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Abstract

This paper addresses the problem of formation control and tracking of some reference trajectory by an Euler-Lagrange
multi-agent systems. The reference trajectory is only known by a subset of agents. This work is inspired by recent results
by Yang et al. and adopts an event-triggered control strategy to reduce the number of communications between agents. For
that purpose, to evaluate its control input, each agent maintains estimators of the states of its neighbour agents, as well as
an estimate of its reference trajectory. Communication is triggered when the discrepancy between the actual state of an agent
and the estimate of this state as evaluated by neighboring agents reaches some threshold. Communications are also triggered
when the reference trajectory estimate is degraded. The impact of additive state perturbations on the formation control is
studied. A condition for the convergence of the multi-agent system to a stable formation is studied. The time interval between
two consecutive communications by the same agent is shown to be strictly positive. Simulations show the effectiveness of the
proposed approach.

Key words: Communication constraints, event-triggered control, formation stabilization, multi-agent system (MAS).

1 Introduction

Distributed cooperative control of a multi-agent system
(MAS) usually requires significant exchange of informa-
tion between agents. In early contributions, see, e.g.,
Olfati-Saber et al. (2007); Wei (2008), communication
was considered permanent. Recently, more practical ap-
proaches have been proposed. For example, in Wen et al.
(2012a,b, 2013), communication is intermittent, alter-
nating phases of permanent communication and of ab-
sence of communication. Alternatively, communication
may only occur at discrete time instants, either period-
ically as in Garcia et al. (2014), or triggered by some
event, as in Dimarogonas et al. (2012); Fan et al. (2013);
Zhang et al. (2015); Viel et al. (2016).
This paper proposes a strategy to reduce the number of
communications for displacement-based formation con-
trol while following a desired reference trajectory, only
known by a subset of agents. Agent dynamics are de-
scribed by Euler-Lagrange models and include pertur-
bations. This work extends results presented in Yang
et al. (2015) by introducing an event-triggered strategy,
and results of Liu et al. (2015); Sun et al. (2015); Tang
et al. (2011) by addressing systems with more complex
dynamics than a simple integrator.

To evaluate its control input in a distributed way, each
agent estimates the state of its neighbors and as well as
its reference trajectory. In absence of permanent commu-
nication, the quality of the state and reference trajectory
estimates is difficult to evaluate. To address this issue,
each agent maintains also an estimate of its own state
using only the information it has shared with its neigh-
bors. Information is communicated by the considered
agent with its neighbors as soon as the discrepancy be-
tween its actual state and its own state estimate reaches
some threshold. Communication is also used to maintain
the quality of the estimate of the reference trajectory of
each agent. The main difficulty consists in determining
the communication triggering condition (CTC) that will
ensure the completion of the task assigned to the MAS
while reducing the number of communications between
agents.
This paper is organized as follows. Some assumptions are
introduced in Section 2 and the formation parametriza-
tion is described in Section 3. As the problem considered
here is to drive a formation of agents along a desired ref-
erence trajectory, the designed distributed control law
consists of two parts. The first part (see Section 3) drives
the agents to some target formation and maintains the
formation, despite the presence of perturbations. It is
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based on estimates of the states of the agents described
in Section 5.3. The second part (see Section 4) is dedi-
cated to the tracking of the desired trajectory. Commu-
nication instants are chosen locally by each agent using
an event-triggered approach introduced in Section 6. A
simulation example is considered in Section 7 to illus-
trate the reduction of the communications obtained by
the proposed approach. Finally, conclusions are drawn
in Section 8.

2 Notations and hypotheses

Consider a MAS consisting of a network of N agents
whose topology is described by an undirected con-
nected graph G = (N , E). N is the set of nodes and
E ⊂ N × N the set of edges of the network. The set
of neighbours of Agent i is Ni = {j ∈ N| (i, j) ∈
E , i 6= j}. Ni is the cardinal number of Ni. For
some vector x = [x1, x2, . . . , xn]T ∈ Rn, we define
|x| = [|x1| , |x2| , . . . , |xn|]T where |xi| is the absolute
value of the i-th component of x. Similarly, x ≥ 0 indi-
cates that each component xi of x is non negative, i.e.,
xi ≥ 0 ∀i ∈ {1 . . . n}.
Let qi ∈ Rn be the vector of coordinates of Agent i
in some global fixed reference frame R and let q =[
qT1 , q

T
2 , . . . , q

T
N

]T ∈ RN.n be the configuration of the
MAS. The dynamics of each agent is described by the
Euler-Lagrange model

