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ABSTRACT

A growing problem in the remote sensing community concerns the
estimation of change-points in a time series of Synthetic Aperture
Radar (SAR) images. Although the methodologies of change-point
estimation have already been investigated in the literature, there
are, to the best of our knowledge, no study on the expected perfor-
mance for the estimation of change-points in a Wishart distributed
time series. This is mainly due to the fact that few results exist on
change-point estimation performance in the mathematical literature:
the classical central limit theorem does not apply and the classical
Cramer-Rao Bound does not exist due to the discrete nature of the
parameters. To fill this gap, this paper proposes to use a lower-bound
on the Mean Square Error (MSE) with fewer regularity conditions.
To this end, recent works on hybrid Cramer-Rao/Weiss-Weinstein
bound have been adapted to the specific SAR problematic of inter-
est. Since estimation strategies usually rely on a set of parameters
which have to be set by the user, we show how the proposed lower
bound allows performing an appropriate tuning. Moreover, the pro-
posed bound is computationally efficient which enables an extensive
analysis without a high computational cost.

Index Terms— Synthetic Aperture Radar; Wishart distribu-
tion; Hybrid Bounds; Cramer-Rao Bound; Weiss-Weinstein Bound;
Change-point estimation;

1. INTRODUCTION

In the past years, interest has been shown in the analysis of Synthetic
Aperture Radar (SAR) image time series for monitoring the evolu-
tion of large areas over time. Change-point detection and estimation
in this context is useful for analysing the huge amount of data span-
ning large areas. Usually, when considering complex multivariate
SAR images (such as polarimetric ones), the data is modelled by
using a Gaussian distribution. The covariance parameter is then con-
sidered as a descriptor in order to assess the changes [1, 2]. Thus,
recent works [3, 4] have considered the problem of change-point es-
timation in a time series of covariance matrices. In an adaptive con-
text, these matrices are estimated through the well known Sample
Covariance Matrix (SCM) estimator which is known to be Wishart
distributed. This Wishart model has been used in various works per-
taining to SAR applications such as change detection [1, 5], speckle
reduction [6] or classification [7, 8].

The work was partially supported by PHOENIX ANR-15-CE23-0012
grant of the French National Agency of Research.

The estimation of covariance matrices is done for a pixel using
the surrounding spatial neighbourhood. The number of samples N
used, referred as the number of looks, requires to be set by the user as
a trade-off between the resolution obtained and performances of es-
timation. Moreover, this estimation step must be done by taking into
account the dimension of the dataset p. Indeed, techniques exploit-
ing time-frequency analysis [9] allow controlling the size of each
pixel. Subsequently, the number of looks as well as the size of the
vectors determine the performances of any given method of estima-
tion and have to be chosen adequately.

In this paper, we consider this problem by using the Mean
Square Error (MSE) of the estimated change-points as a measure
of performance and propose a lower bound on its expected value.
The only available theoretical results on change-point estimation
concern specific problems such as monovariate Gaussian time series
with an asymptotic assumption of a large number of data before and
after the change [10, 11]. In order to overcome this difficulty, the
signal processing community generally focusses on MSE analysis
with Monte Carlo simulations, which are computationally expen-
sive, or the Cramer-Rao Bound (CRB). However, in the context of
change-point estimation, a part of the unknown parameter vector lies
on a discrete space violating the regularity condition of the CRB.
Fortunately, other lower bounds with weaker regularity conditions
exist. Thus, we consider a hybrid lower bound between the CRB and
the Weiss-Weinstein Bound (WWB) [12] to obtain a good trade-off
between tightness and regularity conditions as suggested in [13].

2. RELATION TO PRIOR WORKS

Lower-bound for change-point estimation has been firstly considered
in [14, 15] where only the Barankin Bound (BB) was considered.
Then, the extension to a tighter Bayesian bound (i.e. the WWB)
has been proposed in [16] where a general semi-closed-form expres-
sion focussing on change-points without specifying the distribution
of the data, is given. This work has been extended by including the
possibility of unknown additional parameters in [13]. Our aim is
to adapt this semi-closed-form expression to the specific aforemen-
tioned SAR problem. To this end, we have to deal with the Wishart
distribution which, to the best of our knowledge, was not included in
any previous works.

