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Abstract

This paper investigates a reduced order model for the angular discretisa-

tion of the radiative transfer equation (RTE) when considering non grey

participating gases. The key idea is to use a global model for the gas ra-

diative properties and to derive an angular reduced order model, based on

the Proper Orthogonal Decomposition (POD) method, for each absorption

coefficient class independently. Angular POD basis functions are extracted

from high order SN reference solutions. A finite element approach is used

to discretised the RTE in space and angle and the POD angular matrices of

the reduced system are easily constructed from the SN angular matrices of

the reference solutions. The angular POD basis sets are truncated at differ-

ent levels depending on the absorption coefficient class in order to optimally

compute the total radiative power. The method is applied to solve the radia-
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tion field associated to an air/H2O mixture flowing in a square differentially

heated cavity, with black isothermal walls and diffuse reflecting adiabatic

walls. Results show that the POD model is very accurate and efficient for

treating the thick classes but it suffers from a low convergence rate for the

thin classes. For computing the radiative power, the reduced order model

allows to reduce the averaged number of angular basis functions of an order

of magnitude and to reduce the CPU time by a factor 2 to 3 to reach a given

level of accuracy, compared to a standard SN method.

Keywords: reduced order model, angular discretisation, finite element, non

grey media

1. Introduction

Despite today’s large computational resources, the numerical simulation

of radiative transfer remains a computational challenge owing to the high di-

mension of the phase-space (time, space, propagation direction and wavenum-

ber) in which the radiative intensity varies. Many heat-transfer problems of

interest involve for instance gaseous participating medium, whose absorp-

tion spectra are made of millions of lines, that flows in turbulent regime and

covers a wide range of time and spatial scales. In the recent years, a wide

literature has thus been devoted to reducing the computational requirements

of radiation calculations while maintaining a high accuracy.

A simple strategy consists in adapting the discretisation by focusing the

numerical effort in specific regions of the phase space where the gradients of

the radiative intensity are localised and thus reducing the number of degrees

of freedom of the discretised problem. This approach is generally not satis-
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factory for the wavenumber dimension because of the line structure of the

spectra and one has to employ proven methods such as correlated-k models,

Statistical Narrow Band models or global models [1] to reduce the spectral

complexity. However, substantial computational gains can be obtained by

adapting the spatial or the angular resolution. Adaptive Mesh Refinement

(AMR) techniques based on a hierarchy of structured meshes, have been

used for instance by Ogando and Velarde [2] to optimise the radiation spa-

tial discretisation while keeping a uniform discrete ordinates expansion for

the angular dependence. Another spatial adaptivity algorithm has been de-

veloped by Yang and Yuan [3] for application to radiation transport coupled

with Lagrangian hydrodynamics. Recently, an angular adaptivity method

has been proposed by Soucasse et al. based on a hierarchical wavelet basis

set whose expansion can be easily varied through the spatial domain without

interpolation. This algorithm was associated to a goal-based error measure

to accurately compute the radiative power.

Other approaches for decreasing computational requirements of radiative

transfer calculations rely on multi-scale splitting. Roger et al. [4] and Coelho

et al. [5] developed a hybrid transport-diffusion model well suited for radia-

tive transfer close to the optically thick regime. They split the intensity

into a macroscopic part calculated by a diffusion equation and a mesoscopic

part calculated by a Monte Carlo or a discrete ordinates method. Soucasse

et al. [6] proposed a sub-grid scale model dedicated to turbulent participat-

ing medium where large scale contributions are being solved by a reference

ray tracing method and subgrid scale contributions are being solved by an

approximate model in Fourier space.
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In this article, we will focus on reduced order modelling for radiation

transport. Reduced Order Models (ROM) are widely used in computational

physics for decreasing the number of degrees of freedom of complex dynami-

cal systems. They aim at finding a low order optimal basis able to represent a

physical phenomenon or to condensate the response of a physical model to a

set of parameters [7]. Most of ROMs rely on the Proper Orthogonal Decom-

position (POD) method, although other modal decompositions are employed

such as Dynamic Mode Decomposition [8], Proper Generalized Decomposi-

tion [9] or Branch Eigenmodes Reduction Method [10]. The POD is based

on a statistical analysis of high-fidelity numerical data or experimental data.

This method extracts from the data a few dominant uncorrelated modes,

that are able to capture the underlying physics without any a priori knowl-

edge of it. However, the prediction capabilities of POD-based ROMs are

often restricted to a small variation of input parameters around the condi-

tions under which the data were obtained. In addition, their computational

efficiency are affected by the computational cost of the full order model when

POD relies on numerical data. POD has been widely used in fluid mechanics,

where spatial basis functions are extracted from high resolution spatial fields

(snapshots) recorded through time [11, 12], to model turbulent pipe flow [13],

natural convection [14] or pollutant transport in street canyons [15].

