
HAL Id: hal-02121346
https://centralesupelec.hal.science/hal-02121346v1

Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Daccosim NG: co-simulation made simpler and faster
José Évora Gómez, José Juan Hernández Cabrera, Jean-Philippe Tavella,

Stéphane Vialle, Enrique Kremers, Loïc Frayssinet

To cite this version:
José Évora Gómez, José Juan Hernández Cabrera, Jean-Philippe Tavella, Stéphane Vialle, Enrique
Kremers, et al.. Daccosim NG: co-simulation made simpler and faster. 13th International Modelica
Conference 2019, Mar 2019, Regensburg, Germany. �hal-02121346�

https://centralesupelec.hal.science/hal-02121346v1
https://hal.archives-ouvertes.fr


Daccosim NG: co-simulation made simpler and faster

José Évora Gómez1 José Juan Hernández Cabrera2 Jean-Philippe Tavella3 Stéphane Vialle4

Enrique Kremers5 Loïc Frayssinet6

1Monentia SL, Spain, jose.evora@monentia.com
2SIANI, Spain, josejuanhernandez@siani.es

3EDF Lab Paris-Saclay, France, jean-philippe.tavella@edf.fr
4CentraleSupélec - University Paris-Saclay & LRI, France, {Stephane.Vialle}@centralesupelec.fr

5EIFER, Germany, enrique.kremers@eifer.org
6CETHIL - BHEE, France, loic.frayssinet@insa-lyon.fr

Abstract
This paper introduces the last evolution of Daccosim co-
simulation environment, with Daccosim NG developed in
2018. Main features of Daccosim NG are described: en-
hanced Graphic User Interface and Command-Line In-
terface, algorithm and mechanism of co-simulation, co-
execution shell, software architecture designed for both
centralised and distributed architectures, aggregation of a
co-simulation graph into a Matryoshka FMU, and declar-
ative language to design large scale co-simulation graphs.
A new industrial use case in simulation of energetic sys-
tems is also introduced, and first performances of Dac-
cosim NG on multi-core architectures are analysed.
Keywords: co-simulation tool, multithreaded execution,
master algorithm, FMI standard, energy system, runtime
performance

1 Introduction
The study of Smart Grids, which are intelligent energy
systems enhanced by additional communication means
and modern IT features, requires a complex analysis of
many components considering different aspects. These
aspects are amongst others, the demand, production (in-
cluding renewable), stability of the power grid and flexi-
bility assessment. This is the case for Electricité de France
(EDF) and the European Institute For Energy Research
(EIFER), where Smart Grids and, more in general, Multi-
Energy System analysis are performed through simula-
tions representing the power grids considering multiple
aspects. To this end, EDF and EIFER are working in the
development of simulation models.

For instance, there are teams working in the modelling
and simulation of customers by representing how devices
consume energy at their homes: fridges, stoves, wash-
ing machines, etc. The analysis of the energy demand
of these devices also requires to study thermal dynamics,
since many of these devices produce heat or cold. Besides
of thermal dynamics, the sociotechnical behaviour of the
customers must also be represented as they are the ones
who operate the devices. There are also teams develop-

ing models for representing thermal gains and loses for
houses, buildings, districts, etc. Other teams are dedicated
to optimise the grid operation with massive renewable en-
ergy and storage units.

Some examples of these kinds of business models are
ThermoSysPro, BuildSysPro, PlantSysPro, TelSysPro and
EPSL. ThermoSysPro (Hefni et al., 2011) is a library de-
voted to the modelling and simulation of power plants and
energy systems. BuildSysPro (Plessis et al., 2014) is de-
signed to be used in several contexts including building
physics research, global performance evaluation, technol-
ogy development and impact assessment. PlantSysPro is
devoted to industrial processes like hot water system. Tel-
SysPro is a new Modelica library able to model the impact
of telecommunication networks on complex systems from
failure/repair rate of components and stochastic latency.

These teams develop their models using the tool that
is the most appropriate according to their work habit or
affiliation. There are many tools or programming lan-
guages that can be used for developing these models: Any-
logic (Borshchev, 2013), Dymola (Elmqvist et al., 1996),
Matlab (Guide, 1998), Java (Gosling et al., 2014), Python
(Rossum and al., 2007), etc. So, it happens very often that
teams want to collaborate by making their models inter-
operable with others. This is challenging since models are
developed in different tools. At this level, the interoper-
ability challenge is double: syntactic and semantic (Her-
nandez et al., 2016).

The syntax challenge consists in being able to techni-
cally communicate models that are developed in different
tools. For instance, this problem is equivalent to two peo-
ple trying to speak when they do not have a common lan-
guage. The semantic problem has several axis when talk-
ing about data exchange between two models: meaning of
the words, units that are used, data types, etc. The most
common semantic problem in models communication is
to have different words to express the refer to the same
concept.

The syntactic problem is addressed in FMI (Blochwitz
et al., 2011). FMI, the Functional Mock-Up Interface,
is a tool-independent standard that supports both model



exchange and co-simulation of dynamic models using a
combination of XML-files and compiled C-code. In this
way, every model that is exported following this standard
can be inter-operated with other exported models (FMU -
Functional Mock-Up Unit). In the case of co-simulation,
an FMU contains a definition of the model expressed in a
standard format using XML and some binaries depending
on the platforms to which the FMU is compatible with.
These binaries are dynamic libraries that can be loaded by
a Master Algorithm (MA) and have a standard interface
that the MA knows. In this context, FMUs are considered
as slave components that are commanded by MAs. A MA
is a piece of software that coordinates the execution of
several FMUs (slaves). This coordination mainly regards
the data exchange between the different FMU models and
their scheduling (the way time is advanced).