Mi (qi) q̈i + Ci (qi, q̇i) q̇i +G = τi + di, (1)

where τi ∈ Rn is some control input, Mi (qi) ∈ Rn×n
is the inertia matrix, Ci (qi, q̇i) ∈ Rn×n is the matrix of
the Coriolis and centripetal term, G accounts for grav-
itational acceleration supposed to be known and con-
stant, and di is a time-varying state perturbation sat-
isfying ∀t ‖di (t)‖ 6 Dmax. The state vector of Agent i
is xTi =

[
qTi , q̇

T
i

]
. The convergence proof of the control

strategy developed in this paper requires considering the
following assumptions on the dynamics. Assumptions
A1-A3 have been already considered, e.g., in Makkar
et al. (2007); Mei et al. (2011).
A1) Mi (qi) is symmetric positive and there exists kM >

0 satisfying ∀x, xTMi (qi)x ≤ kMxTx.

A2) Ṁi (qi) − 2Ci (qi, q̇i) is skew symmetric or nega-
tive definite and there exists kC > 0 satisfying ∀x,
xTCi (qi, q̇i)x ≤ kC ‖q̇i‖xTx.

A3) The left-hand side of (1) is linearly parametrized
as

Mi (qi)x1 + Ci (qi, q̇i)x2 = Yi (qi, q̇i, x1, x2) θi (2)

for all vectors x1, x2 ∈ Rn, where Yi (qi, q̇i, x1, x2)
is a regressor matrix with known structure and θi is
a vector of unknown constant parameters associated
with the i-th agent.

A4) For each i = 1, . . . , N, θi is such that θmin,i < θi <
θmax,i, with known θmin,i and θmax,i.

Moreover, one assumes that
A5) Each Agent i measures its state xi without error,

A6) There are no packet losses or communication de-
lays.

In what follows, the notations Mi and Ci are used to
replace Mi (qi) and Ci (qi, q̇i).

3 Formation control problem

This section describes first the target formation
parametrization. The potential energy of a MAS is in-
troduced to quantify the discrepancy between the cur-
rent and target formations. It will have to be minimized.
The notion of bounded convergence is also described.

3.1 Formation parametrization

Consider the relative coordinate vector rij = qi− qj be-
tween two agents i and j and the target relative coordi-
nate vector r∗ij for all (i, j) ∈ N . A target formation is

defined by the set
{
r∗ij , (i, j) ∈ N

}
. In what follows, one

assumes that Agent i has only access to r∗ij , with j ∈ Ni.
The potential energy

P (q, t) =
1

2

N∑
i=1

N∑
j=1

kij
∥∥rij − r∗ij∥∥2 (3)

of the formation represents the disagreement between
rij and r∗ij , see Yang et al. (2015). In (3), the spring
coefficients kij = kji can be positive or null, and kii =
0. The minimum number of non-zero coefficients kij to
properly define a target formation is N − 1 since G is
connected. Then, one may choose kij 6= 0 iff (i, j) ∈ E .
As will be seen, with this choice of the spring coefficients,
each agent will have to estimate only the state of its
neighbours to evaluate its control input.
Definition 1 Yang et al. (2015) The MAS asymptot-
ically converges to the target formation with a bounded
error iff there exists some ε1 > 0 such that

lim
t→∞

P (q, t) 6 ε1. (4)

A control law designed to reduce the potential energy
P (q, t) leads to a bounded convergence of the MAS.

4 Time-varying formation and trajectory

4.1 Main idea and notations

In this section, the MAS has to follow some reference
trajectory, only known by a subset NL ⊂ N of NL 6 N
agents, named leaders. Moreover, one assumes that the
target formation may be time-varying and is represented
by the relative configuration matrix r∗ (t). Each agent i
is only assumed to know r∗ij (t) for all j ∈ Ni.
Without communication constraint, in Mei et al. (2011);
Sun et al. (2009), the entire formation is driven by the
leaders using some spring effect. A direct adaptation
of this idea to event-triggered methods leads to a large
amount of communications to update the estimates of
the states of leaders by other agents.
Here each agent maintains a first estimate qi∗i (t) =