In the field of radiative transfer, such model reduction techniques have

been applied by Pinnau and Schultze [16] for treating the spectral dependence

of the radiative intensity. They used a POD method to model the radiative

properties of glass and compared their approach to the Weighted-Sum-of-

Grey-Gas (WSGG) method and a simple frequency averaging. Buchan et
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al. [17] were the first to propose a POD reduced order model for resolv-

ing the angular dimension of the Boltzmann transport equation. Angular

POD basis functions were derived from high order spherical harmonics ex-

pansion solutions and applied to solve neutron transport problems. Tencer

et al. [18, 19] followed a similar approach to build optimal angular basis func-

tions from high order discrete ordinates expansions. They developed a greedy

algorithm for improving the snapshot sampling, that selects angular regions

with the highest angular residual. They applied their model to one- and

three-dimensional test problems but only considered grey absorbing medium

without any scattering or reflection by the walls.

The angular dependence of the radiative field is known to vary a lot with

the optical thickness, between the thin kinetic regime and the thick diffuse

regime. The goal of this paper is to investigate the suitability of an angular

ROM for thermal radiation calculations involving actual participating gases

and thus covering a large optical thickness range. The key idea is to use a

global model for the gas radiative properties and to derive an angular ROM

from high order discrete ordinates expansions, based on the POD method,

for each absorption coefficient class independently. The method is applied to

solve the radiation field associated to an air/H2O mixture flowing in a square

differentially heated cavity, with black isothermal walls and diffuse reflecting

adiabatic walls. The angular POD basis sets are truncated at different levels

depending on the absorption coefficient class in order to optimally compute

the total radiative power. The sections of this article are set out as follows.

The numerical methods and models used for discretising the radiative transfer

equation are detailed in Sec. 2 and the angular ROM is presented in Sec. 3.
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The accuracy and efficiency of the angular ROM for computing the incident

radiation of each absorption class and for computing the total radiative power

is finally assessed in Sec. 4.

2. Radiative tranfer equation and numerical modelling

For a non-scattering medium of optical index equal to 1 at local thermal

equilibrium, the Radiative Transfer Equation (RTE) is given by

Ω · ∇Iν(r,Ω) = κν(r) (Ib ν(T (r))− Iν(r,Ω)) , (1)

where Iν(r,Ω) is the radiative intensity at wavenumber ν, point r and direc-

tion Ω, Ib ν(T (r)) is the blackbody intensity at local temperature T (r) and

κν(r) is the spectral absorption coefficient of the medium.

In physical domains bounded by grey opaque walls, diffusely reflecting,

the associated boundary condition writes

Iν(rw) = ε(rw)Ib ν(T (rw)) +
1− ε(rw)

π

∫
Ω′·n<0

Iν(rw,Ω
′)|Ω′ ·n |dΩ′, (2)

for points rw and directions Ω, such that Ω·n > 0, n being the wall normal

directed towards the inside of the domain and ε(rw) being the wall emissivity.

The radiative power Prad(r) in the medium is defined as the difference

between the absorbed radiative power and the emitted radiative power and

is equal to the opposite of the divergence of the radiative flux qrad(r)

Prad(r) = −∇ · qrad(r) =

∫
ν

κν(r) (Gν(r)− 4πIb ν(T (r))) dν, (3)

where Gν(r) is the incident radiation given by

Gν(r) =

∫
Ω

Iν(r,Ω)dΩ. (4)
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This power takes part in the energy balance of the material system and

this is the quantity we want to accurately compute in coupled heat transfer

problems.

2.1. Radiative property modelling

The spectral dependence of the absorption coefficient κν is taken into

account using a global model based on absorption distribution functions [20].

In the practical problem addressed in Section 4, the absorption coefficient is

assumed to be homogeneous and is computed at a reference temperature Tref .

In that case, the absorption distribution function writes

F(k) =
π

σT 4
ref

∫
ν, κν(Tref)≤k

Ib ν(Tref)dν. (5)

This distribution is a function of the values of the absorption coefficient k

and is discretised in intervals [k−i ; k+i ] of averaged value ki. The weights of

this distribution associated with each interval i are defined as wi = F(k+i )−

F(k−i ). Equations (1) and (2) then become

Ω · ∇Ii(r,Ω) = ki

(
wiσT

4(r)

π
− Ii(r,Ω)

)
, (6)

Ii(rw) = ε(rw)
wiσT

4(rw)

π
+

1− ε(rw)

π

∫
Ω′·n<0

Ii(rw,Ω
′)|Ω′ ·n |dΩ′, (7)

where σ is the Stefan-Boltzmann constant. The radiative intensity integrated

over the wavenumber is simply retrieved by summing the contributions of

each k-class: I =
∫
Iνdν =

∑
i Ii.

This global model is advantageous because the integration over the wavenum-

ber is replaced by an integration over the absorption coefficient k, for which

a coarse discretisation is sufficient. Another benefit is that it will be possible
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to associate with each k-class a different angular discretization, adapted to

the corresponding optical thickness range.

As a homogeneous medium is considered, the model error only lies in the

discretisation in k. In the case of a heterogeneous media, the global model can

also be applied providing additional assumptions. In that case one can define

a unique k-discretisation with weights depending on the local properties of

the medium (temperature, pressure, composition), see for instance Refs. [21–

23]. The numerical methods and the angular reduced order model presented

in this paper can thus be easily extended to the case of heterogeneous media.