This adaptation leads to a time-efficient lower-bound on the ex-
pected performances of any estimator of change-points in the context
of SAR applications. The usefulness of this bound for the tuning of
the parameters is then considered from a practical standpoint.



3. DATA MODEL

We consider a time series of T independent, Wishart-distributed ma-
trices {Xt ∈ SpH | t ∈ J1, T K}, where SpH is the set of positive defi-
nite Hermitian matrices, subjected to a single change-point tC . This
scenario corresponds to a case where the user has the knowledge
that there is an abrupt change and wants to know its precise locali-
sation. This kind of problem can arise, for example, when looking
for the time at which some flood has occurred or a region where a
forest has been cut. The case of multiple change-points could also
be considered, but requires more complex derivations that will be
let for further investigation. The studied scenario is then written as
follows:{

Xt ∼ CW(p,N,Σ0) for t = 1, . . . , tC
Xt ∼ CW(p,N,Σ1) for t = tC + 1, . . . , T

, (1)

where CW is the central complex Wishart distribution with Proba-
bility Distribution Function (PDF):

fXt;Σ(Xt; Σ) =
|Xt|N−p

Γp(N) |Σ|N
etr
(
Σ−1Xt

)
, (2)

where, Γp(N) = πp(p−1)/2∏p
j=1 Γ(N−j+1), Γ(.) is the Gamma

function and etr(.) is the exponential trace function.

In order to deal with complex parameters, we define the mapping
from complex to real-case as a function [•]CR : Cm → R2m, whose
definition is: [z]CR = [<(z)T,=(z)T]

T
.

We also define:

x =
[
[vech (X1)]TCR, . . . , [vech (XT )]TCR

]T
∈ RTp

2

,

σ =
[
[vech (Σ0)]TCR, [vech (Σ1)]TCR

]T
∈ R2p2 ,

where vech(•) is the vectorisation operator with the upper triangular
portion excluded.

The problem considered in this work is about the estimation
of the unknown parameter θ =

[
σT, tC

]T
, compromised of the

covariance parameters as well as the change-point. We define
M = 2p2 + 1, the number of total unknown parameters.

Note that, in this paper, the change-point tC is assumed to be
random and the covariance matrices are assumed to be determinis-
tic. This is due to the fact that the tightest lower bound (with good
regularity conditions) is the deterministic BB which has already been
shown to exhibit too optimistic results in the context of change-point
estimation [14,15] contrary to the WWB. Concerning the covariance
matrices, it is well known that the CRB is an efficient approxima-
tion [17]. This is why we consider such a hybrid bound which allows
us to manage a trade-off between tightness and regularity conditions.

Finally, the distribution of the observations in this model de-
noted fx,tC ;σ(x, tC ;σ) = fx|tC ;σ(x|tC ;σ)ftC (tC) where:

fx|tC ;σ(x|tC ;σ) =

tC∏
t=1

fXt;Σ0(Xt; Σ0)

T∏
t=tC+1

fXt;Σ1(Xt; Σ1) .

(3)

4. STATEMENT OF THE RESULT

The aim is to obtain a lower bound on the performances of any esti-
mator θ̂ of θ ∈ Θ = R2p2 × N using the hybrid CR/WWB. Note

that, this does not consist only in the concatenation of the CRB of
the unknown covariances σ and the WWB of the unknown change-
point tC but in obtaining a matrix that considers also the coupling
between the parameters. To this end, we consider the global MSE
defined as follows:

MSE(θ̂) = Ex,tC ;σ

{
(θ̂(x)− θ)(θ̂(x)− θ)

T
}
, (4)

in which, Ex,tC ;σ denotes the expectation w.r.t the distribution
fx,tC ;σ(x, tC ;σ).