[qi∗Ti (t) , q̇
∗T
i (t) , q̈

∗T
i (t)]T of its own reference trajec-
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tory q∗i (t) = [q∗Ti (t) , q̇∗Ti (t) , q̈∗Ti (t)]T using all infor-
mation it has access to.
When a communication is triggered at time t by some
Agent i, it transmits to its neighbors either its reference
q∗i (t) if i ∈ NL, or its estimated reference qi∗i (t) if i /∈
NL. In both cases, the neighbors j ∈ Ni may update the
estimate of their own reference trajectories qj∗j (t) using

q∗i (t) + r∗ij or qi∗i (t) + r∗ij where r∗ij = [ r∗Tij ṙ∗Tij r̈∗Tij ]T

(see Section 4.2). Reference trajectory estimates are thus
forwarded through the network when agents trigger com-
munications.
Each agent i ∈ N uses in its control input either the
reference trajectory q∗i (t) if i ∈ NL or an estimate
qi∗i (t) of q∗i (t) if i /∈ NL. Additionally, an estimate of
the reference trajectory q∗i (t) or qi∗i (t) used by Agent i

is required by Agent j to evaluate q̂ji , its estimate of
the state qi of Agent i (see Section 5.3). The estimate
of q∗i (t) or qi∗i (t) evaluated by Agent j is denoted

q̂i,j∗i (t). This estimate only uses information received
from Agent i and is updated only when Agent i broad-
casts a message. To evaluate the quality of q̂i,j∗i (t), each

agent maintains a second estimate q̂i,i∗i (t) of its own
reference trajectory q∗i (t) or qi∗i (t) using only informa-

tion it has provided to its neighbors. Since q̂i,i∗i (ti,k)

and q̂i,j∗i (ti,k) are evaluated using the same information
broadcast by Agent i, using Assumption A6, one has
for all t, q̂i,i∗i (t) = q̂i,j∗i (t). A communication is trig-
gered by Agent i when the discrepancy between q∗i (t)

or qi∗i (t) and q̂i,i∗i (t), i.e., between its (actual or esti-
mated) reference trajectory and that estimated by its
neighbors becomes too large.
One assumes that the evolution of the reference trajec-
tories for all i ∈ NL are described by

q̇∗i (t) = f (q∗i (t) , t) , (5)

whereas the estimate of the reference trajectories by
Agent i /∈ NL is assumed to be described by

q̇
i∗
i (t) = f

(
qi∗i (t) , t

)
. (6)

In what follows, the time instant at which the k-th
message is sent by Agent i is denoted as ti,k. Let tji,k
be the time at which the k-th message sent by Agent i
is received by Agent j. According to Assumption A6,
tji,k = ti,k for all j ∈ Ni. Let tik be the time at which
Agent i received its k-th message from any other agent
in the network.
To simplify description, one assumes that NL consists of
a single agent NL = {1}, so the MAS reference trajec-
tory is q∗1 (t). Extension to multiple leaders is straight-
forward.
Definition 2 The MAS reaches its tracking objective iff
there exists ε1 > 0 and ε2 > 0 such that (4) is satisfied
and

lim
t→∞

‖q1 (t)− q∗1 (t)‖ 6 ε2, (7)

i.e., iff the reference agent asymptotically converges to the
reference trajectory, and the MAS asymptotically con-
verges to the target formation with bounded errors.

4.2 Estimation of the reference trajectory

The aim of this section is determine when an Agent j
has to update the estimate of its own reference trajec-
tory qj∗j (t) using q∗1 (t) + r∗1j or qi∗i (t) + r∗ij when a
message has been received from Agent i. The update is
only performed when the estimate becomes more accu-
rate. This is always the case when q∗1 (t) is received from
the leader. When qi∗i (t) is received, the update is per-
formed only when qi∗i (t) has been updated from q∗1 (t)

more recently than qj∗j (t).

For that purpose, at time t, let ti∗ (t) be the time of the
most recent information about q∗1 available by Agent i.
The leader knows q∗1 and thus, q1∗

1 (t) = q∗1 (t) and
t1∗ (t) = t for all t. If Agent i receives a message at
time t = tij,k from Agent j, it compares ti∗(t) with

tj∗ (t). If ti∗ (t) < tj∗(t), Agent i uses the information
provided by Agent j to update its estimate of q∗i as

q̄i∗i (tij,k) = q̄j∗j (tij,k) + r∗ji and ti∗(tij,k) = tj∗(tij,k).

If tij,k is the time instant of the last message received

by Agent i, the evolution of q̄i∗i (t) for t > tij,k is then

described by (6) with q̄i∗i (tij,k) known.

5 Distributed control approach

A distributed control law is designed to achieve bounded
convergence of the MAS. Consider the trajectory error
εi = qi− q∗i , εij = qi− qi∗j and ε̂ji = q̂ji − q̂

i,j∗
i where q̂i,j∗i

is the estimation of qi∗i performed by Agent j described
in Section 4.1. To describe the evolution of P (q, t) and
εi, one introduces

gi =
∂P (q, t)

∂qi
+ k0εi =

∑
j∈Ni

kij
(
rij − r∗ij

)
+ k0ε

i
i (8)

ġi =
∑
j∈Ni

kij
(
ṙij − ṙ∗ij

)
+ k0ε̇

i
i (9)

si = q̇i − q̇
i∗
i + kpgi (10)

where gi and ġi characterize the evolution of the discrep-
ancy between the current and target formations, k0 ≥ 0
and kp ≥ 0 are scalar design parameters. The parameter
k0 adjusts the trade-off between the trajectory tracking
error and the potential energy of the formation. When
no reference trajectory is considered, k0 = 0.

