandatory to estimate SoC for all the in-pack cells. To alleviate the computational burden, he introduced the the concept of an "average cell" capturing fast dynamics in a cell. He then argued that the states of each cell can be viewed as the sum of the states of the average cell and a slight variation , presenting with slow dynamics, intrinsic to each cell using equation 7, where xk is the pack-average state vector and ∆x

m V t,max [%] V t,min [%] (V t -R0 I)max [%] (V t -R0 I) min [%]
(i)
k is the difference between the state vector of cell i and the pack average state vector. Variable xk is called "x-bar" and ∆x (i) k is called "deltax" leading to the name "Bar-Delta".

x (i) k = xk + ∆x (i) k (7)
a) The bar-filter: The voltage of the average cell is computed as : Vt = b) The delta-filters: For the i-th cell, one can write the "delta-SoC" estimator from equation 8 noting S oC k = zk , SoC

(i) k = z (i) k and ∆SoC (i) k = ∆z (i)
k , where ν k is the terminal voltage measurement noise (supposed white and centred).

∆z (i) k = ∆z (i) k-1 + I k-1 T s ∆Q (i) inv,k-1 V (i) t,k = OCV (z k + ∆z (i) k ) + R (i) 0,k I k + Vdiff,k + ν k (8) Noting Q inv = 1/Q, the capacity variation ∆Q (i)
inv,k is estimated using equation 9, with d k is a zero mean residual signal induced by the evolution of the state of charge, e k is SoC measurement noise (supposed white and centred), n ∆Qinv k is the state noise (supposed white and centred) and

Q (i) inv = Qinv,k-1 + ∆Q (i) inv,k-1 . ∆Q (i) inv,k = ∆Q (i) inv,k-1 + n ∆Qinv k d k = z (i) k-1 -z (i) k + I k-1 T s Q (i) inv,k-1 + e k (9) 
Similarly one can operate the ohmic resistance estimation using equation 10, where ν ∆R0 k is the terminal voltage measurement noise (supposed white and centred) and replacing

R (i) 0,k = R0,k + ∆R (i) 0,k . ∆R (i) 0,k = ∆R (i) 0,k-1 + n ∆R0 k V (i) t,k = OCV (z (i) k ) + R (i) 0,k I k + Vdiff,k + ν ∆R0 k (10)
This approach has been used under different assumptions in references [START_REF] Zheng | Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using meandifference model[END_REF], [START_REF] Roscher | Reliable State Estimation of Multicell Lithium-Ion Battery Systems[END_REF]- [START_REF] Sun | A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[END_REF] and lately in [START_REF] Wei | System state estimation and optimal energy control framework for multicell lithium-ion battery system[END_REF]. Plett concluded that for a pack of N cells, if at each sample time only one "delta-filter" and the "bar-filter" are updated, the overall computational time is divided by n = N/2 in comparison to updating N complete filters. This means that the "bar-filter" is updated every T s whereas the "delta-filters" are updated sequentially each N × T s (N cells in the pack). Furthermore, Plett argued that the "delta-filters" run even faster than the "bar-filter" because they are one-state filters. Therefore they are less complex than the "bar-filter", which suggests that N/2 ≤ n < N

