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Abstract—Many Machine Learning algorithms aiming at clas-
sifying signals/images X among a number of discrete labels Y
involve training instances, from which the predictor PY |X is
extracted according to the data distribution PX|Y . This predictor
is later used to predict the appropriate label for other instances
of X that are hence assumed to be drawn from the same
distribution. This is a fundamental requirement for many real-
world applications, therefore it is of great importance to monitor
the reliability of the classification provided by the algorithm
based on the learned distributions, when the test set statistics
differ from the training set ones. This paper makes a step in
that direction by proposing a Black Box Shift Detector of the
data evolution (covariate shift). ‘Black Box’ here means that it
does not require any knowledge of the predictor’s architecture.
Experiments demonstrate accurate detection on different high-
dimensional datasets of natural images.

Index Terms—Machine learning, deep learning, classification,
statistical hypothesis testing, proven reliability.

I. INTRODUCTION

Deep learning with large enough labeled datasets has been
highly successful in several applications such as image recog-
nition, speech recognition, recommendation, machine transla-
tion [1] and more recently communications [2]. These methods
implicitly assume the data of interest follow the same dis-
tribution as the one underlying training sequences. However,
this is a very strong assumption since in many real-world
applications such as communication networks the statistics of
the data evolves over time. In most cases we have very little
or even no prior knowledge about how the test distribution
may shift, e.g., anticipated changes in the traffic or topology
distributions. It is thus necessary to build a decision rule to
detect such changes in order to take appropriate decisions (i.e.
launch a new training).

This work addresses the problem of detecting changes of
the conditional distributions, (from PX|Y , estimated from the
training data and QX|Y 6= PX|Y , estimated from the test
data) over the features X . This is done under covariate shift
assumption in which both training and test distributions share
the same marginal distribution PY over the labels Y (or
concepts to be learnt). To this end, we propose a simple
yet effective method which is applicable to any trained deep
neural soft-classifier PY |X describing the probability of the
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label Y given the features X . This method does not require
joint training nor to access the details of the classifier itself,
such as the intermediate representations or parameters. The
difficulty of the present scenario relies on the derivation of
a binary classifier only from labeled trained data from PX|Y
equipped with the predictor PY |X without accessing to data
from the test distribution QX|Y . Our approach relies mainly
on the inference of the cumulative probability function of the
likelihood predictor1:

F (r|PX) ⌘ EY

⇥
Pr

�
� logPY |X(Y |X)  r

�⇤
, (1)

which can be used to relate covariate shift from PX to
QX by detecting the shift between F (r|PX) and F (r|QX)
based on the model misspecification induced by the predictor
PY |X . A chi-squared test [3] is then implemented to determine
whether there is a significant deviation between the expected
frequencies from the likelihood predictor during training and
the frequencies observed from test data.

There are two main contributions in this paper: First, we
provide an improved understanding of the relation between
covariate shift and predictor misspecification. Second, we
provide a systematic method for checking covariate shift
with black boxes. We demonstrate the effectiveness of the
proposed method using deep feed-forward neural networks,
trained for image classification tasks on various well-known
datasets including: CIFAR10 [4], MNIST [5], SVHN [6] and
Fashion-MNIST [7] which are widely used in the field (see
Appendix for their precise content).

A. Related work

A similar scenario has been investigated in [8], in which
both training and test distributions share the same conditional
distribution PY |X , while their marginal distributions, PX and
QX , are different. The focus was on correcting the distri-
bution shift while here we concentrate on the detection of
this shift. Major efforts have been dedicated to importance
reweighing (see [9] and references therein). These methods
have been developed for detecting either out-of-distribution or
adversarial samples, or both. An evaluation of the confidence
one can have in a classifier prediction has been studied
in [10]. A method for detecting any abnormal sample, which

1The probability on X is determined by the distribution PX , which is not
a function of the labels.797805.



is applicable to any pre-trained softmax neural classifier in
presence of labeled test samples was recently introduced
in [11]. This approach is based on the characterization via
the class conditional Gaussian distributions of the features of
the deep models under Gaussian discriminant analysis, which
result in a confidence score based on the Mahalanobis distance.
This method outperforms recent works in [12], [13] based
on the confidence from the posterior distribution. However,
improved performance in [11] are obtained by measuring and
combining the final features but also the low level features in
the neural network. This comes in contradiction with the black-
box assumption considered in this paper. While [12], [13] are
based on the sole maximum probability at the softmax output,
we prove here that considering the complete softmax output
is beneficial for the detection of covariate shift.