The construction of the MA to engineer co-simulations
is the main challenge this paper addresses. To this end,
we present a new version of Daccosim (Distributed Ar-
chitecture for Controlled CO-SIMulation) (Galtier et al.,
2015; Tavella et al., 2016). This new version is called
New Generation (NG). Daccosim NG is a tool oriented
to facilitate the construction of co-simulations. To this
end, the MA behaviour can be easily defined using a very
simple interface. Through the Daccosim graphical user
interface (GUI), the user can drag-and-drop the different
FMUs that are desired to use and, through arrows, the
data exchanges among FMUs are defined. Data exchanges
are made from an FMU output with a given name to an
FMU input which may have a different name, address-
ing in this way the semantic interoperability challenge of
having different wording to refer concepts of the reality.
Additionally, Daccosim NG provides mechanisms to deal
with other semantic problems as data types or units mis-
match.

The new version, NG, is based on the same concept as
previous Daccosim versions but re-written from scratch
to get an industrialized code knowing that the first Dac-
cosim experience was achieved without professional soft-
ware developers. A new dramatically simplified installa-
tion procedure, a redesigned smarter interface and better
performances are the strongest points of this new version.

This paper firstly introduces some co-simulation use
cases that have been addressed using Daccosim NG. Then,
Dacossim NG is presented showing its capabilities and ex-
plaining how co-simulations are executed. After present-
ing Daccosim NG, the novelties with respect to the old
versions are highlighted. The performances of the new
version are then compared with Daccosim 2017 and the
conclusions and roadmap are discussed.

2 Co-simulation use cases
2.1 Available use-cases in Daccosim NG
From 2018, several demonstration cases are supplied in
Daccosim NG deliveries. Some are trivial examples while
others are business-oriented use cases. All the referenced

FMUs are license-free and have been built using the most
recent version of Dymola both for 32-bit or 64-bit ma-
chines. In addition all the Modelica source models are
supplied for a better understanding.

These demonstration use cases can be downloaded from
the Daccosim website (Evora et al., b) regardless Dac-
cosim NG releases. They are organised in three folders
named 1-coinit-only, 2-academic, and 3-industrial.

Cases located in 1-coinit-only are co-initialization ex-
amples where only a starting point is calculated (no time
integration). They illustrate how a system composed with
two or more coupled FMUs can be initialised solving alge-
braic loops between FMUs using a Newton-Raphson algo-
rithm. Incidentally, some cases also show how operators
can be used as objects dropped in co-simulation graphs in
addition to FMUs (section 3.3). One of these cases is more
deeply detailed in section 3.2.1.

Cases located in 2-academic are academic examples il-
lustrating different non-stiff and stiff cases, sometimes in-
cluding internal events in FMUs. Among other interesting
cases, we can emphasise on:
• A case defining a co-simulation graph with FMUs

exported from ControlBuild and Papyrus coupled
with Dymola FMUs (non-Modelica source models
are not supplied)

• Theoretical cases illustrating the capability to define
thousands of connections between two FMUs or to
instantiate hundreds of times the same FMU

• Two other cases showing how a stochastic behaviour
implemented in Modelica models can be useful at a
system level

Lastly, 3-industrial folder is dedicated to industrial
cases. At the time being, only one case is included in this
folder but we intend to enrich it next with for example a
distributed power flow.

The supplied use case is related to district heating and
cooling energy in buildings. The system represents a dis-
trict composed with 23 buildings (with only 2 adjoining
walls) with inter-building long-wave radiation coupling
and solar flux pre-processed per facade to account for
shadings and reflections. These FMUs have been built
with public components from the EDF BuildSysPro li-
brary (Plessis et al., 2014). It represents one of the four
variants of a business case more deeply described in sec-
tion 2.2.

2.2 Building heating and cooling power load
at district scale use cases

The heating and cooling energy consumption of buildings
is a critical target for current energy issues as its contribu-
tion to the overall energy consumption and related green-
house gases emissions is dominant, while its saving po-
tential is high (IPCC, 2014). Furthermore, district scale
implementation offers advantage for the integration of re-
newable energy sources, particularly in buildings, and no-
tably via Smart Grids.

Therefore, the modelling of the building heating and



cooling power load at district scale is essential. However,
it faces two main challenges: the computational cost, that
becoming prohibitive when using detailed model, decreas-
ing the temporal scale and increasing the spatial scale;
and the lack of data at the district scale. To cope with
these constraints, the level of detail of the models has to
be adapted.

In order to quantify the adaptation suitability, the plat-
form MoDEM (standing from Modular District Energy
Model (Frayssinet, 2018)) has specifically been devel-
oped. This platform is able to generate building energy
model at district scale, with different level of detail, auto-
matically from geometrical data. The district scale model
is made of Modelica building models1, that are coupled
(common wall and long-wave radiative heat exchanges),
depending on the modelling variant, and co-simulated
with Daccosim NG after being converted in FMUs.

The use cases correspond to a district of Paris, France,
made of 23 buildings (with 2 adjoining walls)2 for the fol-
lowing variants:

1. Model–the most detailed–considering inter-building
long-wave radiation coupling and pre-processed so-
lar fluxes computed per facade to account for shad-
ings and reflections.

2. Model (1) but with a lower discretisation of the con-
ductive heat problem (fewer equations).

3. Model (2) but without long-wave coupling and and
specific solar fluxes (less external resources and no
connection between FMUs, excepted for the adjoin-
ing buildings).

4. Model (3) but with a simplified model for the con-
ductive heat problem (less equations).

These models were simulated for one year and a month,
with a constant time step of 900 s.

