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Abstract

Dynamic regressor extension and mixing (DREM) is a new technique for parameter
estimation that has proven instrumental in the solution of several open problems in
system identification and adaptive control. A key property of the estimator is that, by
generation of scalar regression models, it guarantees monotonicity of each element
of the parameter error vector that is a much stronger property than monotonicity of
the vector norm, as ensured with classical gradient or least-squares estimators. On
the other hand, the overall performance improvement of the estimator is strongly
dependent on the suitable choice of certain operators that enter in the design. In this
paper we investigate the impact of these operators on the convergence properties
of the estimator in the context of identification of linear single-input single-output
time-invariant systems with periodic excitation. The most important contribution is
that the DREM (almost surely) converges under the same persistence of excitation
(PE) conditions as the gradient estimator, while providing improved transient perfor-
mance. In particular, we give some guidelines how to select the DREM operators to
ensure convergence under the same PE conditions as standard identification schemes.

KEYWORDS:
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1 INTRODUCTION

A new procedure to design parameter estimators for linear and nonlinear regressions, called dynamic regressor extension and
mixing (DREM), was recently proposed in1. The technique has been successfully applied in a variety of identification and adap-
tive control problems2,3,4,5,6. For linear regressions DREM estimators outperform classical gradient or least-squares estimators
in the following precise aspect: independently of the excitation conditions, DREM guarantees monotonicity of each element of
the parameter error vector that is much stronger than monotonicity of the vector norm, which is ensured with classical estima-
tors. Another interesting property of DREM is that its convergence is established without the usual, restrictive requirement of
regressor persistence of excitation (PE)7,8. Instead of PE a non-square integrability condition on the determinant of a designer-
dependent extended (square) regressor matrix is imposed. Similarly to the dynamic regressor extension approach proposed in9

and to instrumental variable methods10 where the regression model is multiplied by some signals to generate new regressions,
in DREM new regressions are created selecting a certain number of linear, stable operators, which act on the linear regression
to create new regressors (with filtered signals), which are then pile up on the aforementioned matrix. Multiplying by the adjoint
of this matrix generates a series of independent scalar regressions for each of the unknown parameters with the determinant of
the matrix being the common regressor to all of them. The non-square integrability of this determinant is, then, the necessary



2 S. Aranovskiy ET AL

and sufficient condition for parameter convergence. To make the paper self-contained a brief description of DREM as applied
in identification problems is given in the next section—see1 for a more general and detailed presentation of DREM and11 for
its reformulation as a functional Luenberger observer.
Clearly, the overall performance of the estimator is strongly dependent on the suitable choice of the aforementioned operators.

Roughly speaking, they should be selected to generate new (filtered) regressors that are, as much as possible, linearly independent
among them. Prior information on the spectral content of the regressor may then be used to select these operators, which may be
selected as linear time-invariant (LTI) band-pass filters or simple delays. In this paper we investigate the impact of these operators
on the convergence properties of the estimator in the context of parameter identification of linear time-invariant stable systems.
In this case, the (original) regressor is generated applying some LTI filters to the systems input. It is well known, cf., Theorem
2.7.3 of8, that standard gradient and least-squares algorithms will generate a globally exponentially convergent estimate of the
parameters if and only if the input signal contains a sufficient number of spectral lines—a property called “sufficient richness"
in8—where it is also shown to be equivalent to having a PE regressor.
Two natural questions arise in this respect.

(Q1) Can DREM relax the assumption of sufficiently rich input? More precisely, is there a suitable selection of the operators
of DREM such that parameter convergence is ensured even if the PE assumption on the regressor is not satisfied?

(Q2) If the regressor is PE will DREM ensure parameter convergence for a well-defined class of operators? In1 it is shown
that there exists a “bad choice" of operators, in the sense that applied to a PE regressor generates an (asymptotically)
singular extended regressor matrix and, consequently, DREM will not work. Therefore, the question is how to verify that
the chosen operators are not “bad”.

In the paper we give answers to the previous questions. Unfortunately, the answer to (Q1) is negative even allowing for
arbitrary linear, possibly time-varying, ∞-stable operators. On the other hand, we give a positive answer to (Q2) for LTI filters
and delay operators.
The remainder of the paper is organized as follows. The application of DREM for identification of an LTI system parameters

is presented in Section 2. In Section 3 we give the answer to (Q1) while the answer to (Q2) is presented in Section 4. Some
simulation results that illustrate our results and show the performance improvement of DREM, with respect to gradient estima-
tors, are given in Section 5 The paper is wrapped–up with some conclusions and future work in Section 6. The proofs of some
technical lemmas are presented in the appendix.
The preliminary results of this study were reported in12. The contribution of this paper includes the main claim (Proposition

3) that is stronger than the one reported in12, as well as the proofs of technical lemmas and corollaries that were not presented
before.

