
HAL Id: hal-02172298
https://centralesupelec.hal.science/hal-02172298v1

Submitted on 25 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Simple Statistical Method to Detect Covariate Shift
Clément Feutry, Pablo Piantanida, Florence Alberge, Pierre Duhamel

To cite this version:
Clément Feutry, Pablo Piantanida, Florence Alberge, Pierre Duhamel. A Simple Statistical Method
to Detect Covariate Shift. GRETSI 2019 - XXVIIème Colloque francophone de traitement du signal
et des images, Aug 2019, Lille, France. �hal-02172298�

https://centralesupelec.hal.science/hal-02172298v1
https://hal.archives-ouvertes.fr

A Simple Statistical Method to Detect Covariate Shift
Clément FEUTRY1, Pablo PIANTANIDA1,2, Florence ALBERGE1, Pierre DUHAMEL1

1Laboratoire des Signaux et Systèmes (L2S), CentraleSupélec-CNRS-Université Paris-Sud, Université Paris-Saclay,
Gif-sur-Yvette Cedex, France

2Montreal Institute for Learning Algorithms (Mila), Université de Montréal, QC, Canada
clement.feutry@l2s.centralesupelec.fr

Résumé – L’utilisation croissante de réseaux de neurones dans le traitement automatique de données soulève de nouvelles problématiques.
L’une d’elles est la détection de décalage des covariables d’entrées. Ce décalage entraîne une inadéquation entre le réseau et les données: le
réseau continue de traiter les données, mais fournit des résultats vides de sens. Nous présentons des méthodes statistiques de détection de
comportement peu confiant.

Abstract – The growing use of neural networks for automatic data processing raises new challenges. Among this is detecting changes of
distribution or covariate shift of the inputs. The shift leads to a mismatch between the network and the incoming data: the network makes
decisions but its outputs are meaningless. This paper introduces a novel statistical method to detect under-confident behavior of the network.

1 Introduction
An arguable flow of the widely used neural network clas-

sifier is the fact that they always outputs an answer. It means
that whatever the input, the network will process it and will
assign a class. Putting a dog picture in a written digit classi-
fier will results in the network outputting a digit, the most li-
kely digit, even if it is a complete nonsense. This paper aims
at identifying these phenomenons and therefore prevent them.
Our main contribution is the usage of simple statistical tools
to assess covariate shift without any other assumption on the
network that it output a probability vector for each input. An
empirically study shows that one of these tools performs bet-
ter than the other ones when testing systematically the method
on black boxes. We demonstrate the effectiveness of the pro-
posed method using deep feed-forward neural networks, trai-
ned for image classification tasks on well-known datasets : CI-
FAR10 [1] and SVHN [2].

1.1 Related work
A similar scenario has been investigated in [3], in which

both training and test distributions share the same conditio-
nal distribution PY |X , while their marginal distributions, PX

and QX , are different. The focus was on correcting the distri-
bution shift while here we concentrate on the detection of the
shift itself. Major efforts have been dedicated to importance re-
weighing (see [4] and references therein). These methods have
been developed for detecting either out-of-distribution or ad-
versarial samples, or both. An evaluation of the confidence that
can be obtained in a classifier task has been studied in [5]. A
method for detecting abnormal samples, which is applicable to

any pre-trained softmax neural classifier in presence of labeled
test samples, was recently introduced in [6]. This approach is
based on the characterization via the class conditional Gaussian
distributions of the features of the deep models under Gaussian
discriminant analysis, which results in a confidence score ba-
sed on the so-called Mahalanobis distance. The method outper-
forms recent works in [7, 8] based on the confidence from the
posterior distribution. However, improved performance in [6]
are obtained by measuring and combining the final features but
also the low level features in the neural network. This comes in
contradiction with the black-box assumption considered in this
paper. While [7, 8] are based on the sole maximum probability
at the softmax output, we prove here that considering the com-
plete softmax output is beneficial for the detection of covariate
shift. While most of the research efforts have been towards im-
proving classifier performance and compensating for covariate
shift, detecting the presence of distribution shift in testing from
unlabeled samples has received far less attention.