The global model is however restricted to gray wall emissivities and gray

scattering. Gray scattering is not considered in this work but its addi-

tion would be straightforward and would not affect the angular reduction

method [17].

2.2. Angular discretisation

The angular general expansion is achieved by a finite element method.

The angular dependence of the radiative intensity associated with the k-

class of index i, is restricted to the function space spanned by a set of Mi

angular basis functions {Giq(Ω)} for q ∈ {1, 2, · · · ,Mi}

Ii(Ω, r) '
Mi∑
q=1

Giq(Ω)Iiq(r), (8)

Iiq(r) being the coefficients of the projection onto the basis. It should be

noted that the set of angular basis functions as well as the size of the basis

can be different for each k-class of index i.
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Introducing the expansion (8) into Eq. (6) and applying Galerkin projec-

tion leads to the following angular linear system in Cartesian coordinates

Ai,x
∂I i(r)

∂x
+ Ai,y

∂I i(r)

∂y
+ Ai,z

∂I i(r)

∂z
+ HiI i(r) = Si(r) (9)

where I i(r) is a vector of size Mi containing the projection coefficients

Iiq(r). Ai, x/y/z and Hi are the angular matrices defined by

(Ai, x/y/z)p,q =

∫
Ωx/y/zGip(Ω)Giq(Ω)dΩ, (10)

(Hi)p,q = ki

∫
Gip(Ω)Giq(Ω)dΩ, (11)

and Si(r) is the angular source term vector whose components are

Siq(r) = kiwi
σT 4(r)

π

∫
Giq(Ω)dΩ. (12)

This general framework holds for various angular discretisations such as

discrete ordinates, spherical harmonics, wavelets, and it also suits for the

angular reduced order model (see Section 3). In the following we will use the

discrete ordinates method (SN) as the reference method for angular discreti-

sation. A finite element formulation of the method is implemented here which

is not strictly equivalent to the standard quadrature-based SN method. It

consists in dividing the angular domain intoM = N×(N+2) nonoverlapping

solid angles ∆Ωp of equal size and defining M piece-wise constant angular

basis functions associated to each angular interval such that Gp(Ω) = 1 if

Ω ∈ ∆Ωp and 0 otherwise. Without scattering, it should be noted that

the angular matrices associated to the discrete ordinates discretisation are

diagonal.
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2.3. Spatial discretisation

A variational multiscale finite element method [24] is used to perform the

spatial discretisation. This approach combines a continuous finite element

representation with a discontinuous subgrid scale (SGS) model. The spatial

variations of the angular coefficients I i(r) are decomposed into a coarse

component I i(r) and a subgrid component
∼
I i(r). The coarse component

is assumed to lie in a continuous finite element space, spanned by ηN basis

functions, while the subgrid component is assumed to lie in a discontinuous

space, spanned by ηQ basis functions, such that

I i(r) '
ηN∑
j=1

Nj(r)I ij +

ηQ∑
j=1

Qj(r)
∼
I ij. (13)

The continuous basis functions Nj(r) and the discontinuous basis functions

Qj(r) are associated with the same spatial mesh and are both piecewise linear

across the spatial elements in this work. The same spatial mesh is used for

each k-class.

Using decomposition of Eq. (13) into Eq. (9) and applying Galerkin pro-

jection in space leads to a space-angle block linear system of sizeMi× (ηN +

ηQ) that has to be solved for each k-class i. The role of the subgrid com-

ponent is to suppress any instability and non-physical oscillations that may

arise from a continuous finite element discretisation of the RTE. However,

the method enables the subgrid scale component of the solution to be elimi-

nated from the resulting system of discretised equations so that a single linear

system of size Mi × ηN is solved. The main advantage of the method is to

provide accurate and numerically stable solutions, similar to those obtained

from a discontinuous Galerkin formulation, but with much lower number of
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spatial degrees of freedom. More details on the implementation, the accuracy

and the efficiency of the subgrid scale model can be found in Ref. [24].

Boundary conditions are implemented using a Riemann decomposition

method in order to separate the incoming and outgoing part of the radiative

flux at the boundaries. This is a general technique that applies to any type

of angular discretisation (SN , PN , wavelets...) including the POD angular

discretisation [25].

2.4. Implementation and validation

The space-angle linear system is solved using the generalised minimal

residual method (GMRES) with a successive over-relaxation (SOR) precon-

ditioner. We use the PETSc library [26] for the solver implementation. The

same algorithms are used for solving the space-angle linear system resulting

from the angular reduced order model.

The results of the present code have been successfully compared with

reference results obtained with the Monte Carlo method on the 3D bench-

mark case of Ref. [27]. Relative differences were of the order of the standard

deviation of the Monte Carlo calculation and were about 10−3. The details

and the results of this comparison have been already published in a previous

study [28].

3. Reduced order model for the angular discretisation

The Proper Orthogonal Decomposition (POD) method applied to the

angular discretisation of the RTE aims at constructing an optimal angular

basis for a given problem based on a set of data representative of the angular

variations of the radiative intensity. The method extracts from the data a
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hierarchical basis set that can be truncated to any size depending on the

desired accuracy.