The present models focus on heating and cooling but
the FMI offers further opportunities to couple these mod-
els with energy system, occupant behaviour and energy
network models, toward integrated district energy model.

2.3 Urban energy planning use cases
Urban planning use cases are dedicated to the simulation
of the multi-energy system of one or more districts, up to a
whole town or city, consisting usually in several hundreds
or thousands of buildings. This use case is considered as
a prospective evolution and application for Daccosim NG,
and will thus not be directly analysed in this work. How-
ever, even if the time resolution of these models is rather
low in comparison to the previous ones (1h-15min), it is
a use case that has high requirements for scalability and
thus parallelisation, as it replicates the number of build-
ings of the use case 2.2, "Building heating and cooling
power load at district scale use cases", by a factor of 10-
500. Therefore it has been identified as relevant, and the
requirements and lessons learned by the prototypes being

1Using the BuildSysPro library.
2More information about the characteristics of the district can be

found in previous reference.

Figure 1. Daccosim interoperability example

done in this direction on the Anylogic platform by EIFER
are gently provided as inputs to drive and inspire the Dac-
cosim NG development to support such applications.

3 Daccosim NG
Daccosim NG is an environment to develop co-simulation
use cases supported by JavaFMI, a suite of tools for in-
teroperability using the FMI standard (Evora et al., 2013).
Daccosim allows the design, development and execution
of co-simulation graphs, providing mechanisms to repre-
sent co-simulation graphs.

Daccosim NG is able to integrate different simula-
tors exported as executable FMUs from various FMI-
compatible tools. An exported FMU is a simulator con-
tained in a FMU file, according to what is understood in
the FMI standard. This way, any simulation developed in
any programming language and deployed in any computer
could be imported in Daccosim NG.

In figure 1, an example of a co-simulation integrating
simulators from different sources is shown. On the upper
part of the figure, it can be seen how Dymola, Matlab or
ControlBuild simulators are integrated as FMUs. Same
way Java or C++ codes can be exported as FMU thanks to
the JavaFMI Builder tool (Evora et al., 2013).

Daccosim NG can be used through a graphical user in-
terface (GUI) or a command-line interface (CLI). In sub-
sequent sections, it is described how co-simulation graphs
are defined, initialised and executed. Besides, some fea-
tures are presented: the GUI, the CLI, FMI exposition,
the matryoshka FMUs construction, the Daccosim graph
declarative language. In a user’s guide available with the
tool distribution (Evora et al., a), more detailed informa-
tion about the usage of Daccosim NG is available.

3.1 Co-simulation graph design
A co-simulation graph is composed of nodes and arrows
that connect nodes. A connection defines which output
variables of a source node are connected to which in-
put variables of a target node. There are different types
of nodes that can be included in a co-simulation graph:



FMU, operators, external inputs or external outputs:
• FMU: this node represents an FMU and it holds the

file path, the variables used as input and output, and
the initial values for variables and parameters.

• Operators: there are four operators: adder, multi-
plier, offset and gain. These operators allow to make
calculations using outputs of other nodes providing
the result in an output to be used. The adder and
multiplier have two or more inputs and one output.
The offset has only a fixed value and one input that
are summed. The gain is defined with a fixed value
that will multiply a given input. All of these nodes
can work with Reals, Integers and Booleans.

• External inputs/outputs: these nodes allow to provide
fixed values as input for other nodes (external input)
or to store values provided by an output (external out-
put). Both kind of nodes can have several variables.
For instance, an external input will hold several out-
puts that can be used for other nodes.

Once nodes are defined, arrows can be established to
define how variables are exchanged among them.

3.2 Co-simulation algorithm
Once the co-simulation graph is defined, the execution of
the co-simulation can be done. The execution consists
in the following steps: loading, co-initialisation (section
3.2.1), co-execution and exporting the results. The Dac-
cosim engine executes each step of this method in parallel
so that all cores of a machine are used, improving the per-
formance (section 6).

In listings 1 the co-simulation algorithm is described.
The procedure starts by opening the file in which the co-
simulation is defined and loading the graph in memory.
After opening this file and processing it, every FMU that
is used is also loaded. In this way, co-simulation graph is
ready for next steps: co-initialisation and co-simulation.

Listing 1. Co-simulation algorithm

public void execute() {
loadGraph();
coInit();
export(currentTime);
while (currentTime < stopTime) {

currentTime += doStep();
export(currentTime);

}
terminate();

}

After the co-initialisation process is executed (check
section 3.2.1 for more information about this process), the
initial values of the variables selected by the user for ex-
portation are written into the output file for being anal-
ysed afterwards. Then the co-execution process starts. For
this, the doStep method is called as many times as neces-
sary until the stop time of the simulation is reached. The
way the co-execution works is further described in section
3.2.2. After each successfully performed step, the values
to be exported are once more written in the output file.

Once the stop time is reached, the simulation is finished
by terminating all FMUs and closing the exportation file.

3.2.1 Co-initialisation

One of the difficulties of the kind of co-simulations we
are considering is the setting of consistent system-wide
initial values for all the components. The Daccosim co-
initialisation algorithm starts by building a global depen-
dency directed graph for the connected variables of the
FMUs. It uses the connections established by the user
to find external dependencies between the outputs from
source FMUs and the inputs from sink FMUs.