The rest of this paper is organized as follows. Section II in-
troduces the statistical tools, then defines the problem. Section
III presents the simulations results while Section IV provides a
summary with concluding remarks.

Notations

Dataset is noted by X and label alphabet is noted as Y ≡
{0, 1, . . . , C − 1}. (xi, yi) ∈ X × Y is a sample and its asso-
ciated label. The following probabilities are defined as follows :
PX , QX and PY are respectively the distribution over the data
samples, the distribution of abnormal samples and the distribu-
tion of the labels.

2 Statistical Analysis

2.1 Problem formulation
We focus on the scenario of black box in which we do not

have access to the network but only on its output soft proba-
bility, i.e., a probability distribution over the labels : PŶ |X . A
change in the distribution of X in this case from PX to QX

should result in a change of the conditional distribution out-
putted by the network from PŶ |X to QŶ |X . We suppose that
we know the empirical distribution of PXY from the dataset
(training set and validation set), but we do not have any infor-
mation about the distribution of QX (neither the true nor the
empirical distribution). The main idea is to develop a method
that can provide a meaningful statistic for the decision rule.
To this end, the samples are grouped into batches of size N .
The decision rule should use only the outputs of the neural net-
work : PŶ |X(ŷ|xi). The test statistics (to be defined in the next
section) is computed based on the values of zi = PŶ |X(ŷ|xi)

for xi, i ∈ [0, N − 1] for the considered batch. Accepting the
null hypothesis (H0) means that the batch is considered as in-
distribution (PX). The type I error means that the hypothesis
H0 is rejected whereas it was true while the error of type II
implies that the hypothesis H1 is rejected while it was true.

2.2 Towards useful statistics
The key idea is that we are not interested in the network clas-

sification rate, we only assume that the network is fairly trained
on dataset’s classification task. What we are interested in is the
confidence of the predictions expressed by the network on the
data we feed it with. If the trained network computes the esti-
mated label distribution on a mismatched sample, the network
should show sign of a unusual uncertainty. Conversely, if the
network processes an adapted sample, even if there might have
some hesitations between several possible values of Ŷ , the net-
work will be confident enough to dismiss some other Ŷ values.
This would imply that the previous statistics will asymptoti-
cally diverge. This raises three questions : how to measure this
statistic divergence, how far apart will they diverge and how
large should N (the number of test samples) be to assess the
asymptotic effect ? The processing of the data in batches of
size N leads to a significant amount of values for each batch,
each output being already of size C. The tools we will used are
means measuring the level of confidence of a classifier compu-
ted over all the N samples of a batch :

— The quadratic mean : QM =

√∑n
i z

2
i

n
, ‘

— the arithmetic mean : AM =

∑n
i zi
n

— the geometric mean : GM = n

√√√√ n∏
i

zi,

— the harmonic mean : HM =
n∑n
i

1
zi

.

FIGURE 1 – Histogram comparing the predictions distributions
(PŶ |X) between test set and validation set for the quadratic
mean.

Provided that all (xi) are positive, these statistics satisfy :

QM ≥ AM ≥ GM ≥ HM.

Since
∑N

i=1 zi = 1 (normalized probability), the arithmetic
mean is useless.