2 PARAMETER IDENTIFICATION OF LTI SYSTEMS

In this section we briefly review the problem of parameter identification of LTI systems using the classical gradient algorithm
and the new DREM estimator. For more details on system identification the reader is referred to7,13,8.

2.1 Problem formulation and classical solution
We are interested in the classical problem of parameter identification of the scalar LTI continuous–time plant

A(p)y(t) = B(p)u(t) (1)

where t ≥ 0 is the time, y(t), u(t) are the plant output and input, respectively, where A(p) =
∑n
i=0 aip

i, B(p) =
∑n−1
i=0 bip

i,
p ∶= d

dt
, an = 1, A(p) and B(p) are coprime with unknown coefficients. We make the standard assumptions that A(p) is a

Hurwitz polynomial, u(t) is regular and bounded and n is known.
In8 it is shown that the system (1) can be represented in the linear regression form

y(t) = �⊤(t)� + �t (2)
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where

�(t) ∶=

[

F (p)B(p)
A(p)
F (p)

]

u(t), F (p) ∶= 1
�(p)

⎡

⎢

⎢

⎢

⎢

⎣

1
p
⋮
pn−1

⎤

⎥

⎥

⎥

⎥

⎦

, � ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�0 − a0
⋮

�n−1 − an−1
b0
⋮
bn−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (3)

�(p) =
∑n
i=0 �ip

i, �n = 1, is an arbitrary Hurwitz polynomial and �t is a generic exponentially decaying term due to the filters
initial conditions that, without loss of generality, we neglect in the sequel.1
The standard gradient estimator

̇̂�(t) = Γ�(t)[y(t) − �⊤(t)�̂(t)], Γ > 0, (4)
yields the error equation

̇̃�(t) = −Γ�(t)�⊤(t)�̃(t), (5)
where �̃(t) ∶= �̂(t) − � are the parameter estimation errors.
Evaluating the derivative of |�̃(t)|2, with | ⋅ | the Euclidean norm, is easy to show that

|�̃(t)| ≤ |�̃(0)|, ∀t ≥ 0. (6)

Also, it is well–known14,8 that the zero equilibrium of the linear time–varying system (5) is globally exponentially stable if and
only if the regressor vector �(t) is PE, that is, if

t+T

∫
t

�(s)�⊤(s)ds ≥ �I,

for some T , � > 0 and for all t ≥ 0, which will be denoted as �(t) ∈ PE. The PE condition of �(t) is translated to the input
signal u(t) via the following fundamental result (see Theorems 2.7.2 and 2.7.3 of8).

Proposition 1. Consider the vector �(t) defined in (3) with u(t) given by

u(t) =
N
∑

k=1
Ak sin(!kt), (7)

with !k ≠ !j ,∀k ≠ j and Ak ≠ 0. Then,
�(t) ∈ PE ⇔ N ≥ n.

Remark 1. For ease of presentation we consider only a particular case of the more general result reported in8. In particular, the
translation of the PE condition of the regressor to a suitable excitation of the input is established for all regular signals admitting
a suitable spectral decomposition without assuming it is of the form (7).

Remark 2. In15 conditions on � for global asymptotic (but not exponential) stability of (5), which are strictly weaker than PE,
are given. It is not clear at this point how these conditions are related with the input signal in the present identification context.

2.2 Dynamic regressor extension and mixing estimator
To apply DREM in the identification problem the first step is to introduce a linear, single-input 2n-output, ∞–stable operator
 ∶ ∞ → 2n∞ , and define the vector Y ∈ ℝ2n and the matrix Φ ∈ ℝ2n×2n as

Y (t) ∶= [y(t)]
Φ(t) ∶= [�⊤(t)].