While most of the research efforts have been towards im-
proving classifier performance and compensating for covariate
shift, detecting the presence of distribution shift in testing from
unlabeled samples has received far less attention.

The rest of this paper is organized as follows. Section II in-
troduces some basic concepts on neural networks, then defines
the problem. Section III presents the Pearson’s chi-squared
test which is used to detect the covariate shift. Simulation
results are provided in Section IV while Section V provides a
summary with concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Review of neural networks

The central problem in machine learning and deep learning
is to learn useful representations of the input data from
exposure to known examples of inputs and outputs. Deep
learning involves several successive layers of representation,
based on so-called ”neurons”. In a layer of representation,
each neuron collects as inputs a number of outputs of the
previous layer and performs a so-called ”neuron pre-activation
function” as follows : a(x) = (Wx+ b) for a vector input x
where W is a weight matrix, b is the vector bias. The output of
the neuron is f

�
a(x)

�
= f(Wx+b) where f is the activation

function (preferably non-linear).
A deep neural network is obtained by stacking layers one on

top of another. Once the architecture of the network is defined,
a training is performed, based on a set of known input/output
pairs, using forward and backward gradient computations.
Under appropriate conditions and computations (softmax clas-
sifier), the resulting output can be considered as an estimate of
the probability of the labels for the considered input. We shall
not go further into technical details since the neural network
will be considered here as a black-box (for further details the
reader is referred to [14]).

In this paper, the proposed method for detecting mismatched
test data requires only output probabilities induced by the
softmax without any knowledge of the network architecture
or neither observations of intermediate layers outputs. In some
sense, we are thus studying a “black box” method that should
be able to assess whether the data processed by the network
has statistical properties similar to the training data or not.

Obviously, this gives a good view of the reliability of the
classification results provided by the network. Therefore, in
the following, we will use the validation set, e.g., a subset of
the training set which was not used for training, as a reference
and the test set as the database of matched data.

B. Problem formulation

Let us consider a pre-trained deep neural network with a
softmax classifier denoted by PY |X . Let x 2 X denote a
feature input and let y 2 Y ⌘ {0, 1, . . . , C � 1} denote the
corresponding output or label. The softmax classifier provides
as an output the probability PY |X(c|x) for each class label c
given the feature x. Without loss of generality, the network is
assumed to perform an image classification task. Therefore, the
image can be interpreted as being a redundant representation
of the class and the image classification problem could be seen
as a data compression process. A binary instantaneous code
of minimum expected-length could be constructed to describe
the source with optimal coding length: � log2 PY |X(c|x).
Intuition behind this work is that the statistical distribution of
the code lengths should reflect to some extend the statistical
distribution of the inputs. In the following, the empirical
cumulative distribution function F̂n(r|Data) of � log2 PY |X :

F̂n(r|Data) ⌘ EY

"
1

n

nX

i=1

I[0,r](Y |xi)

#
, (2)

where I[0,r](y|xi) = 1 if � log2 PY |X(y|xi)  r and zero
otherwise, is used in order to detect data shift. Obviously,
assuming that the data samples come from distribution PX ,
by the Glivenko-Cantelli theorem, it follows that

sup
r

���F̂n(r|Data)� F (r|PX)
��� �! 0

almost surely in the limit when n goes to infinity. Kolmogorov
strengthened this result, by effectively providing the rate of
this convergence. However, in practice, the statistic requires a
relatively large number of data points (in comparison to other
goodness of fit criteria) to properly reject the null hypothesis.
This will be made clear in the following example.

Assume that detection is based on batches of images, which
is indeed the case for many practical situations. Consider the
empirical cumulative distribution function plotted in Fig. 1 for
the case of CIFAR10 based on the neural network specified
in Algorithm 3 relegated to Section VI. Two different variants
are studied: F̂n(r|Matched test) which is the restriction of
the predictor’s likelihood to feature inputs x belonging to the
test set and F̂n(r|Mismatched data), which is obtained
by adding salt and pepper noise to Matched test with
corruption probability 0.08. We use 104 input images and the
CIFAR10 dataset consists of 10 classes. The size of each set
is thus equal to 105. It may be observed in Fig. 1 that the
range is almost the same for both sets. Whereas an hypothesis
test based on the comparison of the value of � log2 PY |X to
a threshold would not be relevant in this case. The reason
behind this fact relies on the property of the softmax classifier
which is known to produce overconfident posteriors, even for



Fig. 1. Empirical distribution function (up) and empirical
cumulative distribution function (down) F̂n(r|Matched test) and
F̂n(r|Mismatched test), where Matched test⌘ CIFAR10 and
Mismatched test⌘ CIFAR10+S&P.

misclassified samples [15]. In contrast, a test of homogeneity
seems to be more appropriate here since the distributions
exhibit different shapes. This test will be introduced in the
next section.