4.1. Covariance inequality

It has recently been shown in the literature [18] that eq. (4) can
be bounded using the covariance inequality. In the context of our
problem, we have the following proposition:

Proposition 4.1. Covariance Inequality
Let {Ψk(x,θ) | k ∈ J1,MK} be real-valued function set de-
fined on RTp

2

× Θ such that the following integral exists and
satisfies for almost every (a.e.) x ∈ RTp

2

, ∀k ∈ J1,MK,∫
Θ

Ψk(x,θ)f(x,θ)dθ = 0 . Then, using the definition of MSE at
eq. (4), the folowing inequality holds:

MSE(θ̂) � VP−1VT, (5)

where A � B means that A − B is positive semi-definite, V is a
M ×M matrix whose elements are given by

(V)k,l = Ex,tC ;σ

{(
(θ̂(x))k − (θ)k

)
Ψl(x,θ)

}
, (6)

(•)k,l is the k-th line and l-th column of a matrix, and P is aM×M
matrix whose elements are given by

(P)k,l = Ex,tC ;σ{Ψk(x,θ)Ψl(x,θ)}. (7)

To obtain a hybrid CR/WWB, Ψk are chosen as follows:

Ψk(x,θ) =

{
ΨCRB
k (x,θ) for k = 1, . . .M − 1

ΨWWB(x,θ) for k = M
, (8)

where

ΨCRB
k (x,θ) =


∂ ln fx,tC ;σ(x, tC ;σ)

∂(σ)k
if θ ∈ Θ′

0 if θ /∈ Θ′
(9)

and

ΨWWB(x,θ) =
fsx,tC ;σ(x, tC + h;σ)

fsx,tC ;σ(x, tC ;σ)
−
f1−s
x,tC ;σ(x, tC − h;σ)

f1−s
x,tC ;σ(x, tC ;σ)

if θ ∈ Θ′

0 if θ /∈ Θ′

(10)
for s ∈]0, 1[, h is such that tC + h ∈ J1, T − 1K and Θ′ = {θ ∈
Θ | f(x,θ) > 0 a.e.x ∈ RTp

2

}.
Note that, any value for the terms h and s will lead to a lower

bound on the MSE. However, they must be chosen cautiously in or-
der to obtain the tightest bound. To obtain the tightest bound on the
change-point, we have to compute:

HCRWWB = sup
h,s

VP−1VT. (11)



4.2. Hybrid bound for the change-point model

In the context of change-point estimation, the right-hand side of the
inequality at eq. (5) can be obtained by using the semi closed-form
expression provided in [13]:

V =

[
−I2p2 02p2,1

01,2p2 v22

]
and P =

[
P11 P12

P12
T P22

]
, (12)

where the block-matrices are defined as follows:

• P11 = T/2 diag (F(Σ0),F(Σ1)), where F(Σ0) (resp.
F(Σ1)) is the Fisher information matrix with regards to Σ0

(resp. Σ1).

• P22 = u(h)
(
ρ|h| (εh(2s)) + ρ|h| (εh(2s− 1))

)
−2u(2h)ρ|h| (εh(s)) , where

u(h)
∆
=

{
(T − 1− |h|) /(T − 1) if |h| < T − 1

0 otherwise
,

εh(s) =

{
s if h > 0
1− s if h < 0

and

ρ(s)
∆
=

∫
SpH

fsXt;Σ0
(Xt; Σ0)f1−s

Xt;Σ1
(Xt; Σ1) dXt .

(13)

• P12 =
[
pT,qT

]T
, where the elements of vectors p and q

are given by:

(p)` = −hu(h)ρ|h|−1 (εh(s))φσ0,` (εh(s)) ,

(q)` = hu(h)ρ|h|−1 (εh(s))φσ1,` (εh(s)) ,

and given j ∈ {0, 1}, ` ∈ J1, p2K, s ∈]0, 1[:

φσj ,`(s)
∆
=

∫
SpH

∂ ln fXt;Σ(Xt; Σ)

∂ ([vech (Σ)]CR)`

∣∣∣∣
Σ=Σj

×

fsXt;Σ0
(Xt; Σ0) f1−s

Xt;Σ1
(Xt; Σ1) dXt .