3.1. Building the POD angular basis functions

The method of snapshots is used here to build the POD angular basis

functions. The method is applied independently to each k-class in order to

form adapted POD basis functions to each optical thickness range. An accu-

rate solution of the problem of interest is generated using a reference model

for the angular discretisation. We use here a high order discrete ordinates

method SN , with the same number of angular degrees of freedomM for each

k-class. The reference angular coefficients at each spatial node j = 1, · · · , η

are stored in column to form the following snapshot matrix Si of sizeM×ηN
for each k-class i

Si = [I i1, · · · ,I ij, · · · ,I iηN ]. (14)

Note that compared to standard POD methods, snapshots are recorded

through space instead of time: the role of space and time dimensions are

swaped with angle and space dimensions respectively.

The POD method consists in searching for the eigenvalue decomposition

of the symmetric matrix SiS
T
i

SiS
T
i = UiΛiU

T
i , (15)

where Λi is a diagonal matrix containing the eigenvalues of the decompo-

sition, that are all positive and ranked in decreasing order. The matrix Ui

contains the eigenvectors of the decomposition: it represents a change-of-

basis matrix between the SN angular basis functions and the POD angular

basis functions. Therefore, the POD angular basis functions {GPiq(Ω)}, q ∈
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{1, 2, · · · ,M} are obtained by combining the POD eigenvectors (the columns

of the matrix Ui) with the SN angular basis functions {Gq(Ω)}, q ∈ {1, 2, · · ·M},

such that

GPiq(Ω) =
M∑
p=1

(Ui)p,qGp(Ω). (16)

Instead of building separated angular POD basis functions for each k-

class, we could have built combined angular POD basis functions based on a

single snapshot matrix that gathers all the angular coefficients at each spatial

points for all the k-classes. Such reduction approach is however inefficient in

terms of accuracy and computational time for the practical case addressed in

Sec. 4 because it cannot correctly capture the angular behaviour of both the

optically thin and optically thick regimes. A separated approach in energy for

angular reduction was also shown to be much more efficient than a combined

approach for neutron transport [29].

3.2. Building the angular reduced order model

The POD basis functions form a hierarchical basis set that can be trun-

cated to any size. The aim of the reduced order model is to restrict this basis

set to the first MP
i basis functions (MP

i < M) with the highest eigenval-

ues, which means they are the best for reconstructing the snapshot matrix

in terms of the Frobenius norm.

In the reduced order model, we will assume that the angular variations

of the radiative intensity associated to the k-class i can be captured using a

few numbers of POD angular basis functions MP
i

Ii(Ω, r) '
MP

i∑
q=1

GPiq(Ω)IPiq(r), (17)
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where IPiq(r) are the angular coefficients in the POD space. These POD

angular coefficients are linked with those of the reference model using

I i(r) = Ui IPi (r). (18)

Note that only the first MP
i columns of the matrix Ui are kept here, such

that Ui is of size M×MP
i .

The efficiency of the truncation for representing accurately the reference

calculation will depend on the decay of the eigenvalue spectrum: the faster is

the decay, the lower is the number of POD basis functions necessary. Using

Eq. (17), the discretised angular system of Eq. (9) can be formally rewritten

as

APi,x
∂IPi (r)

∂x
+ APi,y

∂IPi (r)

∂y
+ APi,z

∂IPi (r)

∂z
+ HPi IPi (r) = SPi (r), (19)

where APi,x/y/z and HPi are the POD angular matrices of size MP
i ×MP

i and

SPi (r) is the POD angular source vector of size MP
i . However, the POD

angular matrices and the POD angular source vector can be easily formed

from the reference model angular matrices Ai,x/y/z and Hi of size M×M

and angular source vector Si(r) of size M in the full SN space, using the

change-of-basis matrix Ui (see Eq. (16)). Eq. (19) becomes then

UT
i Ai,xUi

∂IPi (r)

∂x
+ UT

i Ai,yUi
∂IPi (r)

∂y
+ UT

i Ai,zUi
∂IPi (r)

∂z

+ UT
i HiUiIPi (r) = UT

i Si(r). (20)

This means the angular ROM can be easily implemented from the forward

discretised angular system. Further details on the implementation of the

angular ROM can be found in Ref. [17].
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It should be emphasized here that a unique POD angular basis set is

formed per k-class by condensing the reference angular information through-

out the spatial domain. Thus, the POD angular expansion does not change

with the spatial position. In addition, the size of the POD truncation MP
i

is kept constant across space, although it can be varied with the k-class i.

4. Results

In order to assess the suitability of an angular POD model for radiative

heat transfer calculations in non grey media, we consider the natural con-

vection of an actual radiating gas in a square differentially heated cavity.