III. PEARSON’S CHI-SQUARED TEST

The method proposed here to detect a possible evolution of
the data set is based on a chi-Square test for homogeneity [3].
This test compares the distribution of counts for groups using
the same categorical variable, i.e., � log2 PY |X is used here.
The test determines whether frequency counts are distributed
identically across different populations. Two groups are con-
sidered here. The first group, called Standard serves as
a proper benchmark. Standard contains realizations ob-
tained by sampling jointly the likelihood predictor function:
� log2 PY |X , according to the label distribution PY and the
feature samples X from input images, e.g., images from a
validation set. The second group called Sample contains
CNSMP realizations of � log2 PY |X , where C is the number
of classes and NSMP is the number of image on this sample
test. Obviously, we want an efficient test for small values of
NSMP. However, such minimal value will heavily depend on
the statistical difference between the underlying distributions.
The test procedure is described below.

A. Testing homogeneity

We return to the simple goodness of fit problem for categor-
ical data that was briefly considered. Suppose that each sample
� log2 PY |X is divided into |K| categories (e.g. defining |K|
real valued intervals). We would like to evaluate whether the
distribution of categories in each group is the same. Let us
denote the empirical estimates of the probabilities as Pr(K =
k|Standard) ⇡ p̂STD

k and Pr(K = k|Sample) ⇡ p̂SMP
k and

the corresponding probabilities in the population from which
the sample groups are selected as pSTD

k and pSMP
k . Then we

want to test the following hypotheses:
⇢

H0 : pSTD
k = pSMP

k = pk,
H1 : otherwise. (3)

A standard test, proposed by Pearson (1900), rejects H0 for
large values of Pearsons Chi-squared statistic:

T ⌘
|K|X

k=1

(NSTD
k,th �NSTD

k )2

NSTD
k,th

+
(NSMP

k,th �NSMP
k )2

NSMP
k,th

, (4)

where NSTD
k and NSMP

k stand for the number of instances in
the k-th category within each sample group, i.e., the evidence
NSTD

k = p̂STD
k NSTD and NSMP

k = p̂SMP
k NSMP. The theoretical

numbers of instances are computed as follows: NSTD
k,th ⌘

pkNSTD and NSMP
k,th ⌘ pkNSMP. Since the true probabilities

{pk} are unknown, these are estimated as: pk ⇡ NSTD
k +NSMP

k
C(NSTD+NSMP)

which is the best estimator based on the observations and
under the assumption that H0 holds. The total number of
categories is chosen to be 10, with intervals of equal length.
If either NSTD

k,th < 5 or NSMP
k,th < 5 then the k-th category is

grouped with an adjacent category and thus |K|  10.

B. Covariate shift detection

As previously mentioned, Standard serves as a bench-
mark and characterizes the behavior of the pre-trained network
with respect to the likelihood’s predictor when input features
and random labels are used. Therefore, a simple way to con-
struct Standard is to aggregate the softmax outputs obtained
with the validation set. Sample is obtained by randomly
sampling the likelihood’s predictor either from Matched
test feature inputs, i.e., H0 holds, or from Mismatched
test feature inputs, i.e., H1 holds and H0 should be rejected.
For that purpose, T should be compared to the critical value.
The critical value of the test is chosen according to the desired
level of confidence and can be estimated from expression (2)
according to the Standard feature inputs. The efficiency of
this test is usually measured through the two error probabilities
and for several critical values:
⇢

↵(T ) ⌘ Pr (reject H0 | SMP ⌘ Matched test) ,
�(T ) ⌘ Pr (accept H0 | SMP ⌘ Mismatched test) .

