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A TOEPLITZ-TYLER ESTIMATION OF THE MODEL ORDER IN LARGE DIMENSIONAL REGIME

. This allows to derive a threshold, estimated thanks to the Marchenko-Pastur law, to separate the eigenvalues corresponding to the noise and those corresponding to the sources. The number of sources can therefore be deduced. The proposed method is compared to classical ones as the Akaike Information Criterion (AIC) or other algorithms recently developed.

INTRODUCTION

The problem of estimating the number of sources, or equivalently the model order, is a recurrent and challenging issue in a lot of signal processing fields (see e.g., [START_REF] Vinogradova | A new method for source detection, power estimation, and localization in large sensor networks under noise with unknown statistics[END_REF], [START_REF] Arkind | Parametric joint detectionestimation of the number of sources in array processing[END_REF] or [START_REF] Ottersten | Analysis of subspace fitting and ML techniques for parameter estimation from sensor array data[END_REF]). To that end, statistical methods often rely on the estimation of the covariance matrix eigenvalues. This is the case for instance for the MUSIC method [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], the Akaike Information Criterion (AIC) [START_REF] Akaike | A new look at the statistical model identification[END_REF] or others methods of model order selection [START_REF] Vinogradova | Statistical inference in large antenna arrays under unknown noise pattern[END_REF]. Thereby, with such methods, the better the covariance matrix estimation is, the better the number of sources estimation is. In this context of number of sources estimation, this article introduces new results when the observations turn to be non-Gaussian and of large dimension.

Large dimensional regime corresponds to the following regime: the number of received signals N and the dimension m tend to infinity at the same rate (see e.g., [START_REF] Couillet | Random matrix methods for wireless communications[END_REF]). For white or whitened noise, several methods, based on the Random Matrix Theory (RMT) have been proposed to extract information of interest from the received signals. One can cite for instance the number of embedded sources estimation [START_REF] Kritchman | Non-parametric detection of the number of signals: Hypothesis testing and random matrix theory[END_REF], the problem of radar detection [START_REF] Pascal | Théorie des matrices aléatoires robustes et applications à la détection radar[END_REF], signal subspace estimation with an an adapted MUSIC detection algorithm [START_REF] Hachem | A subspace estimator for fixed rank perturbations of large random matrices[END_REF]. However, when the additive noise is correlated, some RMT methods require the estimation of a specific threshold which has no explicit expression and can be very difficult to obtain [START_REF] Vinogradova | Statistical inference in large antenna arrays under unknown noise pattern[END_REF][START_REF] Couillet | Robust spiked random matrices and a robust G-MUSIC estimator[END_REF] while the others assume that the covariance matrix is known and use it to whiten the signal.

Concerning non-Gaussian signals, robust methods have been recently developed based on Complex Elliptically Symmetric (CES) distribution modelling. for non-Gaussian signals. CES distributions belong to a wide-class of distributions including the Gaussian distribution, the K-distribution and others, as detailed in [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. Its flexibility enables to model a large panel of random signals and justifies its wide use in signal processing applications. To deal with non-Gaussian data, robust methods adapted to large dimensional observations [START_REF] Couillet | The random matrix regime of maronna's M -estimator with elliptically distributed samples[END_REF] have been developed in the case of white (or perfectly whitened) noise.

To fill this gap, [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] proposed a method that relaxes this strong assumption thanks to a Toeplitz-based correlation model. Moreover, this methodology is based on Maronna's assumptions [START_REF] Maronna | Robust M -estimators of multivariate location and scatter[END_REF], that is to say, for well-behaved weighting functions u(.) appearing in the definition of the covariance M -estimators. For model order selection, the threshold proposed in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] depends on the selected function u(.) and remains quite difficult to derive. This is the case for instance for the Huber [START_REF] Huber | Robust estimation of a location parameter[END_REF] M-estimators.

This article expands former results of [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] to the case of Tyler [START_REF] Tyler | A distribution-free M -estimator of multivariate scatter[END_REF] M -estimators for correlated CES noise. Note that Tyler M -estimators do not respect Maronna's conditions but provide more flexibility since it is a distribution-free estimator [START_REF] Ollila | Distribution-free detection under complex elliptically symmetric clutter distribution[END_REF]. Moreover, recent works in [START_REF] Zhang | Marchenkopastur law for tyler's and maronna's m-estimators[END_REF] proved that the eigenvalues distribution of the Tyler M -estimator follows, in the white CES case, the Marchenko-Pastur distribution [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF]. The main contribution of this article is first to propose a consistent estimator of the covariance matrix for a correlated CES noise. Then, it aims at providing an estimation of the number of sources when the signal is constituted of a correlated CES noise and some additive sources.

This estimation process is shown to be easier than those proposed in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF]. The proposed method splits into two steps as in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF]: the first one is the whitening of the signal with a good estimated covariance matrix. This estimated whitening covariance matrix is obtained thanks to a Tyler estimator and a Toeplitz rectification. The second step consists in estimating the eigenvalues of the Tyler covariance matrix of the whitened signal and then, it exploits the support of the Marchenko-Pastur law to find the number of sources in the signal. These steps are described in the two first parts of this article. The third part shows a comparison in terms of performance between the proposed method, the method proposed in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] and AIC through some simulations.