The key idea is that a topological sorting of the directed
acyclic graph (DAG) naturally gives the order in which the
variables must be initialised. Therefore, this led to study
how to convert a generic directed graph into a DAG. The
solution found is to build the graph of strongly connected
components (SCC) corresponding to cyclic dependencies.
The resulting graph in which each SCC has been con-
tracted into a single vertex is a DAG. We use Tarjan’s SCC
algorithm (Tarjan, 1972) (used in many Modelica tools) to
identify each SCC in the dependency graph (runs in lin-
ear time). Following the order obtained with a topological
sorting on the contracted SCC graph:

1. for nodes which were not contracted, simply propa-
gate their values

2. for nodes which were contracted (they correspond
to cyclic dependencies), we solve the initialisation
problem using an iterative algorithm called JNRA
(Jacobian based Newton-Raphson Algorithm) in-
spired by traditional Newton-Raphson algorithms of-
ten used for electric load flow computation.

The example in figure 2 illustrates the co-initialisation
of a system composed with two equations and two un-
knowns:
• equation1 model calculates x2 from x1 according to

the equation: 2x2
1 +5x2 = 42

• equation2 model calculates x1 from x2 according to
the equation: x1 −6x2 = 4.

As it can be seen in figure 2, equation1.x2 depends
on equation2.x1 while equation2.x2 depends on equa-
tion1.x2. In dotted lines it can be seen an algebraic loop
where modifications on equation1.x1 affects equation1.x2
and modifications in equation2.x2 affects equation2.x1.
Then, the co-initialisation procedure will then compute
this graph to provide a consistent initial value to all vari-
ables. To do this, it will detect one SCC and, after sev-
eral iterations, x1 and x2 will reach following values (x1
= 4.56, x2 = 0.09).

3.2.2 Co-execution

In Daccosim, it is possible to choose how the time is ad-
vanced when executing the co-simulation graph. There
are two main categories of time steppers: constant and
variable.

The constant stepper advances the simulation using a
fixed step size. That is, when the simulation is stepped,



Figure 2. Calculation graph and dependency graph

the time that will be advanced is every time the same one.
Constant stepper may not present a good computation/ac-
curacy ratio: the choice of a small value for the step size
results in a large number of computation steps, while a
large value might fail to capture some variations in the
simulated variables.

Depending on FMU capabilities, Daccosim NG also
implements several variable stepping strategies. After the
simulation of step i, each FMU examines its outputs and
estimates how far they are from the exact value. Dac-
cosim NG implements two algorithms which do that: one
is based on the Euler’s method and a second one is based
on Adams Bashforth’s method. Their principle is to store
the values of the derivatives at consecutive communica-
tion points to infer an estimation at the next iteration. If
the error is found to be tolerable, the engine will propose
to perform the next step with a bigger step size. Other-
wise, the last step would be cancelled and redone with
a smaller step size value. The rollback is made possible
since version 2.0 of FMI which introduced the notion of
FMU state, allowing the serialisation of the FMU state be-
fore performing a simulation step, and the restoration of
the saved state if necessary.

Suppose FMU A provides inputs for FMU B and initial
step value is 10. At t10, it is decided that the step must
be redone with a step size of 6 and it does not send its
outputs to B. B, on the other hand, is satisfied with its
outputs and only awaits updated inputs from A to perform
its next step (from t10 to t20). When A reaches t6, it could
send its outputs to B but they would not make much sense
since B already advanced to t10 (and the next available
outputs from A could be time stamped t12, which is not
satisfactory either). To avoid this situation, all the FMUs
adopt the same pace and they will all redo the cancelled
step with the same new (smaller) step size. Conversely, if
all the FMUs agree on a bigger step size, it will be used
for the next steps.

It is also intended to implement another variable step-
ping method based on the concept of state quantiza-
tion used in the Quantized State Systems (QSS) methods
which are non-stiff QSS solvers of different orders de-
scribed by Ernesto Kofman in many publications (Kofman
and Junco, 2001; Kofman et al., 2001; Kofman, 2002).
QSS adaptations for FMI standard are being designed in
one work package of the French national project Modelis-
cale (2018-2020) leaded by Dassault Systèmes and whose

Figure 3. Daccosim NG GUI

goal is to provide the ability to model and simulate with
Modelica and FMI the behavior of very large energy sys-
tems.

3.3 Editor
This module provides a GUI to facilitate the design, devel-
opment and execution of co-simulation graphs. The editor
can be downloaded from (Evora et al., b). The editor is
distributed in three different formats: exe files for running
in Windows (32 & 64 bits exe files) and a jar file for execu-
tion in any operating system. All of these version require
to have a JVM installed in the system. In any of these three
formats, the editor can be launched by just double-clicking
it (it does not require any installation or configuration).

In the GUI (figure 3), aside from the menu and the
toolbar with the options to deal with the co-simulation
graph, the palette and the canvas are the main components
supporting the definition of co-simulation graphs (Evora
et al., a). The palette contains all the possible nodes that
can be set in the co-simulation graph (note that for space
constraints, not all blocks are visible in the figure). These
nodes can be dragged and dropped into the canvas.

Then, by dragging out from the centre of a node (source
node), an arrow can be created when dropping the mouse
in the target node. The variables that are to be exchanged
in that arrow can be configured by double-clicking it or in
the contextual menu: properties option. Each kind of node
has also its own configuration which can be accessed in
the same way: double-click on the node. In the case of an
FMU node, the label of the node and the initial values of
the FMU variables can be configured. For external inputs
and external outputs, the variables to be connected to other
nodes can be defined and their initial value set. In the
case of the operators, the data type to work with (either
Real, Integer or Boolean) and in the case of the adder and
multiplier, the amount of inputs to receive can be chosen.
In the case of the offset and the gain, the fixed value that
will be added or multiplied to the input can be set.



Figure 4. simx and dngx files

Below the canvas and the palette, there is a blank empty
box in which the user can write a message to describe what
purpose is the model and any other extra information. And
below this box, there is a bar state in which some informa-
tion is contextually displayed to interactions made by the
user.