IV. SIMULATION RESULTS

A. Noisy data detection

In this section, the mismatched test data is mod-
eled by an additive noise on the proper data. Namely,
Mismatched test = {x + n, x 2 Matched test}



where n is a background noise with uniform distribution
between 0 and Umax = 30 [16]. In the following, we use
two datasets: MNIST, Fashion-MNIST. MNIST is a dataset
of handwritten digits with 10000 testing examples and 60000
training examples (10% of these training examples from the
validation set). Fashion-MNIST is a dataset of Zalando’s arti-
cle images divided in 10 classes with 60000 training examples
(10% for validation set) and 10000 training set. Numerical
results are given in Table I and II. The true negative rate
(TNR) stands for the proportion of mismatched sequences
that are properly identified, true positive rate (TPR) stands for
proportion of matched sequences that are properly identified.
AUROC stands for Area under Receiver Operating Charac-
teristic and is computed from the plots Figure 2 and 3. The
main trend in the results follows the intuition: the larger NSMP

is, i.e. the longer sequences are, the better the performances.
The detection accuracy is over 95% with NSMP = 40 on
MNIST database. The results are even better with Fashion-
MNIST database, the main reason for the differences is the
nature of the network being different. The network used
for MNIST has a simple feed-forward architecture with one
layer and dropout. The accuracy of the classification task is
98.02% on the test set (matched sequence) and 96.75% on
the noisy version of the test set (mismatched sequence) The
Fashion-MNIST network involved a deeper and more complex
architecture based on convolutional layers with dropout, details
are in the appendix (see section VI).The accuracy on the
classification task is 91.40% on the matched sequence (test set)
and 90.30% on the mismatched sequence (noisy test set). The
95% detection accuracy (detecting true matched sequence and
true mismatched sequence) is reached with only NSMP = 20
on this database. The method is efficient to separate target data
and mismatched data even when the difference between them
is a rather small disturbance. These results prove the efficiency
of our method, but also demonstrate that it can be applied
to any neural network outputs regardless of their architecture
complexity, truly behaving as a black box covariate shift
detector.

NSMP TNR at TPR 95% AUROC Detection accuracy
10 48.82 83.93 80.24
20 75.96 94.40 89.05
30 90.88 97.82 93.80
40 95.76 99.04 95.77
50 98.6 99.62 97.81
60 99.58 99.88 98.79
70 99.88 99.97 99.34

TABLE I
RESULTS ON THE MNIST DATASET FOR SEVERAL VALUES OF N SMP

WHEN MISMATCHED IS ADDITIVE BACKGROUND NOISE

Plots of figure 2 and 3 show the accuracy trade-off for
different values of NSMP respectively for MNIST and Fashion-
MNIST. The performances shown here are quite good even
with a small sequence (NSMP  20). For the higher value of
NSMP the detection of mismatched data can be made with high
confidence (the probability is over 0.9995). It seems that for a

NSMP TNR at TPR 95% AUROC Detection accuracy
10 52.76 88.74 84.87
20 92.72 98.40 95.09
30 97.62 99.40 96.87
40 99.6 99.80 98.45
50 99.78 99.93 99.01
60 99.88 99.95 99.20
70 > 99.96 99.996 99.71

TABLE II
RESULTS ON THE FASHION-MNIST DATASET FOR SEVERAL VALUES OF
N SMP WHEN MISMATCHED DATA IS ADDITIVE BACKGROUND NOISE

wide range of application one can still find the proper NSMP

value to satisfy its needs.

Fig. 2. Accuracy trade-off for different length of sequence NSMP on MNIST:
true positive rate (correctly identifying normal samples) as a function of false
positive rate (missing the detection of abnormal samples).

Fig. 3. Accuracy trade-off for different length of sequence NSMP on Fashion-
MNIST: true positive rate (correctly identifying normal samples) as a function
of false positive rate (missing the detection of abnormal samples).

B. Out-of-distribution samples detection

We turn now to the detection of out-of-distribution samples.
These abnormal samples can be due to an adversarial attack
or to an error of manipulation. In this context, the images
in Mismatched test and in Matched test are signifi-
cantly different therefore the test of homogeneity is expected



to be efficient for smaller values of NSMP than in the previous
context. The dataset we are using in this section are CIFAR10
and SVHN. CIFAR-10 contains 32x32 colour images belong-
ing to 10 different classes classes characterizing the picture
(train, horse, plane,...), with 50000 training examples (10%
for validation set) and 10000 testing examples. The Street
View House Numbers (SVHN) dataset is obtained from house
numbers in Google Street View images. Each example is a
32x32 colored image, associated with a label from 10 classes
as in CIFAR-10. The network used are a deep convolutional
network (detailed in section VI) trained on sample from one
database and the mismatched test are perform with sample
from the other database. The classification accuracies are
73.60% and 91.64% on respectively the CIFAR10 dataset and
the SVHN dataset.