Notations: Matrices are in bold and capital, vectors in bold. Let X be a square matrix of size s × s, (λ) i (X), i ∈ 1, ..., s , are the eigenvalues of X. T r(X) is the trace of the matrix X. X stands for the spectral norm. Let A be a matrix, A T is the transpose of A and A H the Hermitian transpose of A. I n is the n × n identity matrix. For any m-vector x, L : x → L(x) is the m × m matrix defined as the Toeplitz operator:

([L(x)] i,j ) i≤j = x i-j and ([L(x)] i,j ) i>j = x * i-j .
For any matrix A of size m × m, T (A) represents the matrix L(ǎ) where ǎ is a vector for which each component ǎi, 0<i<m-1 contains the sum of the i-th diagonal of A divided by m. For x ∈ R, δ x is the Dirac measure at x. supp is the support of a set. The notation a.s.

-→ means "tends to almost surely". The notation dist stands for the distance associated to the L 1 norm.

Model and Assumptions

The N observations Y = [y 0 , ..., y N -1 ] are made of a correlated CES noise added to p mixed sources. The equation ( 1) sets down the model:

y i = p j=1 s i,j m j + √ τ i C 1/2 x i , i ∈ 0, N -1 , (1) 
where the {τ i } i∈ 0,N -1 are positive random variables and where X = [x 0 , ..., x N -1 ] is the matrix of independant multivariate m-vectors uniformly distributed on the sphere of dimension m. Moreover, the m × p matrix M with elements M i,j = (M) i,j = (m j ) i is referred to as the mixing matrix and contains the p vectors of the sources. Each element s i,j of the p × N matrix S corresponds to the amplitude variation of each source in the received vector.

The matrix C is assumed to be a nonnegative definite Toeplitz matrix:

C =     c 0 c 1 ... c m-1 c * 1 c 0 ... c m-2 ... c * m-1 c * m-2 ... c 0     .
The signal can thus be written as:

Y = M S + C 1/2 X T 1/2 , ( 2 
)
where T is the N × N -diagonal matrix containing the {τ i } i∈ 0,N -1 . In the sequel, we will consider the following

assumptions: first, N → ∞, m → ∞ and cN = m N → c > 0 . Then µN = 1 N N i=1
δτ i satisfies τ µN (dτ ) → 1 almost surely and 1 N δ λ i (C) converges almost surely toward the true measure ν. We will also assume that

max i dist(λi(C), supp(ν)) → 0 and that {c k } k∈[0,m-1] are absolutely summable coeffi- cients, such that c0 = 0 .
The problem considered here is the estimation of p, the number of sources. Next section presents the main contribution of this article.

RESULTS

Signal Whitening

The first step of the proposed algorithm is to whiten the signal with a consistent estimation of C, the scatter matrix of the CES noise. The proposed estimator is a Tyler M -estimator of the scatter matrix Ĉ enforced to be Toeplitz-structured with the operator T Ĉ . The Tyler M -estimator Ĉ is defined as the unique solution if it exists of:

Σ = m N N i=1 y i y H i y H i Σ -1 y i . ( 3 
)
The consistency of these estimator is proven thanks to [START_REF] Zhang | Marchenkopastur law for tyler's and maronna's m-estimators[END_REF], [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] and the following theorem: Theorem 1 (A consistent estimation of C). Under the prior assumptions, we have the following convergence:

T Ĉ -C a.s. -→ 0 . (4) 
Proof. Let Ŝ be the Sample Covariance Matrix (SCM) that is Ŝ = 1 N X X H . Then:

T Ĉ -C ≤ T Ĉ -T Ŝ + T Ŝ -C (5) Moreover, it is proven in [15] that T Ŝ -C a.s.
-→ 0.

Since [START_REF] Zhang | Marchenkopastur law for tyler's and maronna's m-estimators[END_REF] shows that Ĉ -Ŝ a.s.

-→ 0 and as T is a linear operator, it appears that T Ĉ -T Ŝ and that

T Ĉ -C a.s.
-→ 0.

The consistency of this estimator is shown on Figure 1 where the {τ } i∈ 1, N are inverse gamma distributed. The rate of the convergence is relatively slow but it is possible to enhance it with banding or tapering (see for example [START_REF] Cai | Optimal rates of convergence for estimating Toeplitz covariance matrices[END_REF]). Let us note Č the estimator T Ĉ . The signal can be whitened as following:

Ŷw = Č-1/2 MS + Č-1/2 C 1/2 XT 1/2 , (6) 
with Ŷw = [ ŷw1 , ..., ŷwN ].