The cavity is made of two black vertical walls maintained at fixed temper-

ature Th and Tc and two adiabatic, perfectly diffuse reflecting walls. It is

filled with humid air at a mean temperature T0 = 294.2 K and at atmo-

spheric pressure (Prandtl number of Pr = 0.709). We fix the cavity size

to L = 1 m and we choose a moderate value of the Rayleigh number of

Ra = gβ(Th − Tc)L
3/(νa) = 5 × 106 in order to obtain a steady natural

convection flow. This gives a small temperature difference Th − Tc of about

5× 10−2 K.

The finite element fluid dynamics code Fluidity [30] is used to solve the

mass, momentum and energy balance under Boussinesq approximation with-

out radiative energy source term. A PCG
1 discretisation is applied for pres-

sure, temperature and velocity fields together with an unstructured spatial

grid made of about 4400 elements. We have checked mesh independence

by doubling the number of elements and the difference in the total Nusselt

number at the isothermal walls does not exceed 2 %. A Crank-Nicolson time
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Figure 1: Snapshot of the reduced temperature field (T − T0)/(Th − Tc) considered in the

radiation calculations.

integration scheme is implemented to converge towards the steady solution.

The resulting steady temperature field is shown in Fig. 1. It displays typical

patterns of natural convection flows in differentially heated cavities such as

the vertical boundary layers along the isothermal walls and the thermally

stratified core.

The global model for the radiative properties of the participating mixture

is built from the Line-By-Line (LBL) spectrum of the absorption coefficient

at the reference temperature T0 and with a molar fraction of water vapour of

2 %. This high resolution spectrum has been computed with the HITRAN

2008 database [31] with a resolution of 0.025 cm−1 and the corresponding

absorption distribution function has been calculated from Eq. 5 at T0. The

values of the absorption coefficient go from kmin = 1.36×10−6 m−1 to kmax =

16



5.83×102 m−1. We consider a transparent class from kmin to kcut = 10−3 m−1

and we logarithmically discretize the range [kcut; kmax] into Nk = 9 classes.

The emission of the transparent class is taken into account for computing

the radiative source term. The accuracy of the model compared to the LBL

approach is examined from emissivity calculation of isothermal columns of

different lengths at T0. Relative errors between LBL results and global model

results do not exceed 1 %.

The angular POD reduction is performed from a reference radiation cal-

culation using the temperature snapshot of Fig. 1 and a S26 discrete ordinates

method (364 angular basis functions) for the angular discretisation of each

of the nine k-classes. The process detailed in Sec. 3 is applied to build the

angular POD basis functions and derive the angular reduced order model.

The accuracy and efficiency of the model in solving the reference problem is

then compared to the discrete ordinates method. In Sec. 4.1 we will focus on

the computation of the incident radiation field Gi(r) of each k-class i and in

Sec. 4.2 we will focus on the computation of the radiative power Prad(r).

4.1. Computing the incident radiation for each k-class

In this section we will first examine the accuracy and efficiency of the

POD model for computing the incident radiation for each k-class separately.

Radiation calculations are carried out with the POD model for different levels

of truncation of the POD expansion, and with the discrete ordinates method

for different order N . For each calculation (POD or SN) the following error

measure for the incident radiation is computed

ei =

∫
(Gi(r)−Gref

i (r))2dr∫
(Gref

i (r)−Gbi(T (r)))2dr
, (21)
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where the superscript “ref” refers to the reference S26 solution and Gbi(r) =

4wiσT
4(r) corresponds to the blackbody emission.

This error measure is plotted against the angular basis size in Fig. 2

for four of the nine k-classes, associated with different optical thicknesses

(k2L = 8.87 × 10−3, k4L = 1.70 × 10−1, k6L = 3.24, k8L = 62.0). It could

be noted that the convergence of the SN method is not much affected by

the optical thickness: for each k-class, the error roughly scales in M−1, M

being the angular basis size. However, for the POD model, the convergence

strongly differs between thin and thick classes. For the thin classes (k2 and

k4) the error first oscillates above the SN curve but then strongly drops and

the POD model becomes between 10 to 100 times more accurate than the

SN method for the same basis size. For the thick classes (k6 and k8) the

error is always below the SN one. The decay is smooth, faster than for the

SN method, and roughly scales asM−2. From about 20 basis functions, the

POD model is between 10 to 100 times more accurate than the SN method.

To further analyse the accuracy of the POD model, the spatial distribu-

tion of the difference with the reference solution is showed in Fig. 3 for the

third and seventh classes (k2L = 8.87 × 10−3, k7L = 14.2) when using 60

basis functions for both POD and SN . Is also showed in Fig. 3 the reference

incident radiation. For the third (thin) class, wall to wall and wall to gas

transfer are dominant. Radiative transfer is very directional and the differ-

ence distribution follows dominant propagation directions for both POD and

SN , although differences are lower in the POD model. This error structure

is partly due to slight ray effects remaining in the reference solution. For

the seventh (thick) class, wall to gas and gas to gas transfer are dominant
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Figure 2: Incident radiation error norm (as defined in Eq. (21)) as a function of the angular

basis size for four k-classes. Comparison between discrete ordinates (black plain lines) and

POD models (red dashed lines).
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Figure 3: Reference incident radiation Gref (left), difference with S10 calculation (middle)

and difference with POD60 calculation (right), for the third k-class (top, k3L = 3.88×10−2)

and for the seventh k-class (bottom, k7L = 14.2)

and the spatial distribution of the incident radiation follow the patterns of

the temperature field. The differences in the SN method are located along

the isothermal walls where the incident radiation gradients are the strongest.