Clearly, because of linearity and ∞ stability, these signals satisfy

Y (t) = Φ(t)� + �t. (8)

1See 8 and Remark 3 in 1 where the effect of these term is rigorously analysed.
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The elements of the operator  may be simple, exponentially stable LTI filters of the form2

i(p) =
�i

p + �i
, i ∈ {1, 2,… , 2n}

with �i ≠ 0, �i > 0. Another option of interest are delay operators, that is

[i(⋅)](t) ∶= (⋅)(t − di),

where di > 0. See Section 4 of11 for the case of general linear time-varying operators.
Pre-multiplying (8) by the adjunct matrix of Φ(t), denoted adj{Φ(t)}, we get 2n scalar regressors of the form

i(t) = Δ(t)�i, (9)

where we defined the scalar function Δ(t) ∈ ℝ
Δ(t) ∶= det{Φ(t)},

and the vector (t) ∈ ℝ2n

(t) ∶= adj{Φ(t)}Y (t).
The estimation of the parameters �i from the scalar regression form (9) can be easily carried out via

̇̂�i(t) = 
iΔ(t)(i(t) − Δ(t)�̂i(t)), (10)

with adaptation gains 
i > 0. From (9) it is clear that the latter equations are equivalent to
̇̃�i(t) = −
iΔ2(t)�̃i(t). (11)

Solving the simple scalar differential equation (11) as

�̃i(t) = e−
i ∫
t
0 Δ

2(s)ds�̃i(0)

shows that
lim
t→∞

�̃i(t) = 0 ⇐⇒ Δ(t) ∉ 2,

that is, parameter convergence is established without the restrictive PE assumption. Moreover, if Δ(t) ∈ PE, the convergence of
DREM is exponential. An important advantage of DREM is that the individual parameter errors satisfy

|�̃i(t)| ≤ |�̃i(0)|, ∀ t ≥ 0, (12)

that is strictly stronger than the monotonicity property (6).
The relationship between the condition Δ(t) ∉ 2 and �(t) ∈ PE is far from obvious for arbitrary regressor vectors �(t)—

see1 for examples that show that neither one of the conditions is stronger than the other. However, for the particular case of
identification, when �(t) is generated via (3), the relation between these assumptions can be clarified, which constitutes the main
contribution of this paper.

Remark 3. The importance of having established scalar regressor models for each of the unknown parameters can hardly be
overestimated. Besides the important element-by-element monotonicity property of the parameter errors captured by (12), this
feature is instrumental to eliminate the need to overparameterise nonlinear regressions to obtain a linear one—a practice that,
as is well-known7,13,8, entails a serious performance degradation. This, and other advantages of DREM, have been discussed in
a series of publications including1,2,3,4,5,11,6

Remark 4. It is well-known that non-square integrability and PE of a signal are not equivalent properties—even in the scalar
case. For instance, the signal 1

√

1+t
is not in 2 but it is not PE, on the other hand, all PE signals are not in 2. Besides this

issue, the comparison of the convergence conditions of gradient and DREM estimators is further complicated by the fact that
Δ(t) and �(t) are related via, not just the action of the linear operator, but also by the nonlinear operation of the determinant
computation.

2In the sequel the clarification i ∈ {1, 2,… , 2n} is omitted for brevity.
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3 DREM CANNOT RELAX THE PE CONDITION

In this section we give the answer, alas negative, to the question (Q1) of Section 1.

Proposition 2. Consider the vector �(t) generated via (3) with u(t) given by (7). Define the function Δ(t) as

Δ(t) = det{[�⊤(t)]} (13)

where  is an arbitrary linear, single-input 2n-output, ∞–stable operator. Then,

N < n ⇒ Δ(t) ∈ 2.

In other words, independently of the choice of the operator , a necessary condition for DREM to ensure global convergence
of the parameter error is �(t) ∈ PE.

Proof. From (3) and (7) it is clear that
�(t) = �ss(t) + �t, (14)

where the components of the steady-state term �ss(t) are given by

�ss,i(t) =
N
∑

k=1
Ai,k cos

(

!kt +  i,k
)

, (15)

with Ai,k and  i,k constants and the transient component �t tends to zero exponentially fast. We can write the steady-state vector
in a compact form as

�ss(t) = X⊤�(t) (16)

where X ∈ ℝ2N×2n is given by

X ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

A1,1 cos( 1,1) ⋯ A2n,1 cos( 2n,1)
⋮ ⋱ ⋮

A1,N cos( 1,N ) ⋯ A2n,N cos( 2n,N )
−A1,1 sin( 1,1) ⋯ −A2n,1 sin( 2n,1)

⋮ ⋱ ⋮
−A1,N sin( 1,N ) ⋯ −A2n,N sin( 2n,N )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (17)

and

�(t) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos(!1t)
⋯

cos(!N t)
sin(!1t)
⋯

sin(!N t)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ ℝ2N×1.