Up in the toolbar, commands are defined in menus to
create a new co-simulation graph, to open it (see section
4.1 to know more about file formats) or to save it. It is
also possible to cut, copy or paste parts of the graph and
to undo or redo some of the actions made. Then, once the
graph is defined, it can be validated, configured (start and
stop times, variables to export, etc) and executed.

For more information about how to use the editor,
please read the user’s guide (Evora et al., a).

4 Other Features
4.1 Shell
This module wraps the core and provides a command line
interface (CLI) to run co-simulation graphs (Evora et al.,
a). The shell can be downloaded from (Evora et al., b).
This utility allows users to develop script files to run co-
simulation graphs in a batch mode. The main argument
to provide to this CLI is the path to the file in which the
co-simulation graph is stored. With Daccosim NG there
are two main file formats:
• simx: this is an archive file (zip) containing a

folder named fmu with the fmu files used in the co-
simulation graph as well as the sim, dng and dsg files
(figure 4). The sim, dng and dsg files contain rep-
resentations of the co-simulation graph in different
formats. sim file contains the graph including the vi-
sualisation information to be presented in the Editor.
dng contains the graph in the declarative language
(section 4.4). dsg is a serialisation of the graph in
json format. This is the one that is effectively used as
a graph representation for starting the co-simulation
execution.

• dngx: this archive has the same structure and content
than the simx but sim and dsg files are not present
(figure 4). It allows to create a runnable file in which
the graph is defined using the declarative language
(section 4.4). The idea of this format is to allow
other tools or users with a text editor to create a co-

Figure 5. The FMU interface is used by the execution engine.
This way the engine works independently from where FMUs are
being executed

simulation graph compatible with Daccosim NG by
describing it in a dng file. This is especially interest-
ing to develop large-scale co-simulation graphs.

This CLI has also the possibility of parameterizing
some of the features of the execution. The idea is to make
simpler the GUI (editor) by avoiding this kind of param-
eterization and let for advanced users to play with them
using the CLI. For instance, one of the parameters that
can be changed in CLI is to run the co-simulation in sin-
glethread or multithread. In the editor, this option is not
available and all co-simulations are run in multithread by
default.

4.2 Designed for distributed executions
FMU nodes are normally performing costly processes
each time they are called in the doStep method (Blochwitz
et al., 2011). For this reason, the execution engine is also
prepared to be run in a distributed environment allowing
the execution of large-scale co-simulation scenarios. This
is made thanks to the use of abstraction mechanisms so
that the execution engine does not need to be aware of
where each FMU is being physically executed. To this
end, every time the engine interacts with an FMU, it uses
an abstracted interface. Based on this interface, there are
three implementations: FMULocal, FMUStub and FMU-
Soul. First one uses the FMU files from the filesystem
(normal case in a single machine). Second one uses a con-
nection to a Java Message Service (JMS) to interact with
an FMU that is being remotely executed. Third, and last
one, is the representation in the remote computer of the
FMU. This receives the queries from the FMUStub and
acts accordingly (figure 5).

In figure 6, the communication between different ma-
chines running a distributed simulation is exemplified. In
this example, there are three machines. In the first one,
an instance of Daccosim core is responsible for coordinat-
ing a distributed execution. The execution engine of this
instance uses the FMU interface to communicate with the
three FMUs to be coordinated. Two of them are being
executed remotely and one locally. However, as the en-
gine only depends on the interface, these details of where
they are being executed are not important for its execu-
tion. Whenever a command is asked by the engine, the
FMUStub will communicate to the FMUSoul to perform



Figure 6. The communication of the execution engine with the
remote fmu (soul) is made through the stub

the command providing the answer back to the engine.
Note that, despite it is not represented, communications
are made through a JMS. The use of JMS gives flexibil-
ity to design different distribution architectures to support
large scale co-simulations.

4.3 Matryoshka
This feature(Galtier et al., 2017) allows to wrap a co-
simulation graph into an FMU for being used either in
other co-simulation environments like Dymola or in Dac-
cosim NG itself (Evora et al., a). The co-simulation graph
that is stored inside the FMU is seen as a single FMU
when opened by other tools. Every time a master algo-
rithm uses this FMU for any purpose, the Matryoshka
FMU will dispatch the command to the corresponding in-
ner FMU or FMUs.

For instance, if the master commands a simulation ad-
vancement through a doStep to the Matryoshka FMU, this
FMU will perform the doStep for all the FMUs contained
and will exchange the values between the FMUs as de-
scribed in the co-simulation graph. At the same time,
it is possible to embed one Matryoshka FMU inside an-
other co-simulation graph and export this graph into a Ma-
tryoshka FMU having in this way several levels of FMUs
embedded. Exported FMUs will be beneficial (Galtier
et al., 2017):
• FMU can be imported into any FMI compliant simu-

lation tool also able to handle non-FMI components
with which Daccosim NG is not able to directly in-
teract.

• Taking advantage of Daccosim NG efficient, multi-
threaded, step-size control solution helps simulating
faster larger models within traditional monothreaded
simulation tools.

• Initialization of complex graphs is taken care of
within the Matryoshka thanks to Daccosim NG gen-
eralized co-initialization algorithm.

• A complex simulation graph can be reused directly
without having to re-write anything and with no risk
of disclosing industrial and intellectual property.

• The co-simulation process can be finely tuned: when
typically a solver only uses one accuracy objective

for the whole model, Daccosim NG allows the user
to define different tolerance values for every output
and internal variable of each FMU.

Besides, new features have been developed:
• Added information in the modelDescription file

about dependencies of external outputs to external
inputs.

• Continuous inputs extrapolation and output deriva-
tives provision.