Little differences can be also observed near the isothermal walls with the

POD model but an order of magnitude lower than with the SN method.

In order to understand the convergence properties of the POD model, the

eigenvalue spectrum of the decomposition is presented in Fig. 4 for five of the

nine k-classes. Larger eigenvalues are obtained for the thin classes because

the weight wi (see Eq. (6)) associated with the radiation emission of the k-

class i decreases with the optical thickness. Each spectrum is characterized

by a dominant first eigenvalue, representing the mean angular distribution

but the decay of the next eigenvalues changes with the optical thickness. For

20



1 10 100
angular basis size

1e-12

1e-08

0.0001

1

10000

1e+08

ei
ge

nv
al

ue
s

k1L = 2.03e-3
k3L = 3.88e-2
k5L = 7.42e-1
k7L = 14.2
k9L = 271

Figure 4: Eigenvalue spectrum of the POD for five k-classes.

the thin classes, the decay is slower meaning that the angular information is

more difficult to condensate and that a large number of POD basis function is

necessary to reconstruct the data. At the optically thin limit, the propagation

directions are indeed strongly coupled because of the diffuse reflection of

top and bottom walls. On the contrary, for the thick classes, the decay

is faster meaning that the POD model is able to extract a few dominant

eigenmodes. Comparing the convergence plots of Fig. 2 with the eigenspectra

of Fig. 4 it can be noticed that the error decay with the number of POD basis

functions scales with the square root of the eigenspectrum decay. This is a

very interesting result that can be used to define a priori truncation level

for the POD expansion to reach a given level of accuracy. This feature will

be used in Sec. 4.2 to select the most appropriate POD basis size for each

k-class.
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The six first POD basis functions GP (Ω) are shown in Figs. 5 and 6 for the

third and seventh k-classes, respectively. The basis functions are displayed

in one projected hemisphere as the angular domain is restricted to polar

angle θ ∈ [0; π/2] and azimuth angle φ ∈ [0; 2π] for a two-dimensional spatial

domain. For the third (thin) class, the POD basis functions are characterized

by sharp variations with the azimuthal angle, designed to capture the incident

radiation from the walls from any spatial point of the medium. Additional

variations are noticeable in the polar angle, due to the multiple reflections by

the top and bottom diffuse walls that creates very large optical paths. The

first POD mode displays a horizontal propagation direction corresponding to

the mean energy transfer between the two isothermal black walls. For the

seventh (thick) class, the POD basis functions have smoother shapes with

respect to both polar and azimuthal angle. The first mode captures a mean

diagonal propagation direction representative of radiative exchange between

hot gas in the top right corner of the cavity and cold gas in the bottom left

corner of the cavity.

So far, we have seen that the POD model is able to provide more accurate

results than the SN method for a given angular basis size, although the re-

duction is more efficient when increasing the optical thickness. We will now

assess the computational efficiency of the reduced order model. The error

measure of Eq. (21) is plotted against the CPU time in Fig. 7 for four of the

nine k-classes (the same as in Fig. 2) for both POD and SN . For the thin

classes (k2 and k4), the POD model does not show any computational gain,

except for the highest angular discretisation. However, for the thick classes

(k6 and k8), a computational speed up to reach a given error level is observed
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Figure 5: The first six POD basis functions, from left to right and from top to bottom,

for the third k-class, k3L = 3.88× 10−2.

  

Figure 6: The first six POD basis functions, from left to right and from top to bottom,

for the seventh k-class, k7L = 14.2.
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and reaches an order of magnitude for a large range of angular basis size. For

a given angular basis size, the POD model is actually more computationally

expensive than the SN method because the POD basis functions lead to the

formation of dense angular matrices and it is more time consuming to as-

semble and solve the associated linear system. This additional computational

cost varies with the optical thickness: POD is around 5 times slower than

SN for a thick class and around 10 times slower for a thin class. For the

optically thin classes, the POD model suffers from a very low convergence

rate of the linear solver. A very high number of iterations is necessary to

converge suggesting that the linear system is ill-conditioned. However, the

convergence is much faster for the thick classes: the number of solver itera-

tion is 400 times larger (in average) for the first k-class (k1L = 2.03× 10−3)

compared to the last k-class (k9L = 271). This is further confirmed by an

estimation of the condition number of the space-angle matrix that is of the

order of 100 for the thin classes while it is of the order of unity for the thick

classes. Finally, it should be noted that the computational time required for

generating the snapshot data was not considered here, though it should be

taken into account for assessing the efficiency of a predictive POD model. It

is around 2× 104 s in the present case.