We have applied this approach to a battery-pack of N = 96 cells to estimate ∆z i and ∆R i 0 . The estimated values of ∆z i and ∆R i 0 from the "delta-filters" are displayed on Fig. 9. One can see that those values vary very slowly knowing that for this test the SoC went from 93% to 0% as displayed Fig. 10 a). This assesses the assumption made by Plett when he coined this method. As suggested earlier, the computational time should be divided by a number n such that N/2 = 48 ≤ n < N = 96. To assess that assumption, we ran the algorithm for a number of cells N ranging from 10 to 96. We then divided the computational time required for the straightforward N -EKF to the one obtained using "Bar-Delta" algorithm. The time gain ratio is displayed on Fig. 11. We have run the test for two different kinds of vehicles : Plug-in Hybrid (PHEV) and EV (EV). Using data from Fig. 11 we found that the computational time was divided by N/1.23 for Plug-in Hybrid vehicles (PHEV), and N/1.32 for electric vehicles (EV). 2) Improvement of the "bar-delta" algorithm: Having successfully implemented the "Bar-Delta" approach for EV and PHEV battery-packs and observed the computation time gains it provided, we met our first goal which is a faster algorithm. The slow varying differences (∆x (i) ) allows us to compute them less often, which leads to computation time gain. Our second goal to meet is a more accurate pack-SoC estimation. Given that the SoC of the limiting cell is the most critical, we have decided to modify the "bar-delta" algorithm considering the limiting cell in the "bar-filter" instead of a virtual average cell. At high SoCs (> 66%), the nominal cell would be the most charged one. The same argument works for the less charged cell at low SoCs (< 33%) hence Fig. idea behind the switch is that for the classical approach, the assumptions of a slow varying differences (∆x (i) ) does not hold if the nominal (average for Plett) capacity Q is small or a specific cell in the pack discharges significantly faster than all the other cells. If this kind of cell ever happens to be the limiting cell, our goal is to capture its behaviour as accurately and as quickly as possible. To test our assumption, we have considered a simulated Li-ion battery-pack of 96 cells. The nominal cell charge capacity is Q nom = 10Ah. We then considered 10% capacity discrepancy within the pack, to simulate an aged pack. We ran our improved algorithm for this simulated battery-pack under an urban driving cycle at 25 o C. On Fig. 13 we have displayed the SoC error for its minimum and maximum values. Our switched method leads to an estimation error close to 0% at the end of the test for SoC min estimation. Unfortunately, the drawback is a higher SoC max estimation error. But, as it was a discharge mode, we are more focused on relevant SoC min estimate for low SoC conditions (< 33%). Also in that domain, only the minimum SoC is relevant. Therefore the higher error for maximum available SoC estimation is not a concern. V. CONCLUSION

In this paper we presented two simple methods to estimate first order EEC model parameters for Li-ion batteries. We then introduced a joint estimator for parameters R 0 , R 1 , τ 1 and the state of charge SoC. We also presented two different approaches to handle battery-pack SoC estimation. As discussed it is mandatory to either detect the limiting cells or estimate the SoC of every cell in the pack. We presented "m-top/bottom" method for limiting cells detection and "bardelta" method for fast estimation of all cells in the pack SoC. We also provided improvement for each of these approaches leading to the modified "m-top/bottom" and the switched "bar-delta" methods. The modified "m-top/bottom" method leads to a more accurate detection of limiting cells, while the switched "bar-delta" method improves the accuracy of the SoC estimation at low charge. To go further, more accurate models of Li-ion batteries such as: electrochemical models or fractional order models will be considered in our future works.
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 34 Fig. 3. Highway driving cycle input current at 25 o C
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 6 Fig. 6. State of charge: Reference SoC ref (blue solid line), estimated Ŝ oC (dotted blue line) and the error S oC (red dotted line).
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 7 Fig. 7. SoC of 3 cells connected in series
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 8 Fig. 8. Improvement results of the m-top/bottom method for 96 cells pack under urban driving cycle input current at 25 o C and 0 o C temperature. (Using experimental data)
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 9 Fig. 9. a) Estimated ∆z i b) Estimated ∆R i 0 , for a 96 Li-ion cells pack (EV: Qn = 128Ah) under highway driving cycle, at 25 o C. (Updated each N × Ts = 9.6s, using experimental data)
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 11 Fig. 11. Computational time improvement using "Bar-Delta" method. Test ran for two different kinds of vehicles : Plug-in Hybrid (PHEV) and EV (EV).
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 12 Fig. 12. Bar-Delta Vs Bar-Delta Switched.
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 13 Fig. 13. Errors on minimum and maximum Pack SoC estimation comparison between "Bar-Delta" and "Bar-Delta Switched" algorithms.(Using simulated cells)

TABLE I SUCCESS

 I 

RATE COMPARISON BETWEEN THE STRAIGHTFORWARD AND THE IMPROVED "M-TOP/BOTTOM" METHOD APPLIED TO A 96-CELLS PACK UNDER AN URBAN DRIVING CYCLE CURRENT INPUT AT 25 o C.