5.1 Control design

In a distributed context with limited communications
between agents, agents cannot have permanent access
to q. Thus, for all j ∈ Ni, one introduces the estimate
q̂ij of qj performed by Agent i to replace the missing

information in the control law. The evaluation of q̂ij is
described in Section 5.3.
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Using q̂ij , j ∈ Ni, Agent i can estimate (8) and (10) as

gi =
∑
j∈Ni

kij
(
rij − r∗ij

)
+ k0ε

i
i (11)

si = q̇i − q̇
i∗
i + kpgi (12)

with rij = qi − q̂ij and ṙij = q̇i − ˙̂q
i

j . Using gi and si,
Agent i can evaluate the following adaptive distributed
control input to be used in (1)

τi = −kssi − kggi +G− Yi
(
qi, q̇i, ṗi, pi

)
θi (13)

θ̇i = ΓiYi
(
qi, q̇i, ṗi, pi

)T
si (14)

where pi = kpgi − q̇
i∗
i and ṗi = kpġi − q̈

i∗
i .

5.2 Communication protocol

When a communication is triggered at ti,k by Agent i,
it transmits a message containing ti,k, qi (ti,k), q̇i (ti,k),

qi∗i (ti,k), ti∗ and θi (ti,k). Upon reception of this message,
the neighbors of Agent i update their estimate of the
state of Agent i and of the reference trajectory using this
information as described in Sections 4.2.

5.3 Estimator dynamics

To evaluate its control law, Agent i maintains estimates
q̂ij of qj for its neighbours j ∈ Ni, such that

x̂ij
(
tij,k
)

= xj
(
tij,k
)

(15)

and ∀t ∈
[
tij,k, t

i
j,k+1

[
,

M̂ i
j

(
q̂ij
)

¨̂q
i

j + Ĉij

(
q̂ij ,

˙̂q
i

j

)
˙̂q
i

j +G = τ̂ ij . (16)

where x̂iTj = [q̂iTj , ˙̂q
iT

j ], M̂ i
j(q̂

i
j), and Ĉij(q̂

i
j ,

˙̂q
i

j) are esti-

mates of Mj and Cj evaluated from Yj(q̂
i
j ,

˙̂q
i

j , x1, x2),

and θj(t
i
j,k) using ∀(x1, x2) ∈ R2

M̂ i
j

(
q̂ij
)
x1+Ĉij

(
q̂ij ,

˙̂q
i

j

)
x2 = Yj

(
q̂ij ,

˙̂q
i

j , x1, x2

)
θj
(
tij,k
)
.

The estimator (16) managed by Agent i requires an es-
timate τ̂ ij of τj evaluated by Agent j. This estimate is
evaluated by Agent i as follows

τ̂ ij =− ks
(

˙̂ε
i

j + kpk0ε̂
i
j

)
− kgk0ε̂ij +G

− Yj
(
q̂ij ,

˙̂q
i

j ,
˙̂m
i

j , m̂
i
j

)
θ̂ij (17)

˙̂
θ
i

j =ΓjYj

(
q̂ij ,

˙̂q
i

j ,
˙̂m
i

j , m̂
i
j

)T (
˙̂ε
i

j + kpk0ε̂
i
j

)
(18)

θ̂ij
(
tij,k
)

=θj
(
tij,k
)

(19)

where θ̂ij is the estimate of θj , ε̂
i
j = q̂ij − q̂

j,i∗
j , and m̂i

j =

kpk0ε̂
i
j − ˙̂q

j,i∗
j if k0 > 0, i.e., in the case of a reference

trajectory to be tracked and m̂i
j = 0 else. Note that if

k0 = 0, q̇∗j = 0.

The term q̂i,j∗i is the estimate of qi∗i performed by

Agent j, using (20). The evolution of q̂j,i∗j uses (6) and
is described by

q̂i,j∗i

(
tji,k

)
= qi∗i

(
tji,k

)
. (20)

˙̂q
i,j∗
i (t) = f

(
q̂i,j∗i (t) , t

)
∀t ∈

[
tji,k, t

j
k+1

[
(21)

Note that q̂i,i∗i is updated only when Agent i broadcasts
a message, while qi∗i is potentially updated each time
Agent i receives information from other agents.