We make now the key observation that sinceN < n the matrix X is fat hence there exists a nonzero vector C ∈ ℝ2n such that

XC = 0. (18)

Now, because of linearity of the operator , the extended regressor matrix Φ(t) can be written as

Φ(t) = [�⊤(t)] = [�⊤ss(t) + �
⊤
t (t)] = [�⊤ss(t)] +[�⊤t (t)].

From stability of the operator  we have that [�⊤t (t)] converges to zero exponentially. Therefore, invoking Lemma 1 in
Appendix A, we can concentrate our attention on the steady-state term [�⊤ss(t)], which can be written as

[�⊤ss(t)] =
⎡

⎢

⎢

⎣

1[�⊤ss(t)]
⋮

2n[�⊤ss(t)]

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1[�⊤(t)]
⋮

2n[�⊤(t)]

⎤

⎥

⎥

⎦

X,

where we invoked (16) to get the last equation. From (18) we then conclude that

[�⊤ss(t)]C = 0,

which implies that det{Φ(t)} converges to zero exponentially and, consequently, Δ(t) ∈ 2.
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4 PE (GENERICALLY) IMPLIES DREM IS EXPONENTIALLY STABLE

In this section we address the question (Q2) of Section 1 and present a condition, under which, the equivalence

�(t) ∈ PE ⇔ Δ(t) ∈ PE (19)

holds true for a given choice of operators —consisting of LTI filters and delay operators. In other words, under suitable
excitation conditions, the asymptotic behaviour of DREMwill (generically) be as good as the one of standard gradient estimators,
with the additional advantage of an improved transient performance due to themonotonicity property (12).Moreover, we identify
a class of operators  such that (19) holds.
This section is organized as follows. First we present a general result providing necessary and sufficient conditions for �(t) ∈

PE. Then, we give corollaries illustrating how this result is applied to the LTI identification problem.

4.1 Necessary and sufficient conditions
Consider the vector�(t) generated via (3) with u(t) given by (7) withN ≥ n and the functionΔ(t) defined in (13). Let the elements
of  used in (13) be ∞-stable LTI operators, either rational minimum-phase transfer functions or constant time delays, such
that the frequency response of the filter j at the frequency !k equals to Lj,kei�j,k , where j ∈ {1,… , 2n} and k ∈ {1,… , N}.
Define the vectors

wk ∶=

⎡

⎢

⎢

⎢

⎢

⎣

A1,kei 1,k
A2,kei 2,k

⋮
A2n,kei 2n,k

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℂ2n, zk ∶=

⎡

⎢

⎢

⎢

⎢

⎣

L1,kei�1,k
L2,kei�2,k

⋮
L2n,kei�2n,k

⎤

⎥

⎥

⎥

⎥

⎦

∈ ℂ2n, (20)

where Ai,k and  i,k are the parameters of the signal �ss(t) as defined in (15). Denote

Z ∶=
[

z1 z∗1 z2 z∗2 ⋯ zN z∗N
]

,
W ∶=

[

w1 w∗
1 w2 w∗

2 ⋯ wN w∗
N
]

,
(21)

where (⋅)∗ is the complex conjugate of (⋅). LetZj1,j2,…,j2n andWj1,j2,…,j2n be the square matrices consisting of columns j1, j2,…,
j2n of matrices Z andW , respectively, and define

Cj1,j2,…,j2n ∶= det
(

Zj1,j2,…,j2n

)

det
(

Wj1,j2,…,j2n

)

. (22)

Define 2N values xj as
x2k−1 ∶= !k, x2k ∶= −!k, (23)

where j = 1,… , 2N , k = 1,… , N , and !k are the frequencies of sinusoidal components in (7), and denote by Ω1, Ω2,…, ΩM
allM distinct values of sums xj1 +…+ xj2n with indices 1 ≤ j1 < j2 <… < j2n ≤ 2N .
Define the value Bk as a sum of the values Cj1,j2,…,j2n computed for all sets of indices 1 ≤ j1 < j2 <… < j2n ≤ 2N such that

the sum xj1 +…+ xj2n equals Ωk:

Bk ∶=
∑

1≤j1<j2<…<j2n≤2N∶xj1+…+xj2n=Ωk

Cj1,j2,…,j2n . (24)

With these definitions, the main result is formulated as follows.