Estimation

The signal being whitened, it is now possible to apply a Tyler M -estimator in order to threshold its eigenvalues. Let Ŵ denote a Tyler estimation of the "white" scatter matrix, that is, Ŵ is the unique solution if it exists of:

Σ w = m N N i=1 ŷwi ŷH wi ŷH wi Σ -1 w ŷwi . ( 7 
)
Let us define Ŝw = 1 N XX H . In order to threshold its eigenvalues and estimate the number of sources, Theorem 2 enables to choose the threshold as the right edge of the Marchenko-Pastur law support [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF]:

Theorem 2 (Convergence of Ŵ). Under same assumptions as previously, Ŵ -Ŝw a.s.

-→ 0 . , if we replace ŷwi by Č-1/2 C 1/2 ywi , 0 ≤ i ≤ N , one obtains:

C -1/2 Č1/2 Ŵ Č1/2 C -1/2 = (9) m N N i=1 ywiy H wi y H wi C -1/2 Č1/2 Ŵ Č1/2 C -1/2 -1 ywi ,
which leads to:

Ŵ = Č-1/2 C 1/2 WC 1/2 Č-1/2 . ( 10 
)
The equation ( 8) can be rewritten as:

Ŵ -Ŝw ≤ Ŵ -W + W -Ŝw . ( 11 
)
Moreover, it is proven in [START_REF] Zhang | Marchenkopastur law for tyler's and maronna's m-estimators[END_REF] that W -Ŝw a.s.

-→ 0. Concerning the first term, it can be rewritten as:

Ŵ -W ≤ Č-1/2 C 1/2 WC 1/2 Č-1/2 -WC 1/2 Č-1/2 + WC 1/2 Č-1/2 -W . ( 12 
)
After left and right factorization, one obtains:

Ŵ -W ≤ Č-1/2 C 1/2 -Im W C 1/2 Č-1/2 + 1 .
As C has a bounded support, Č has a bounded support too thanks to Theorem 1. Moreover, this theorem proves the consistency as C -Č a.s.

-→ 0 and this ensures the proof.

Thereby, as the distribution of the eigenvalues of Ŝw converges in law toward the Marchenko-Pastur distribution [START_REF] Marchenko | Distribution of eigenvalues for some sets of random matrices[END_REF], the scatter matrix eigenvalues distribution converges in law to the Marchenko-Pastur law, if some sources have sufficiently high SNR, it is possible to detect them. The right edge of the Marchenko-Pastur law, that is (1 + √ c) 2 , can be chosen to threshold the eigenvalue distribution of Ŵ. The number of eigenvalues upon the threshold corresponds to the number of sources in the signal, and is denoted by p.

Simulations

In order to enligthen these theoretical results, Figure 2 shows that the eigenvalues distribution of the estimated scatter matrix Ŵ follows the Marchenko-Pastur distribution. On this figure, the {τ } i∈ 1, N are inverse gamma distributed. The 4 sources with SNR=10 dB present in the signal can be detected since 4 eigenvalues are found upon the Marchenko-Pastur distribution support, even if the SNR is low. Then, Figure 3 shows the eigenvalues distribution with the same parameters as in Figure 2 but for a Fixed Point estimation of C noted FP, directly defined as the unique solution

of Σ = 1 N N i=1 u y H i Σ -1 yi yi y H i build with the function u(x) = 1 + t t + x
, t = 0.1 and compared to the Marchenkopastur law. As expected, this distribution does not follow the Marchenko-Pastur law and the chosen threshold is no more relevant. To find a correct threshold for this estimator, it is necessary to whiten the signal first and then calculate a more complicated threshold, without explicit expression, as deteiled in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF]. The number p of sources detected in the signal is plotted on Figure 4, for different SNR. Our method, denoted TylTER, is compared to the method of [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF] noted FPTER, and to the AIC method. The true number of sources is also plotted on the Figure . The scale is in logarithm and the SNR comes from 0 to 30 dB. The AIC method overestimates the number of sources as our method finds the true number of sources from a SNR= 20dB. The method FPTER begins to find sources for higher SNR than TylTER.

On Figure 5 are drawn the same results but for the {τ } i∈ 1, N Student-t distributed. As expected, the proposed method still detects the sources for correct SNR. The results are almost the same except that the SNR required for detecting sources is higher for the methods TylTER and FPTER. Moreover, the FPTER method detects sources for a higher SNR than for the distribution of the τ i in Figure 4. Indeed, in Figure 4, the chosen function u for FPTER is the optimal one for the τ i . As the τ i are slightly different but the function u is the same, the method FPTER is still robust but need higher SNR than TylTER to detect all the sources. These results are very promising and encourage the application of the proposed method to a large panel of signals.

CONCLUSION

A new robust algorithm has been proposed in order to estimate the number of sources in a signal. The algorithm consists first in a whitening the signals and then in estimating the scatter matrix eigenvalues distribution. Simulations show the efficiency of the method, even if the noise is different from what expected. Two major results of this paper are first that this algorithm is derived for correlated CES noise in large dimensional regime and secondly that it proves it is no longer necessary to determine a complicated threshold as in [START_REF] Terreaux | Robust model order selection in large dimensional elliptically symmetric noise[END_REF]: the right edge of the Marchenko-Pastur law support can simply be used. Thereby, independently of the τ i distribution, the proposed threshold does not require any a priori on the noise.
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