These improvements have been accompanied by a signif-
icant FMU size reduction of the order of 3MB. They will
be completed next year with two new features: improve-
ment in the performance when loading multiple instances
and the capability to make rollbacks.

4.4 Declarative language

The declarative language implemented in Daccosim NG
allows the user to define a co-simulation graph on a text
editor or to automatically generate it through a program
(Evora et al., a). To do so, a domain-specific language has
been designed to simply define a co-simulation graph. En-
joying a feedback from user experiences, this language has
been dramatically simplified regarding the previous ver-
sion named DSL in Daccosim 2017. As it can be seen
in listing 2, this language is very simple and can be eas-
ily understood. Its purpose is to create very wide graphs
that cannot be modelled in the GUI, in which there are
hundreds of interconnected nodes exchanging thousands
of variables. This feature allows pre-processing tools to
develop compatible models to be executed in Daccosim
NG. Note a textual form of a co-simulation is automat-
ically generated from the GUI once a valid graph is de-
fined. Conversely, a valid textual form of a co-simulation
can be opened in the GUI and the corresponding graph is
automatically drawn.

Listing 2. Declarative language example

FMU equation1 "fmu/equation1win3264.fmu"
Output equation1 x2 Real
Input equation1 x1 Real
FMU equation2 "fmu/equation2win3264.fmu"
Output equation2 x1 Real
Input equation2 x2 Real
Connection equation1.x2 equation2.x2
Connection equation2.x1 equation1.x1
CoInit 100 1.0E-5
ConstantStepper 1.0
Simulation 0.0 10.0

Listing 2 expresses the co-simulation graph defined in
figure 2 using this language. There are two FMUs decla-
rations followed by the label and the path to the file. Then
the outputs and inputs to be connected are described for
each of the FMUs and the connections defined. Finally,
the co-init, stepper method (constant step with step size
1.0) and simulation start and stop times are defined.



5 Why NG?
In this last year and a half, we have rebuilt Daccosim from
the scratch. To this end, we have gotten rid of some strong
dependencies that made difficult the evolution and use of
the software. Prior version of Daccosim (2017) required
the installation of the Eclipse IDE (Eclipse, 2007) in a spe-
cific version with specific plugins. Then, the source code
of the project had to be imported into it and compiled to
be run. This was a tedious process that made harder to the
users their initial steps in Daccosim. In the new version,
just by downloading it and making a double click, the user
can start working in the design of a co-simulation graph
using a very comfortable GUI.

Since the GUI is detached from Eclipse IDE, the in-
terface is not contaminated by the style in which Eclipse
displays buttons, views, etc. This GUI is tailor made to fo-
cus on the design of the co-simulation graph and its execu-
tion. This way, the result is a very clean interface with two
main components, palette and canvas, in which the graph
is designed. The projects view has also been deleted as
Daccosim NG can be opened as many times as necessary
holding a project on each instance.

The performance has also been improved in many
aspects. Previous Daccosim versions used the co-
simulation graph designed by the user to generate tailor
made Java code for executing the graph. For this rea-
son, co-simulations made by the user were conceived as
”projects”, as they had the files containing the graph def-
inition, the fmus and the generated code for execution.
In this new version, co-simulation graphs are read an in-
terpreted so that no Java code is generated to execute a
specific graph. This makes the process much faster and
lighter, specially for wide co-simulations. This way, all
the information that concerns a co-simulation is stored in
a single simx file (section 4.1). The performance in run-
time is also compared in the following section 6.

From the point of view of the development, the most
important achievements are the removal of strong depen-
dencies (Eclipse and its plugins) and the code maintain-
ability which will make easier the correction of bugs and
the evolution of the software.

Finally, to make easier the experience of the user, a
daccosim-windows-installer has been built for a complete
and simple installation on windows 32-bit or 64-bit ma-
chines. This is available at (Evora et al., b).

6 Performance on parallel machines
6.1 Comparing previous and new Daccosim
In order to exhibit the performances of Daccosim NG, we
run the 4 variants of the case building energy system with
23 FMUs described in section 2.2. The runs have been
done on the same 4-core Windows machine both with
Daccosim 2017 (the previous version of Daccosim) and
with the new Daccosim NG (also called Daccosim 2018).

In order to get reliable results (summarized in table

Variant Model 1 Model 2 Model 3 Model 4
Dac. 2017 6150 s 1666 s 1660 s 2075 s
Dac. 2018 5217 s 1574 s 1562 s 1515 s
Speedup 1.18 1.06 1.06 1.37

Table 1. Performances of Daccosim 2018 vs Dacossim 2017

1), each variant has been done 3 times with strictly the
same co-simulation conditions (start time, stop time, step-
ping parameters,...). Based on the average of gotten time
durations, a speedup has been calculated (Speedup =
T2017/T2018) showing the performance improvement of
Daccosim NG (2018).

6.2 Benchmark on dual-processor Linux ma-
chines

In order to evaluate the performances of Daccosim NG on
a parallel multi-core machine, we needed a test applica-
tion with a large number of FMUs to spread on computing
cores, and with a significant total amount of computations
and disk IO. But most of our business use cases involve
FMUs handling resource files (e.g. temperature time se-
ries), and unhappily when exported from Dymola Linux
these FMUs are not working correctly unlike with export
from Dymola Windows. We go on investigations to iden-
tify the issue either at the Dymola side or as a side effect in
Daccosim NG. For this reason, we fell back to the demon-
stration case multiFMU supplied beside the Daccosim NG
distribution which was originally composed of 1000 in-
stances of the well-known stairBouncingBall model (Kof-
man, 2004). In order to mix logical instances and physical
FMUs, we have duplicated the original FMU 10 times to
get 10 different FMUs and then we have instantiates each
of them 100 times. However, all these FMUs model in-
dependent balls, and do not consume inter-FMU commu-
nication times. About IO, we have defined two variants,
the first one without any FMU output saved on disk and
the second one with 2 outputs per FMU written after each
step integration.