NSMP TNR at TPR 95% AUROC Detection accuracy
5 86.22 95.68 91.34
7 95.88 98.48 95.88
9 98.28 99.39 97.71

11 99.34 99.74 98.47
13 99.64 99.80 99.52
15 99.98 99.99 99.81
17 >99.99 >99.99 99.87

TABLE III
RESULTS ON A SVHN TRAINED NETWORK TESTED ON CIFAR10

SAMPLES FOR SEVERAL VALUES OF N SMP

NSMP TNR at TPR 95% AUROC Detection accuracy
5 27.14 86.69 82.47
7 55.26 92.96 88.19
9 84.8 96.80 92.72

11 88.28 97.49 93.75
13 91.26 97.84 94.62
15 98.58 99.19 96.96
17 98.72 99.28 97.06
19 99.44 99.45 97.55

TABLE IV
RESULTS ON A CIFAR10 TRAINED NETWORK TESTED ON SVHN

SAMPLES FOR SEVERAL VALUES OF N SMP

The error probabilities are given in Tables III and IV. In
all studied cases, the method proves its efficiency. Indeed,
with 7 or 15 images (respectively when CIFAR10 and SVHN
samples are the mismatched data) it is possible to take apart
normal from abnormal samples with an accuracy over 95%.
One can observe that the performance is quite different in both
situations of a network trained on SVHN, tested on CIFAR10,
and the converse situation. This has a simple explanation : If
a network has poor performance on the training set, it will
be difficult to distinguish legitimate signals from illegitimate
ones. And this is the case here : the network trained on SVHN
has a performance of 91 %, while this performance decreases
to 73 % when the network is trained on CIFAR10. The curves
on the figures 4 and 5 look less smooth because NSMP is
small compared to the value of used for the figure 2 and
3. They may overlap because they are plotted with only a
step of two between values of NSMP. Note that the hypothesis

are only valid if NSMP � 5. As shown on figure 4 the case
NSMP = 5 can produce surprising shaped curve but still bring
relevant information. The method is efficient to track out-
of-distribution sample sequences quickly and with a strong
confidence even if the network does not perform perfectly on
the regular task: The Cifar10 trained network output statistics,
despite not coming from top of the art classifier, still enable
an accurate detection with as few as NSMP = 15. Finally as
shown on the last two lines of table III top performances are
achieved for quite small value of NSMP: the difference between
NSMP = 15 NSMP = 17 ( reinforced by their respective
curves in figure 4) is faint which makes sense because the
performances are close to 100%

Fig. 4. Accuracy trade-off for different length of sequence N on a network
trained on SVHN and tested with CIFAR10 images: true positive rate
(correctly identifying normal samples) as a function of false positive rate
(missing the detection of abnormal samples).

Fig. 5. Accuracy trade-off for different length of sequence N on a network
trained on CIFAR10 and tested with SVHN images: true positive rate
(correctly identifying normal samples) as a function of false positive rate
(missing the detection of abnormal samples).

V. CONCLUSION

A test of homogeneity has been proposed for the detection
of either data evolution or of abnormal samples in a clas-
sification context. The method is based on the assumption
that the output distribution of the neural network’s softmax
classifier reflects the statistical properties of the input, and can



serve as a basis for evaluating some ”distance” between the
statistical properties of the signals/images under test compared
to the reference situation, given by the training sequences.
This approach has been validated through simulations, demon-
strating that good homogeneity checks can be obtained even
for small number of observations. The method is very simple
and is applied independently of the intrinsic neural network
architecture. In fact, the neural network is considered as a
black-box since the method necessitates the sole knowledge
of the outputs. This comes in contrast with most solutions in
the literature.

VI. APPENDIX

The Neural Network Architectures used in the paper are
given below. Dense(n) denotes a fully-connected layer with n
output units. Con2D(n, w ⇥ h) denotes a convolutional layer
with n output features and filter size of w ⇥ h. ReLU is the
rectified linear unit activation. The implementation is based on
Keras.

Algorithm 1 MNIST
model = models.Sequential()
model.add(Dense(512),activation=’relu’)
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation(’softmax’))

Algorithm 2 Fashion-MNIST
model = models.Sequential()
model.add(Conv2D(64, (2, 2), activation=’relu’,
input shape=(28, 28, 1)))
model.add(MaxPool2D())
model.add(Dropout(0.3))
model.add(Conv2D(32, (2, 2), activation=’relu’))
model.add(MaxPool2D())
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(256),activation=’relu’)
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation(’softmax’))
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