To evaluate (16)-(19) as well as q̂ij , Agent i only requires
messages from Agent j ∈ Ni.
Assumption A6 and the structure of the estimator (16)-

(17) ensure that q̂ii (t) = q̂ji (t) for all i ∈ N and j ∈
Ni. This simplifies the convergence and stability analysis
detailed in Viel et al. (2017b).

6 Event-triggered communications

Due to the presence of state perturbations, the non-
permanent communication, and the mismatch between

θi, θi, and θ̂ji , there is usually a discrepancy between qi
and its estimate q̂ji by Agent j denoted as

eji = q̂ji − qi, j ∈ Ni, (22)

which is used to trigger communications. Agent i can
estimate eji by running an estimator of its own state using
only information transmitted to its neighbours. This is
useful to detect when the discrepancy between q̂ji and qi
is large.
Theorem 3 introduces a CTC used to trigger communi-
cations to ensure a bounded asymptotic convergence of
the MAS to the reference trajectory. Each agent is as-
sumed to know the initial value of the state of its neigh-
bours. This condition can be satisfied by triggering a
communication at time t = 0.
Let kmin = min (kij 6= 0), kmax = max (kij), αi =∑N
j=1 kij , αmin = minαi, and αM = maxαi. Define also

for θi ∈ Rp, ∆θi = θi − θi, θi =
[
θi,1, . . . , θi,p

]T
, and,

using Assumption A4,

∆θi,max =


max

{∣∣θi,1 − θmin,i,1

∣∣ , ∣∣θi,1 − θmax,i,1

∣∣}
...

max
{∣∣θi,p − θmin,i,p

∣∣ , ∣∣θi,p − θmax,i,p

∣∣}
 .

(23)
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Theorem 3 Consider a MAS with agent dynamics
given by (1) and the control law (13). Consider some
design parameters η ≥ 0, η2 > 0, 0 < bi <

ks
kskp+kg

,

c3 =
3

4

min
{

1
2 , k1, kp, k0, 2

(
2k0 + αminkmin

kmax

)}
max {1, kM}

and k1 = ks−(1 + kp (kM + 1)). In absence of communi-
cation delays, the system (1) is input-to-state practically
stable (ISpS),see Jiang et al. (1996), and the agents can
be driven to some target formation such that

lim
t→∞

 ∑
i∈N\NL

k0
∥∥εii∥∥2 +

∑
i∈NL

k0 ‖εi‖2 +
1

2
P (q, t)

 ≤ ξ
with

ξ =
N

kgc3

[
D2

max + η + c3∆max

]
(24)

where ∆max = maxi=1:N

(
supt>0

(
∆θTi Γ−1i ∆θi

))
, if the

communications are triggered when one of the following
conditions is satisfied

‖q̇i‖ ≥
∥∥∥ ˙̂q
i

i

∥∥∥+ η2 (25)

kss
T
i si + kpkgg

T
i gi + η ≤ α2

M

(
kee

iT
i e

i
i + kpkM ė

iT
i ė

i
i

)
+ αMk

2
Ckp

∥∥eii∥∥2 N∑
j=1

kji

[∥∥∥ ˙̂q
i

j

∥∥∥+ η2

]2
(26)

+ kp
∥∥eii∥∥ [α2

Mky

(
1 + ‖|Yi|∆θi,max‖2

)
+

‖|Yi|∆θi,max‖2

ky

(
1 + ‖|Yi|∆θi,max‖2

)
 (27)

+
kg
k3

N∑
j=1

kij

∥∥∥q̇i∗i − ˙̃qj,i∗i

∥∥∥2 + 4αMkgkm

N∑
j=1

kij

∥∥∥qi∗i − q̃j,i∗i

∥∥∥2
+ kgbi

∥∥∥q̇i − q̇i∗i ∥∥∥2 , (28)

where k3 = min
{

1
2k0, 2

(
2k0 + αminkmin

kmax

)
k0, 1

}
,

km = min {k1, kp}, ke = ksk
2
p + kgkp +

kg
bi

, Yi =

Yi
(
qi, q̇i, ṗi, pi

)
, and ky > 0 a design parameter.

Moreover, consecutive communication triggering time
instants satisfy ti,k+1 > ti,k. 2

In Theorem 3, q̃j,i∗i denotes the last estimate of the ref-
erence trajectory shared between Agents i and j, such
that

q̃j,i∗i =

{
q̂i,i∗i if ti,ki ≥ tj,kj
q̂j,i∗i if ti,ki < tj,kj .