2.3 Statistical behaviour
The distribution of the training set, the validation set and the

test set should be the same. Therefore the distributions of the
network output for each of these sets should be the same or ex-
tremely close as can be seen on Fig. 1. This histogram shows
that there is no distribution difference in the predictions for
batches from validation set and test set : indeed the two dis-
tributions are hard to distinguish. Therefore the validation set
distribution is a good approximation of the test set distribution.
We also used matched and mismatched samples to confront the
behavior of the different means in the histograms plotted in
Fig. 2. The plot shows that the statistics have different distri-
butions. As expected the values taken by the quadratic mean
are higher than the other ones. Even if these statistics looks
more distinguishable in the histogram, a scaling effect may in-
duce a wrong intuition regarding lower values statistics. To pro-
perly rank the statistics, the results are explicitly summarized
in Table 1 for several values of N. In order to rank this method
we used the optimal threshold, i.e., we used here the knowledge
of mismatched data statistics. The optimal threshold, knowing
both PX and QX is the threshold that result in the equal proba-
bility for type I and type II errors. The QM outperforms better
the other averaging methods in this particular set-up.

3 Experiments
In this section, the distribution of QX is assumed unknown.

Moreover we consider having access only to the training and
validation data, meaning we have partial information over the

TABLE 1 – Performances of different means as a statistic. Per-
centage of error of both types over matched and mismatched
data. The mismatched data statistic is known in order to find
the optimal threshold. Maximum value is indicated in bold.

n 2 3 4 5 6
QM (%) 18.07 12.69 9.57 6.51 5.47
GM (%) 19.53 12.59 9.85 6.55 5.67
HM (%) 27.85 19.89 17.55 15.36 16.04

n 7 8 9 10
QM (%) 3.77 3.35 3.19 2.39
GM (%) 4.17 3.61 3.29 2.01
HM (%) 13.07 12.79 12.72 8.69

FIGURE 2 – Histogram exposing the behavior of different com-
puted means on matched and mismatched data with N = 2.
The least overlapping pair of histogram is the pair correspon-
ding to the QM as shown on table 1.

distribution of PX . Indeed we just know the empirical distribu-
tion of some of the xi and we will only use the statistic of the
validation data. Given the conditional distribution of the vali-
dation data PŶ |X(ŷ|xi) and using a chosen value for the false
discovery rate we can compute a threshold value for the hypo-
thesis testing : for any batch, the relative value of its statistic is
compared to the threshold in order to make a decision between
H0 and H1.

3.1 SVHN database
The network is trained on the SVHN database. The mismat-

ched data correspond to images from the CIFAR10 database.
Therefore the two sets of data (matched and mismatched) are
different in nature : the classifier could not produce any mea-
ningful results with mismatched data. The values presented be-
low are obtained with the network detailed in the appendix
4. Values are averaged over ten independent trainings of the
network. Fig. 3 shows the influence of both the mean method

TABLE 2 – Mean method and N value induced variation of the
false discovery rate (FDR) for test set with a threshold compu-
ted on the validation set for a SVHN trained network.

FDR 5% 0.5%
min max min max

QM (%) 2.22 3.68 0.04 0.16
GM (%) 1.42 3.00 0.02 0.1
HM (%) 1.52 2.88 0.0 0.16

and the N value. As expected, the higher N is the more likely
mismatched data will be correctly filtered out. The quadratic
mean (red curves) exhibits the best results, and the harmonic
mean (black curves) performs quite worse comparatively. The
geometric mean performance is mostly in between. The expo-
sed method performs well, for example, with an FDR equal to
5%, 69.7% of batches are rightly filtered out with as little as 2
images batches, at the cost of 3.48% images of the test batches.

FIGURE 3 – Percentage of mismatched batches properly iden-
tified as a function of the size of batches for a SVHN trained
network. The squares and triangles curves correspond to a false
discovery rate of respectively 5% and 0.5%. The black, blue
and red curves are respectively associated with the harmonic
mean, the geometric mean and the quadratic mean. Values of
the fixed false discovery rate are obtained using validation, the
corresponding false discovery rate on the test sample is given
on the table 2 .