Proposition 3. The signal det Φ(t) is not persistently exciting if and only if Bk = 0 for all k = 1,… ,M . In other words, the
following equivalence holds

∃k ∈ {1, 2,… ,M} ∶ Bk ≠ 0⇔ det Φ(t) ∈ PE.

Proof. Note that the matrix Φ(t) can be written as

Φ(t) = Φss(t) + Φ"(t),

where Φss(t) denotes the steady-state response and all elements of Φ"(t) decay exponentially. Then (see Lemma 1)

det Φ(t) = det Φss(t) + �t,
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where �t decays exponentially. It is known, see8, that a sum of a PE signal and an exponentially decaying term is PE; hence the
following equivalence holds:

det Φ(t) ∈ PE⇔ det Φss(t) ∈ PE.

The element of Φss(t) with the indices j, i is the steady-state response of j[�i(t)] and is given by

Φssj,i(t) =
N
∑

k=1
Lj,kAi,k cos(!kt +  i,k + �j,k). (25)

Recalling Leibnitz formula, it follows that det Φss(t) is a sum of products of sinusoidal functions. Thus, it is an almost-periodic
function, see16, and it is bounded, continuous, and differentiable; the first derivative of det Φss(t) is also bounded. As it is shown
in Lemma 2, if an almost periodic function is not identically zero, then it is persistently exciting, i.e. the following implication
holds:

∃t0 ∶ det Φss(t0) ≠ 0⇔ det Φss(t) ∈ PE.

Note that the signals (15) can be also rewritten as

�ss,i(t) =
N
∑

k=1
Re

(

Ai,ke
i i,kei!kt

)

,

and (25) can be written as

Φssj,i(t) =
N
∑

k=1
Re

(

Lj,ke
i�j,kAi,ke

i i,kei!kt
)

.

Recalling definition (20), it holds

Φss(t) =
N
∑

k=1
Re

(

zkw
⊤
k e

i!kt
)

or

2Φss(t) =
N
∑

k=1

[

zk z∗k
]

[

ei!kt 0
0 e−i!kt

] [

w⊤
k

w∗⊤
k

]

=
[

z1 z∗1 z2 z∗2 ⋯ zN z∗N
]

×
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

[

ei!1t 0
0 e−i!1t

]

0 ⋯ 0

0
[

ei!2t 0
0 e−i!2t

]

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
[

ei!N t 0
0 e−i!N t

]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w⊤
1

w∗⊤
1

w⊤
2

w∗⊤
2
⋮
w⊤
N

w∗⊤
N

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then
2Φss(t) = Z diag

(

{

eixj t
}2N
j=1

)

W ⊤,

where Z andW are defined in (21).
From Lemma 3 it follows that det Φss(t) is equal to a linear combination with constant coefficients of functions ei(xj1+…+xj2n )t:

22n det Φss(t) =
∑

1≤j1<j2<…<j2n≤2N
ei(xj1+…+xj2n )tCj1,j2,…,j2n ,

or

22n det Φss(t) =
M
∑

k=1
eiΩktBk, (26)

where Cj1,j2,…,j2n and Bk are defined in (22) and (24), respectively. Thus, function det Φss(t) is equal to zero for all t if and only
if Bk = 0 for all k = 1,… ,M .
The proof is summarized as follows:

∃k ∈ {1, 2,… ,M} ∶ Bk ≠ 0⇔ det Φss(t) ≢ 0⇔ det Φss(t) ∈ PE⇔ det Φ(t) ∈ PE.
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Remark 5. It can be counterintuitive that the left-hand side of (26) is always real while the right-hand side is a sum of complex
values. Note that due to the choice of xj given by (23) it follows that the set {Ωj}Mj=1 of all distinct values of sums xj1 +…+xj2n
with indices 1 ≤ j1 < j2 < … < j2n ≤ 2N has odd number of elements, contains zero as an element, and for each positive
element of the set there exists a corresponding negative element with the same absolute value. Without loss of generality, the
elements of this set can be rearranged as

{Ω−k,… ,Ω−1,Ω0,Ω1,… ,Ωk}, (27)

where k = 1, 2,… , M−1
2

, elements with positive indices are positive, Ωk > 0, elements with negative indices are defined as
Ω−k = −Ωk, and Ω0 = 0. Then equation (26) can be rewritten as

22n det Φss(t) = B0 +

M−1
2
∑

k=1

(

eiΩktBk + e−iΩktB−k
)

. (28)

Recalling that for any complex square matrix Z it holds

det (Z∗) = (det(Z))∗,

it follows from (24) and (22) that B−k = B∗k and

eiΩktBk + e−iΩktB−k = 2Re
(

eiΩktBk
)

.