This test case has been run on a dual 10-core Intel Xeon
Silver 4114 at 2.2 GHz (Skylake architecture), with 96
GBytes of RAM. This machine is part of a PC cluster of
CentraleSupelec, managed with the OAR3 environnement.
OAR allows to allocate an entire PC or only a required
number of its cores, and runs all threads of an application
only on the allocated cores. We used this mechanism to
test our application from 1 up to 20 physical cores, and
then up to 40 logical cores on our dual 10-core Xeon ma-
chine.

When running our test case for 5000 steps on one core
of our test machine, the variant saving 2 outputs per FMU
generates an output file of 110 MBytes and elapses on
160 s We have chosen this configuration with easy to mea-
sure execution times (not too long but significant times).

Figure 7 left shows the co-simulation execution times
as a function of the number of allocated cores, in logarith-

3 s://oar.imag.fr/



Figure 7. Execution times and speedup of multiFMU Daccosim NG benchmark on dual 10-core Xeon Silver 4114 machine

mic scale. A straight line with a −1 slope would mean
a perfect decrease of the execution time. Full lines illus-
trate performances of the benchmark with 2 FMU output
writing per time step, while dashed lines are related to
co-simulation runs without any IO (no FMU output was
saved on disk). We can observe a very regular and very
good decrease of co-simulation and total execution times
from 1 up to 10 physical cores, and a little bit less good
decrease from 10 up to 20 physical cores when using the
second CPU of the machine. As expected, execution time
is lower and exhibit better decrease when no FMU output
are written on disk (no IO). When writing all FMU out-
puts on disk at each time step, execution time is higher but
still exhibits a significant and almost regular decrease.

Beyond the 20 physical cores of our machine, the
threads are distributed also on the logical cores. As each
physical core hosts two logical cores, when allocating
20+n cores (with OAR), n physical cores host two threads
and 20− n host only one thread. Beyond 20 cores this
load unbalance leads to an execution time increase, as il-
lustrated on figure 7 left. However, when allocating 40
cores (all virtual ones) load balancing is achieved again
and performances appear a little bit better than on 20 phys-
ical cores when no FMU output is written on disk (dashed
lines). At the opposite, when writing 2 outputs per FMU
on disk (full lines) it appears better to use only the 20
physical cores. These IO remain sequential and partially
overlapped with the computations (depending on the OS),
but disturb parallel computations.

A single-threaded version of Daccosim NG (running
on one core), has exhibited execution times very close
to our multithreaded version run on one core. Then
we can define the speedup achieved by Daccosim NG
running on several cores: SU(p) = Tsingle/Tmulti(p) ≈
Tmulti(1)/Tmulti(p). Figure 7 right shows this speedup, and
we get:

SUmax
0write/FMU = SU0write/FMU(40) = 7.7

SUmax
2write/FMU = SU2write/FMU(20) = 5.2

Considering only the experiments with FMU output
saving (more realistic use case), experiments have shown
the execution time of the multithreaded implementation
of Daccosim NG has scaled on our benchmark. An al-
most regular decrease of the execution time has been mea-

sured up to all physical cores of our dual 10-core Xeon
machine. Moreover a significant speedup close to 5.2 has
been achieved compared to a sequential execution. The
current multithreaded implementation of Daccosim NG
appears ready to be the kernel of a distributed version on
PC clusters and clouds.

7 Conclusion and roadmap
In 2018, Daccosim NG is more robust, faster and simpler
to use than the previous version that was simply a proof of
concept for EDF to make sure that co-simulation is helpful
for the simulation of wide energetic systems.

To further improve it, the Daccosim NG team intends
to implement before the end of 2018 a new major version
including some Matryoshka evolutions (section 4.3) and
QSS-inspired variable stepping implementation (section
3.2.2). In addition, as EDF is participating to the Mod-
elica Association Project FMI, Daccosim NG is candidate
to implement the new hybrid co-simulation feature under
discussion in the WG ”clock hybrid co-simulation” in or-
der to accurately detect internal FMU events from a pro-
posal pushed by EDF in 2017.

We will also think about an implementation of
the System Structure and Parameterization Standard
(SSP)(Köhler et al., 2016) as a future standard way to ex-
port/import co-simulation graphs in Daccosim NG. Ad-
ditionally, and as mentioned in section 2.3, urban energy
planning requires large scale simulations of hundreds of
buildings, which can deliver valuable simulation results
taken as decision aid for large infrastructure investments
by municipalities. The following challenges arise in this
context:

1. Multiple layers: different energy vectors addressed
(heating, cooling, electricity, gas).

2. Bottom up simulation: large number of buildings that
on its own have an individual behaviour.

3. Connection through networks: energy flows are dis-
tributed via networks which have to be included and
are a model in itself to couple other models.

4. Data uncertainty and unavailability: in early plan-
ning stages, many parameters have not yet been
fixed, and furthermore, projections over several
decades allow for important assumptions in the de-
velopment of environmental parameters (future evo-



lution of energy or fuel prices, etc).
The representation of such a complex system requires and
efficient coupling of different models, to avoid construct-
ing unmanageable complicated model couplings. Dac-
cosim NG shows excellent prerequisites to support these
kind of simulations, especially on points 1 & 2. A use case
in which Dymola and Anylogic energy system models are
co-simulated, is thus envisaged to proof the feasibility of
Daccosim NG towards requirement 3 & 4.