4.2. Computing the radiative power

When studying natural convection of radiating gases, the objective is

more to compute the radiative power rather than to compute the incident

radiation for each k-class, because the radiative power is the coupling quan-

tity that goes into the energy balance of the material system. We will thus

assess in this section the efficiency of the POD model in computing the ra-
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Figure 7: Incident radiation error norm (as defined in Eq. (21)) as a function of computa-

tional time for four k-classes. Comparison between discrete ordinates (black plain lines)

and POD models (red dashed lines).
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diative power given by

Prad(r) =
∑
i

kiGi(r)−
∑
i

wiki4σT
4(r). (22)

The second emission term of Eq. (22) being deterministic, numerical errors

only lie in the evaluation of the first absorption term, that is equal to the

sum over all the k-classes of the incident radiation weighted by the absorption

coefficient.

The results of Sec. 4.1 have shown that the number of POD basis function

to reach a given error level on the incident radiation is not the same for each k-

class and that this error scales with the square root of the eigenvalue spectrum

of the POD. In order to find a priori the best POD basis size MP
i for each

k-class i for optimally computing the radiative power, we propose a simple

error scaling based on the eigenvalue spectrum and the optical thickness. It

consists in adding POD functions onto the angular basis until the following

criteria is satisfied

λi,mkiL < τ 2, (23)

where τ is a given tolerance and λi,m is the mth eigenvalue for k-class i,

and fix the basis size MP
i = m. The resulting distribution of angular basis

size across the optical thickness range is presented in Fig. 8 for different

tolerance values. This distribution has a bell shape: the maximum angular

resolution is put for the fourth and fifth classes. A low angular resolution

is put in the thinnest classes because they do not contribute much to the

radiative power, although the associated eigenspectrum decay is slow. On

the contrary the thickest classes contribute a lot to the radiative power but

the angular information is efficiently reduced by the POD, and again only
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Figure 8: Distribution of angular basis size accross the optical thickness range in the

optimised POD* model for different tolerance values τ .

a few POD basis functions are retained. This optimised POD discretisation

will be noted POD* in the following.

We will now compare the accuracy and efficiency of uniform POD (same

number of basis functions for each k-class), optimised POD* (using the ba-

sis function distribution of Fig. 8) and uniform discrete ordinates using the

following error measure

e =

∫
(Prad(r)− Prad,ref(r))2dr∫

Prad,ref(r)2dr
, (24)

where the superscript “ref” refers to the reference S26 solution. This error

measure is given against the averaged angular basis size in Fig. 9 and against

the computational time in Fig. 10 for POD, POD* and SN models. For the

optimised POD* model, the points in the graphs correspond to tolerance

values in the range τ 2 ∈ [5 × 10−5; 2 × 10−6]. Compared to the discrete
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ordinates method, the uniform POD model has a faster convergence rate and

uses less basis functions to reach a given error level but this angular reduction

is not sufficient to obtain an actual gain in terms of computational time.

However, the optimised POD* model allows for a much higher reduction of

the averaged angular basis size leading to a significant time saving. Compared

to the discrete ordinates method, the optimised POD* model uses about 10

times less angular basis functions and 2 to 3 times less computational time

to reach a given error level. Interestingly, we have noticed the error e in

the optimised POD* model roughly equals the tolerance τ of the heuristic

scaling (23) used for the truncation of each class. This feature will be very

useful for developping predictive POD models but need to be confirmed in

other test problems.

5. Conclusion

This paper has presented a reduced order model for discretizing the an-

gular dimension of the radiative transfer equation in non grey media. The

POD method has been used to extract angular basis functions from high

order discrete ordinates solutions. A finite element approach has been used

to discretised the RTE in space and angle and the POD angular matrices of

the reduced system has been easily constructed from the SN angular matri-

ces of the reference system. The method has been applied independently to

each absorption coefficient class built from a global model of the radiative

properties of the medium, allowing the angular basis functions to be tailored

to a given optical thickness. The suitability of the POD model for thermal

radiation has been assessed by computing the radiation field associated with
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Figure 9: Radiative power error norm (as defined in Eq. (24)) as a function of the averaged

angular basis size. Comparison between discrete ordinates (black plain lines), uniform

POD (red dashed lines) and optimised POD* (blue squares) models.
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a humid air flowing in a square differentially heated cavity.

Results have shown that the POD model is very accurate and efficient

for treating the thick classes: for reaching the same accuracy on the incident

radiation, the CPU time is reduced by an order of magnitude compared to

the SN method. However, the thin classes suffer from a low convergence

rate probably due to the reflections by the boundaries in the problem consid-

ered. For computing the radiative power, we have proposed a simple scaling

based on the POD eigenspectrum and the optical thickness, in order to find

the optimal POD basis size for each absorption coefficient class. The com-

putational effort is put on the intermediate optical thickness range as the

optically thin classes do not contribute much to the radiative power and the

angular behaviour of the optically thick classes is efficiently condensed by the

POD. This optimised POD angular size distribution allows us to reduce the

averaged number of angular basis function of an order of magnitude and to

reduce the CPU time by a factor 2 to 3 to reach a given level of accuracy on

the radiative power, compared to the SN method. The heuristic scaling that

gives this optimised angular distribution would need however to be tested in

other problems.