The proof of Theorem 3 is given in Viel et al. (2017b).
When Agent i broadcasts a message, x̂ii is updated us-
ing xi as shown in (15), thus eii and ėii are reset. Sim-

ilarly, x̂i,i∗i is updated using x̃i∗i as shown in (20) and

consequently q̂i,i∗i and ˙̂q
i,i∗
i are reset to qi∗i and q̇

i∗
i . This

ensures that the CTC is no more satisfied immediately
after Agent i has broadcast its message, avoiding con-
tinuous communication. The proof of ti,k+1− ti,k > 0 is
provided in Viel et al. (2017b).
The CTCs proposed in Theorem 3 are analyzed assum-
ing that the estimators of the state and reference trajec-
tory of the agents and the communication protocol are
such that ∀i, j ∈ N ×N ,

x̂ii (t) =x̂ji (t) (29)

x̂ii (ti,k) =xii (ti,k) (30)

q̂i,j∗1 (t) =q̂i,i∗1 (t) (31)

q̂i,j∗1 (ti,k) =q̂i,i∗1 (ti,k) (32)

These properties are actually satisfied if the communi-
cation protocol described in Section 5.3 and the state
estimator (16) and reference trajectory estimator (20)
are employed. Theorem 3 is valid independently of the
way the estimate x̂ii of xi is evaluated provided that (29)
and (32) are satisfied.
From (3) and (28), one sees that η can be used to ad-
just the trade-off between the bound ξ on the formation
and tracking errors and the amount of triggered com-
munications. If η = 0, there is no perturbation and θi is
perfectly known, the system converges asymptotically.
The left term in (26) depends on the potential energy
of the formation, which measures the discrepancy of the
MAS with its target formation. When this term is large,
larger estimation errors may be tolerated than when the
potential energy is low, since the MAS requires more
estimation accuracy to reach its formation.
The right term in (26) mainly depends on eii and ėii , the
error of Agent i state estimate. When the discrepancy
between the estimate x̂ii of its own state xi is large, the

estimates x̂ji , j ∈ Ni of xi are also of poor quality. A

message has to be sent by Agent i to update x̂ji , j ∈ Ni.
To reduce the number of triggered communications, one
has to keep eii and ėii as small as possible. This may be
achieved by more sophisticated estimators, as proposed
in Viel et al. (2017a).
The term (27) is the error of Agent i dynamic parameters
estimation. The discrepancy between the actual values

of Mi and Ci and of their estimates M̂ i
i and Ĉii deter-

mines the accuracy of θi, that of ∆θi,max, and the estima-
tion errors. Even in absence of state perturbations, due

to the linear parametrization, it is likely that M̂ i
i 6= Mi,

Ĉii 6= Ci and ∆θi,max > 0, which leads to the satisfaction
of the CTCs at some time instants. Thus, the CTC (27)
is more frequently satisfied when the model of the agent
dynamics is not accurate, requiring thus subsequent in-
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crease of the number of updates of the estimate of the
states of agents.
The discrepancy between the estimate of the reference
trajectory made by Agent i and by its neighbors is eval-
uated via (28). The estimates have to remain close to the
reference trajectory known by the leaders. The reference
trajectory estimation process differs from the state es-
timation process. In the state estimation process, when
Agent j receives a message from Agent i, Agent j up-
dates its estimate x̂ji using xi. In the reference trajectory
estimation, Agent j updates its reference trajectory esti-
mate qj∗j using qi∗i only when the information provided
by Agent i is more recent than that already known by
Agent j. The terms q̃j,i∗i and ˙̃qj,i∗i are used to keep track
of the last estimate of the reference trajectory shared be-
tween Agents i and j and avoid sending too many useless
messages.
The CTC (25) is related to the discrepancy between q̇i
and ˙̂qii . The norm of the actual value q̇i has to remain

lower than that of the estimate ˙̂qii evaluated by neigh-
boring agents to avoid that the discrepancy increases
faster than that could be predicted by the other agents.
Satisfaction of CTC (25) is obtained for small value of
η2 whereas large value of η2 leads to (28) being satis-
fied more frequently. A value of η2 that corresponds to a
trade-off between the two CTCs (25) and (28) has thus
to be found.
The choice of the parameters αM, kg, kp and bi also de-
termines the number of messages broadcast. Choosing

the spring coefficients kij such that αi =
∑N
j=1 kij is

small leads to a reduction in the number of communica-
tions triggered resulting from the satisfaction of (28), at
the cost of a less precise formation.

7 Simulation results

The proposed approach is evaluated considering N = 6
agents and two different models of their dynamics.