(14)

• v22 = hu(h)ρ|h|(εh(s)).

4.3. Derivation of F(Σ), ρ(s) and φσj ,`(s)

In order to compute the bound, we finally need the closed-form ex-
pressions of F(Σ), ρ(s) and φσj ,`(s). We have:

Proposition 4.2. The closed-form expression of ρ(s) is given by:

ρ(s) =

∣∣sΣ−1
0 + (1− s)Σ−1

1

∣∣−N
|Σ0|sN |Σ1|(1−s)N

. (15)

Proof. Derived in [19]. The result can be obtained by doing the

substitution Y = AXA, with A =
(
sΣ−1

0 + (1− s)Σ−1
1

) 1
2 , in

the integral.

Proposition 4.3 (FIM of the Covariance for a CW distribution). For
Σ ∈ SpH, we have:

F(Σ) = fCR
(
NDp

T(Σ−1 ⊗Σ−1)Dp

)
, (16)

where Dp is the duplication matrix defined for any matrix X ∈
Cp×p, by

Dpvech (X) = vec (X) ,

and fCR : Sp
2/2

H → Sp
2

++, where Sp
2

++ is the set of real symmetric
matrices, is defined as

fCR (Σ) =
1

2

[
<(Σ) −=(Σ)
=(Σ) <(Σ)

]
.

Proof. The result comes by noticing that the score function w.r.t. the
covariance matrix of a Wishart distribution is the same as the score
function of a Gaussian distribution, and by an appropriate change of
variable (Xt =

∑N
i=1 ziz

H
i where {zi}i=1,...N ∼ CN (0p,Σ), and

CN is the complex Normal distribution). The mapping fCR allows
obtaining its form in the real parametrisation used in this paper.

Proposition 4.4. The different terms of φσj ,`(s) for ` ∈ J1, p2K,
j ∈ {0, 1} are given by φσj ,`(s) = ([vech (Φj(s))]CR)`, where
Φj(s) is a p× p matrix given by:

Φj(s) =Nρ(s)Σ−1
j

(
sΣ−1

0 + (1− s)Σ−1
1

)−1
Σ−1
j

−Nρ(s)Σ−1
j .

(17)

Proof. See Appendix.

5. SIMULATIONS

In order to validate the bound derived in this paper, Wishart time
series subjected to a change-point as described in eq. (1) have been
generated. tC is generated using a uniform random prior and the
covariance matrices have been chosen as Toeplitz matrices of the
form: (Σk=0,1)i,j = α

|i−j|
k .

Two estimators of the change-point have been considered:

• The Maximum A Posteriori (MAP) estimator which has the
knowledge of the covariance matrices before and after the
change:

t̂C = argmax
tC∈J1,T−1K

fx,tC (x, tC) . (18)

• The following hybrid estimator, derived from the Maximum
A Posteriori/Maximum Likelihood [20], which estimates the
covariance matrices before and after the change as well as the
change point:

t̂C = argmax
tC∈J1,T−1K

fx,tC ;σ̂(x, tC ; σ̂) , (19)

where σ̂ =
[
[vech(Σ̂0)]TCR, [vec(Σ̂1)]TCR

]T
with:

Σ̂0 =
1

tCN

tC∑
t=1

Xt and Σ̂1 =
1

(T − tC)N

T∑
t=tC+1

Xt .

First, let us consider Figure 1: the MSE of the estimated change-
point for both estimators as well as the proposed bound has been
plotted for several values of N . We first observe that the MAP per-
forms better than the hybrid estimator, that is expected since it as-
sumes the knowledge of the covariance matrices. The derived bound
behaves similarly to the hybrid estimator: the drop in the error for
high N is well described by the bound. Although the gap between



the bound and the hybrid estimator is rather high at low N , it de-
creases significantly for higher values. Since our aim is to design
algorithms having good estimation performance, the region of in-
terest is the one where the performance of the hybrid estimator is
lower than those for 1 sample. In this region, the bound accurately
describes the expected performance and can thus be used as an ap-
proximation.