This study focused on the ability of the angular POD model to reproduce

the reference results. Future research will investigate the prediction capabili-

ties of the POD model when changing the radiative properties of the medium

or when considering time-dependent problems. Although the angular depen-

dence of the radiation field varies a lot with the optical thickness between

the thinnest class (kL ∼ 10−3) and the thickest class (kL ∼ 103), it could be

assumed that the angular POD basis are well adapted for an optical thickness
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range (typically of the order of 5 to 10) and not only for a single value of

the absorption coefficient. This would allow to predict the radiation field as-

sociated with another participating medium, with a different distribution of

the global model parameters (ki, wi). This capability has been demonstrated

in a recent work [29] on neutron transport in reactor physics where angular

POD basis functions were built from snapshots computed with varying ma-

terial cross-sections and the associated angular ROM was efficient in solving

unseen problems with different properties. Moreover, when studying turbu-

lent flows (higher Rayleigh number in the considered problem), the radiation

computation needs to be repeated as the temperature field evolves. Because

the angular POD basis functions do not seem to be strongly affected by the

details of the temperature field, they could be potentially used for a large

number of radiation calculations over time and thus provide a substantial

computational gain in coupled flow/radiation problems.

Finally, other perspectives concern the improvement of the computational

efficiency of this angular POD model. The solving time of the discretised

linear system could be decreased by developing dedicated preconditioner, es-

pecially for optically thin media. The gappy POD technique [32] could also

be used to coarsen the spatial resolution of the reduced order model. A last

strategy for further decreasing the angular number of degrees of freedom (and

thus improve the efficiency) would be to vary the POD basis size through

the spatial domain. Such angular adaptivity algorithm would be possible

because of the hierarchical nature of the POD basis functions.
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[14] B. Podvin, P. Le Quéré, Low-order models for the flow in a differentially

heated cavity, Physics of Fluids 13 (11) (2001) 3204–3214.

34



[15] F. Fang, T. Zhang, D. Pavlidis, C. Pain, A. Buchan, I. Navon, Reduced

order modelling of an unstructured mesh air pollution model and ap-

plication in 2d/3d urban street canyons, Atmospheric Environment 96

(2014) 96–106.

[16] R. Pinnau, A. Schulze, Model reduction techniques for frequency aver-

aging in radiative heat transfer.

[17] A. G. Buchan, A. A. Calloo, M. G. Goffin, S. Dargaville, F. Fang, C. C.

Pain, I. M. Navon, A POD reduced order model for resolving angular

direction in neutron/photon transport problems, Journal of Computa-

tional Physics 296 (2015) 138157.

[18] J. Tencer, K. Carlberg, R. Hogan, M. Larsen, Reduced order modelling

applied to the discrete ordinates method for radiation heat transfer in

participating media, HT2016-7010, in: Proceedings of the 2016 Summer

Heat Transfer Conference, ASME, Washington, DC, USA, 2016.

[19] J. Tencer, K. Carlberg, M. Larsen, R. Hogan, Accelerated solution of

discrete ordinates approximation to the Boltzmann transport equation

for a gray absorbing-emitting medium via model reduction, Journal of

Heat Transfer 139 (2017) 122701.

[20] M. K. Denison, B. W. Webb, An absorption-line blackbody distribution

function for efficient calculation of total gas radiative transfer, Journal

of Quantitative Spectroscopy and Radiative Transfer 50 (5) (1993) 499–

510.

35



[21] M. K. Denison, B. W. Webb, The spectral-line-based weighted-sum-of-

gray-gases model in nonisothermal nonhomogeneous media, Journal of

Heat Transfer 117 (1995) 359–365.

[22] L. Pierrot, Ph. Rivière, A. Soufiani, J. Taine, A fictitious-gas-based

absorption distribution function global model for radiative transfer in

hot gases, Journal of Quantitative Spectroscopy and Radiative Transfer

62 (1999) 609–624.

[23] M. F. Modest, H. Zhang, The full-spectrum correlated-k distribution for

thermal radiation from molecular gas-particulate mixtures, Journal of

Heat Transfer 124 (2002) 30–38.

[24] A. G. Buchan, A. S. Candy, S. R. Merton, C. C. Pain, J. I. Haidi,

M. D. Eaton, A. J. H. Goddard, R. P. Smedley-Stevenson, The inner-

element subgrid scale finite element method for the Boltzmann transport

equation, Nuclear Science and Engineering 164 (2010) 105–121.

[25] A. G. Buchan, S. R. Merton, C. C. Pain, R. P. Smedley-Stevenson,

Riemann boundary conditions for the Boltzmann transport equation

using arbitrary angular approximations, Annals of Nuclear Energy 38

(2011) 1186–1195.

[26] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschel-

man, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.

Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp,

P. Sanan, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users

manual, Tech. Rep. ANL-95/11 - Revision 3.10, Argonne National Lab-

36



oratory (2018).

URL http://www.mcs.anl.gov/petsc

[27] L. Soucasse, Ph. Rivière, S. Xin, P. Le Quéré, A. Soufiani, Numerical
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