7.1 Models of the agent dynamics and estimator

7.1.1 Double integrator with Coriolis term (DI)
The first model is such that qi = [xi, yi]

T ∈ R2, Mi =
I2, Ci (q̇i) = 0.1 ‖q̇i‖ I2, and G = 02×1. The vectors

θi (0) = θ̂ji (0), i = 1, . . . , N are obtained using (2). To
better observe the trade-off between the potential energy
of the formation and the communication requirements,
a first less accurate estimator of xj made by Agent i is
evaluated as

x̂ij (t) = xj
(
tij,k
)
∀t ∈ [ti,k, ti,k+1[ (33)

The parameters of the control law (13) and the CTC
(28) are kM = ‖Mi‖ = 1, kC = ‖Ci‖ = 0.1, kp = 1,
kg = 15, ks = 1 + kp (kM + 1), bi = 1

kg
, and k0 = 2.

7.1.2 Surface ship (SS)
The second model considers surface ships with coordi-

nate vectors qi = [ xi yi ψi ]T ∈ R3, i = 1 . . . N , in a lo-

cal earth-fixed frame. For Agent i, (xi, yi) represents its
position and ψi its heading angle. The agent dynamics
are assumed identical for all agents and are taken from
Kyrkjeb et al. (2007). They are expressed in the body
frame as

Mb,iv̇i + Cb,i (vi) vi +Db,ivi = τb,i + db,i, (34)

where vi is the velocity vector in the body frame. The
values of Mb,i, Db,i, and Cb,i (vi) are taken from Kyrk-
jeb et al. (2007). At t = 0, each Agent i has access to

estimates M̂ i
b,i of Mb,i, Ĉ

i
b,i of Cb,i, and D̂i

b,i of Db,i de-
scribed as

M̂ i
b,i =

(
13×3 + 0.1ΞM

i

)
�Mb,i

Ĉib,i =
(
13×3 + 0.1ΞC

i

)
� Cb,i

D̂i
b,i =

(
13×3 + 0.1ΞD

i

)
�Db,i,

where 13×3 is the 3× 3 matrix of ones, ΞM
i , ΞC

i , and ΞDi
are matrices whose components are independent uniform
random variables with values in [−1, 1], and � is the
Hadamard product. These estimates are transmitted at
t = 0 to neighbouring agents. As a consequence, the
estimates of Mb,i and Cb,i made by all agents at t = 0
are all identical.
The model (34) may be expressed as (1) with G = 0 us-
ing an appropriate change of variables detailed in Kyrk-

jeb et al. (2007). The vectors θi (0) = θ̂ji (0), i = 1, . . . , N
are obtained using (2). The estimator described in Sec-
tion 5.3 is employed.
The parameters of (13) and (28) are kM = ‖Mi‖ = 33.8,
kC = ‖Cv (1N )‖ = 43.96, kp = 6, kg = 20, ks = 1 +
kp (kM + 1), bi = 1

kg
, and k0 = 1.5.

7.1.3 Parameters

The initial value are q (0) = [x (0)
T
, y (0)

T
]T , q̇(0) =

02N×1 for the DI and q (0) = [x (0)
T
, y (0)

T
, ψ (0)

T
]T ,

q̇ (0) = 03N×1 for the SS, where

x (0) = [−0.35, 4.59, 4.72, 0.64, 3.53,−1.26]

y (0) = [−1.11,−4.59, 2.42, 1.36, 1.56, 3.36]

and ψ (0) = 0N . An hexagonal target formation is con-

sidered with r∗ (0) = [ r∗(1) (0)
T
r∗(2) (0)

T ]T for DI and

r∗ (0) = [ r∗(1) (0)
T
r∗(2) (0)

T
r∗(3) (0)

T ]T for SS where

r∗(1) (0) = [0, 2, 3, 2, 0,−1]

r∗(2) (0) =
[
0, 0,
√

3, 2
√

3, 2
√

3,
√

3
]

r∗(3) (0) = 0N

Each agent communicates with N/2 = 3 other agents.
From Yang et al. (2015), one obtains kij = 0 ∀j, except
ki,(i+1) = ki,(i−1) = 0.185 and ki,(i+3) = 0.0926. One

has αi =
∑N
j=1 kij = 0.463, for all i = 1, . . . , N and

αM = 0.463.
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The simulation duration is t = T with T = 4 s, taken
sufficiently large to have a steady-state behavior, with
an integration step size ∆t = 0.01 s. Since time has
been discretized, the minimum delay between the trans-
mission of two messages by the same agent is set to
∆t. The perturbation di (t) is assumed constant over
each interval [k∆t, (k + 1) ∆t[. The components of di (t)
are independent realizations of zero-mean uniformly dis-
tributed noise U