3.2 CIFRAR10 database
Conversely of the previous experiment, the network is trai-

ned on the CIFAR10 database and the mismatched data cor-
respond to images from the SVHN database. Here again the
classifier could not produce any meaningful results with mis-
matched data. Values presented below are obtained with the
network detailed in the Appendix. Values are averaged over ten
trainings of the network. Fig. 4 shows the influence of both the
mean method and the N value. The same behaviour is exposed

FIGURE 4 – Percentage of mismatched batches properly iden-
tified as a function of the size of the batch for a CIFAR10 trai-
ned network. The squares and triangles curves correspond to a
false discovery rate of respectively 5% and 0.5%. The black,
blue and red curves are respectively associated with the har-
monic mean, the geometric mean and the quadratic mean. Va-
lues of the fixed false discovery rate are obtained using valida-
tion sample, the corresponding false discovery rate on the test
sample is given on the table 3 .

here : the quadratic mean (red cuvres) shows the best results,
and the harmonic mean (black curves) performs quite worse
comparatively. The geometric mean performance is mostly in
between. The exposed method performs a little worse than in
the previous experiment : with an FDR of 5%, only 42% of
batches are rightly filtered out with 2 images batches, at the
cost of 5.64% images of the test batches. Table 3 and 2 shows
different results : for the network trained on SVHN, FDR on
the test set were always under fixed validation set FDR. On CI-
FAR10 values of FDR on the test set are around fixed validation
set FDR, but not strictly under.

TABLE 3 – Mean method and N value induced variation of the
false discovery rate (FDR) for test set with a threshold compu-
ted on the validation set for a CIFAR10 trained network.

FDR 5% 0.5%
min max min max

QM (%) 5.1 6.58 0.28 1.3
GM (%) 4.48 6.84 0.26 1.02
HM (%) 4.06 6.4 0.12 0.7

4 Conclusion

This studies shows that the use of the quadratic mean is quite
efficient to detect a shift in the distribution between trained data
and unknown test data. This tool could be proven really useful
because it manages to assess the confidence in a robust manner
regarding its performances. This tool could be used to monitor

shift in the tested data stream and indicate the right moment to
perform a partial or total retraining of the network.

Appendix : Architectures
Dense(n) denotes a fully-connected layer with n output units.

Con2D(n, w × h) denotes a convolutional layer with n output
features and filter size of w × h. ReLU is the rectified linear
unit activation. The implementation is based on Keras.

Algorithm 1 CIFAR-10 or SVHN
model = models.Sequential()
model.add(Conv2D(32, (3, 3), activation=’relu’, in-
put_shape=(32, 32, 3)))
model.add(MaxPool2D())
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), activation=’relu’))
model.add(MaxPool2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512,activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Dropout(0.2))
model.add(Activation(’softmax’))

Références
[1] A. Krizhevsky, “Learning multiple layers of features from

tiny images,” 2009.

[2] Y. Netzer, T. Wang, A. Coates, R. Bissacco, B. Wu, and
A. Y. Ng, “Reading digits in natural images with unsuper-
vised feature learning.”

[3] H. Shimodaira, “Improving predictive inference under co-
variate shift by weighting the log-likelihood function,”
Journal of Statistical Planning and Inference, vol. 90,
no. 2, pp. 227–244, Oct. 2000.

[4] M. Sugiyama and M. Kawanabe, Machine Learning in
Non-Stationary Environments : Introduction to Covariate
Shift Adaptation. The MIT Press, 2012.

[5] H. Jiang, B. Kim, M. Y. Guan, and M. R. Gupta, “To trust
or not to trust A classifier,” in NeurIPS 2018, 3-8 December
2018, Montréal, Canada., 2018, pp. 5546–5557.

[6] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified fra-
mework for detecting out-of-distribution samples and ad-
versarial attacks,” in NeurIPS, 2018, pp. 7167–7177.

[7] D. Hendrycks and K. Gimpel, “A baseline for detecting
misclassified and out-of-distribution examples in neural
networks,” in ICLR, 2017.

[8] L. Y. Liang, Shiyu and R. Srikant, “Principled detection of
out-of-distribution examples in neural networks,” in ICRL,
2018.