101 102
10−5

10−4

10−3

10−2

10−1

100

101

1 sample

N

√ (M
S
E

) M
,M

√
(HCRWWB)M,M

MAP
Hybrid

Fig. 1. MSE on the change-point for p = 3, T = 50, α0 = 0.1,
α1 = 0.3. The estimators curves have been computed with 106

Monte Carlo trials.

The benefit of the bound is well described by Table 1 where
the time-consumption1 needed to compute the points of Figure 1 are
given. Since the bounds need at least a thousand times less compu-
tational cost, it is preferable in a design context where many values
for the parameters have to be tested.

Table 1. Time-consumption in seconds.

N HCRWWB MAP Hybrid estimator

10 0.17 305 310
102 0.17 510 568
103 0.17 1462 1476

In order to illustrate the usability of the bound in a design con-
text, the bound has been computed for an extensive set of parameters
(p,N) in Figure 2. Since for p < N , the empirical covariance matri-
ces cannot be inverted, the bound is not usable that explains the lack
of performance in this region. We can observe the drop in the error
for any value of p at some point when increasing N . The dashed
line which corresponds to the region at which the bound is accurate
enough, allows to limit a region where, for a given situation with
fixed p, an appropriate value for N can be chosen to guarantee good
estimation performance.

6. CONCLUSION

We have considered the derivation of a lower bound on the MSE of a
change-point in the context of a SAR image time series. Simulations
have shown a good behaviour for the proposed bound and a much
lower computational cost with regards to a Monte-Carlo simulation.

1The simulations were done on two Intel(R) Xeon(R) CPU E5-2670 v3
@ 2.30GHz processors.

101 102
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N

p
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0

Fig. 2. Evolution of log10

√
(HCRWWB)M,M for several pa-

rameters p and N , T = 100, α0 = 0.1 and α1 = 0.3. The dashed
line corresponds to the region where

√
(HCRWWB)M,M =

10−2.

Then a practical application of tuning has illustrated the usability of
the bound for extensive analysis in a design context.

A. PROOF OF PROPOSITION 4.4.

Considering the complex nature of the matrices, we use the Wirtinger
derivative [21] in our derivations. The result is then obtained using
the complex to real mapping. Then we remark that since the deriva-
tive in eq. (14) does not involve the variable of integration and the
fact that the right-hand side of the integral is made of scalar terms, it
is possible to compute the following expression:

Φj(s) =

∫
SpH

∂ ln fXt;Σ(Xt; Σ)

∂Σ

∣∣∣∣
Σ=Σj

×

fsXt;Σ0
(Xt; Σ0)f1−s

Xt;Σ1
(Xt; Σ1) dXt .

and we obtain our result by taking φσj ,`(s) = ([vech (Φj(s))]CR)`.
The Wirtinger derivative leads us to:

∂ ln fXt;Σ′(Xt; Σ
′)

∂Σ′
= −NΣ′

−1
+
(
Σ′
−1

XtΣ
′−1
)H

.

Thus,

Φj(s) = −NΣ−1
j ρ(s) + Σ−1

j

(∫
SpH

Xt
|Xt|N−p

Γp(N)|Σ0|sN |Σ1|(1−s)N

× etr
(
−(sΣ−1

0 + (1− s)Σ−1
1 )Xt

)
dXt

)
Σ−1
j ,

= −NΣ−1
j ρ(s) + Σ−1

j ρ(s)×∫
SpH

Xt
|Xt|N−p

Γp(N)
∣∣∣(sΣ−1

0 + (1− s)Σ−1
1

)−1
∣∣∣N ×

etr
(
−(sΣ−1

0 + (1− s)Σ−1
1 )Xt

)
dXt

)
Σ−1
j ,

= −NΣ−1
j ρ(s) + Σ−1

j ρ(s)EX;A {Xt}Σ−1
j ,

where A =
(
sΣ−1

0 + (1− s)Σ−1
1

)−1. Finally using the expecta-
tion of a Wishart distribution, we obtain the result.
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