Finally, to go further than previous experiments in 2017
(Vialle et al., 2017), we also intend to co-simulate again
very wide complex systems to illustrate the new con-
straints EDF has to cope with in the context of the energy
transition and the renewal of the energy market landscape.
This will be done as soon as the problem we have encoun-
tered with Dymola FMUs exported from Linux is solved.
Acknowledgement. This work was partly supported by
the Paris-Saclay region through the FUI research project
“Modeliscale”.

References
T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist,

A. Junghanns, J. Mauß, M. Monteiro, T. Neidhold,
D. Neumerkel, and al. The functional mockup interface for
tool independent exchange of simulation models. In Proceed-
ings of the 8th International Modelica Conference; March
20th-22nd; Technical Univeristy; Dresden; Germany, 2011.

A. Borshchev. The big book of simulation modeling: multi-
method modeling with AnyLogic 6. AnyLogic North America
Chicago, 2013.

IDE Eclipse. Eclipse foundation, 2007.

H. Elmqvist, D. Brück, and M. Otter. Dymola-user’s manual.
Dynasim AB, Research Park Ideon, Lund, Sweden, 1996.

J. Evora, J-Ph. Tavella, JJ. Hernandez, and S. Vialle. Daccosim
NG User’s Guide. EDF, Monentia, CentraleSupelec, a.

J. Evora, J-Ph. Tavella, JJ. Hernandez, S. Vialle, and E. Kremers.
Daccosim ng web page, b. URL https://bitbucket.
org/simulage/daccosim.

J. Evora, JJ. Hernandez, and O. Roncal. Javafmi. URL
https://bitbucket. org/siani/javafmi, 2013.

L. Frayssinet. Adapting building heating and cooling power
need models at the district scale. PhD thesis, INSA de Lyon,
2018.

V. Galtier, S. Vialle, C. Dad, J-Ph. Tavella, J-Ph. Lam-Yee-Mui,
and G. Plessis. Fmi-based distributed multi-simulation with
daccosim. In Proceedings of the Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S Symposium.
Society for Computer Simulation International, 2015.

V. Galtier, M. Ianotto, M. Caujolle, R. Corniglion, J-Ph. Tavella,
J.E. Gómez, JJ. Hernandez, V. Reinbold, and E. Kremers. Ex-
perimenting with matryoshka co-simulation: Building par-
allel and hierarchical fmus. In 12th International Modelica
Conference, 2017.

J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. The
java language specification, java se 8 edition (java series),
2014.

MATLAB User’s Guide. The mathworks. Inc., Natick, MA, 5,
1998.

B. El Hefni, D. Bouskela, and G. Lebreton. Dynamic mod-
elling of a combined cycle power plant with thermosyspro.
In Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical University; Dresden; Germany,
2011.

JJ. Hernandez, J. Evora, and J-Ph. Tavella. Semantic interoper-
ability in co-simulation: use cases and requirements. Euro-
pean Simulation and Modelling Conference 2016 at Las Pal-
mas de Gran Canaria, Spain, 2016.

IPCC. Climate change 2014: mitigation of climate change:
Working Group III contribution to the Fifth Assessment Re-
port of the Intergovernmental Panel on Climate Change.
Cambridge University Press, 2014.

E. Kofman. A second-order approximation for devs simulation
of continuous systems. Simulation, 78(2), 2002.

E. Kofman. Discrete event simulation of hybrid systems. SIAM
J. Sci. Comput., 25(5), May 2004. ISSN 1064-8275.

E. Kofman and S. Junco. Quantized-state systems: a devs ap-
proach for continuous system simulation. Transactions of
The Society for Modeling and Simulation International, 18
(3), 2001.

E. Kofman, J. S. Lee, and B. P. Zeigler. Devs representation
of differential equation systems. review of recent advances.
Proceedings of ESS’01, 2001.

Jochen Köhler, Hans-Martin Heinkel, Pierre Mai, Jürgen
Krasser, Markus Deppe, and Mikio Nagasawa. Modelica-
association-project “system structure and parameterization”–
early insights. In The First Japanese Modelica Conferences,
May 23-24, Tokyo, Japan, number 124, pages 35–42, 2016.

G. Plessis, A. Kaemmerlen, and A. Lindsay. Buildsyspro: a
modelica library for modelling buildings and energy systems.
In Proceedings of the 10 th International Modelica Confer-
ence; March 10-12; 2014; Lund; Sweden, 2014.

G. Van Rossum and al. Python programming language. In
USENIX Annual Technical Conference, volume 41, 2007.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2), 1972.

J-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, Ch. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an accu-
rate and fast hybrid multi-simulation with the fmi-cs standard.
In Emerging Technologies and Factory Automation (ETFA),
2016 IEEE 21st International Conference on. IEEE, 2016.

S. Vialle, J-Ph. Tavella, C. Dad, R. Corniglion, M. Caujolle, and
V. Reinbold. Scaling FMI-CS Based Multi-Simulation Be-
yond Thousand FMUs on Infiniband Cluster. In Modelica
Association, editor, 12th International Modelica Conference
2017, Czech Republic, May 2017.

https://bitbucket.org/simulage/daccosim
https://bitbucket.org/simulage/daccosim

	Introduction
	Co-simulation use cases
	Available use-cases in Daccosim NG
	Building heating and cooling power load at district scale use cases
	Urban energy planning use cases

	Daccosim NG
	Co-simulation graph design
	Co-simulation algorithm
	Co-initialisation
	Co-execution

	Editor

	Other Features
	Shell
	Designed for distributed executions
	Matryoshka
	Declarative language

	Why NG?
	Performance on parallel machines
	Comparing previous and new Daccosim
	Benchmark on dual-processor Linux machines

	Conclusion and roadmap