(
−Dmax/

√
3, Dmax/

√
3
)

and are thus
such that ‖di (t)‖ ≤ Dmax. Let Nm be the total num-
ber of messages transmitted during a simulation. The
performance of the proposed approach is evaluated with
Rcom = 100Nm/Nm, where Nm = NT/∆t ≥ Nm.
The tracking target trajectory speed of the first

agent is q̇∗1 (t) = 4 [sin (0.4t) , cos (0.4t) , 0.1t]
T

, the
other agents having to remain in formation. Agent 1
is taken as the leader, i.e. NL = {1}. The estima-

tion model q̇
∗
i (t) = f (q∗i (t)) is taken as a dou-

ble integrator initialized at each tik by qi∗i so that

qi∗i (t) = q̈
i∗
i

(
tik
) (t−tik)

2

2 + q̇
i∗
i

(
tik
) (
t− tik

)
+ qi∗i

(
tik
)
.

7.2 Tracking control with DI
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Fig. 1. Evolution ofRcom and P (q, t)+‖ε‖ for different values
of Dmax and η, with η2 = 7.5. The DI model DI as well as
the constant estimator (33) are considered.

Figure 1 shows the evolution ofRcom and of P (q, t)+‖ε‖
at t = T for different values of Dmax ∈ {0, 2, 4, . . . , 12},
η ∈ {4, 16, 36, 64, 100, 144}, and η2 = 7.5.
In Figure 1 (a), one observes that Rcom decreases with
η and increases with Dmax, as expected observing the
CTC (28). In Figure 2 (b), one observes that when η
increases, P (q, t)+‖ε‖ also increases. The evolution with
Dmax is more complex to explain, since Dmax impacts
both sides of the CTC (28). When Dmax increases, the
threshold for the CTC to be satisfied increases, but due
to the noise, the CTC is also more likely to be satisfied.
For all considered values of η, the increase ofDmax is well
compensated by the increase of Rcom leading to small
variations of P (q, t) + ‖ε‖.
7.3 Tracking with surface ship model

The simulation duration is T = 5 s. Figure 2 shows the
evolution of Rcom and of P (q, t) + ‖ε‖ at t = T , for
different values of Dmax ∈ {0, 100, 200, 400, 600, 700}
and η ∈ {102, 2002, 4002, 6002, 7002} with η2 = 7.5.
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Fig. 2. Evolution of Rcom, P (q, t) and ε0 for different values
of Dmax and η, with η2 = 7.5. The SS model (34) and the
accurate estimator (16) are considered.

In Figure 2 left, one observes again that Rcom decreases
when η increases, and increases withDmax. Figure 2 right
shows that larger values of P (q, t)+‖ε‖ are obtained for
large values of η since less communications are triggered.
Moreover, as previously observed, whatever the value of
η, P (q, t) + ‖ε‖ increases only slightly with Dmax due
to the increased amount of communications which com-
pensates increasing perturbation levels.

Fig. 3. Hexagonal formation and tracking problem with
Dmax = 20, η = 50, and η2 = 7.5. Circles represents
agents (left figure) and communication events (right figure).
Rcom = 2.43%, P (q, T ) = 0.001 and ‖ε0‖ = 0.1. T = 5 s.

8 Conclusion

This paper presents a distributed event-triggered control
strategy to drive a MAS to some possibly time-varying
target formation. Perturbed Euler-Lagrange dynamics
are considered. The event-triggered approach requires
that each agent maintains an estimate of the state of
its neighbours, to be able to evaluate its control law,
without requiring a permanent communication between
agents. Each agent has also to estimate its own state us-
ing information it has transmitted to the other agents.
The discrepancy between its actual state value and its es-
timate is used to trigger communications to other agents,
so that they can update their estimates. Convergence
properties and influence of state perturbations on the
amount of required communications have been studied.
Tracking of time-varying formations has also been con-
sidered. The time interval between consecutive commu-
nications has been shown to be strictly positive in Viel
et al. (2017b).
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(a) Estimator (16). (b) Estimator (33).

Fig. 4. Hexagonal formation with Dmax = 20, η = 20
and η2 = 7.5. Agents are represented by circles. In (a),
Rcom = 10.75% and P (q, T ) = 0.001. In (b) Rcom = 40.25%
and P (q, T ) = 0.001. T = 2 s.

Simulations have shown the effectiveness of the proposed
method in presence of state perturbations when their
level remains moderate. In future work, the considered
problem will be extended to communication delay and
packet losses.
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