Hence the right-hand side of (26) is a real-valued function of t.

4.2 Corollaries for LTI identification problem
From Proposition 3 we obtain the following corollary.

Corollary 1. Under the conditions of Proposition 3 consider the case when N = n and the matrices Z andW defined in (21)
are square. Recall that the elements of used in (13) are ∞-stable LTI operators, such that the frequency response of the filter
j at the frequency !k equals to Lj,kei�j,k , where j ∈ {1,… , 2n} and k ∈ {1,… , N}. Define the 2N × 2n square matrix

H ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

L1,1 cos(�1,1) L2,1 cos(�2,1) ⋯ L2n,1 cos(�2n,1)
⋮ ⋮ ⋱ ⋮

L1,N cos(�1,N ) L2,N cos(�2,N ) ⋯ L2n,N cos(�2n,N )
−L1,1 sin(�1,1) −L2,1 sin(�2,1) ⋯ −L2n,1 sin(�2n,1)

⋮ ⋮ ⋱ ⋮
−L1,N sin(�1,N ) −L2,N sin(�2,N ) ⋯ −L2n,N sin(�2n,N )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (29)

Then det Φ(t) ∈ PE if and only if the matrixH is of full rank.

Proof. First we note that for the caseN = n the set (27) contains only the element Ω0 = 0 and (28) can be rewritten as

22n det Φss(t) = B0 = det(Z) det(W ).

From (21) it follows that det(Z) and det(W ) are real numbers. With the definitions (20) the matrix H defined as (29) and the
matrix X defined as (17) can be rewritten as

X⊤ =
[

Re(w1) … Re(wN ) − Im(w1) … − Im(wN )
]

,
H⊤ =

[

Re(z1) … Re(zN ) − Im(z1) … − Im(zN )
]

,

and the following implications hold

det(X) ≠ 0⇔ det(W ) ≠ 0, det(H) ≠ 0⇔ det(Z) ≠ 0.

Conditions of Proposition 3 are satisfied if both det(Z) and det(W ) are not zero. Then, to complete the proof we have to show
that the matrix X is of the full rank under the conditions of Proposition 3.
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From Proposition 1 it follows that �(t) ∈ PE for N = n. Then from (14) it follows that �ss ∈ PE as well and there exist
T� > 0 and �� > 0 such that for all t > 0 and for all z ∈ ℝ2n, |z| = 1,

z⊤
⎛

⎜

⎜

⎜

⎝

t+T�

∫
t

�ss(s)�⊤ss(s)ds

⎞

⎟

⎟

⎟

⎠

z ≥ ��.

Recalling (16), the latter implies

z⊤X⊤

⎛

⎜

⎜

⎜

⎝

t+T�

∫
t

�(s)�⊤(s)ds

⎞

⎟

⎟

⎟

⎠

Xz ≥ ��

for all z. Hence X is of full rank and detW ≠ 0.

Based on Proposition 3 and Corollary 1 a systematic procedure to construct the filters can be proposed as described in the
following corollary.

Corollary 2. Consider the case N = n. Under the conditions of Proposition 3 if the elements of  are delay operators of the
form

i[x(t)] = x(t − di), di = dc + (i − 1) d0, (30)

where dc ≥ 0 and d0 > 0 is such that maxk !k d0 < �, then Δ(t) ∈ PE and DREM is exponentially convergent.

Proof. As it was shown in the proof of Corollary 1, for the case N = n to prove that Δ(t) ∈ PE it is sufficient to show that the
square matrix Z defined in (21) is of full rank. Let us rearrange the elements of Z and consider

Ze ∶=
[

z1 ⋯ zN z∗1 ⋯ z∗N
]⊤ ,

where det(Z) = det(Ze). Clearly for (30)

j(i!k) = exp
(

−i!k dc
)

exp
(

−i!k (j − 1)d0
)

and
Ze = diag

{

e−i!1dc ,… , e−i!Ndc , ei!1dc ,… , ei!Ndc
}

×

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 e−i!1d0
(

e−i!1d0
)2

⋯
(

e−i!1d0
)2n

⋮ ⋮ ⋮ ⋱ ⋮

1 e−i!Nd0
(

e−i!Nd0
)2
⋯

(

e−i!Nd0
)2n

1 ei!1d0
(

ei!1d0
)2

⋯
(

e−i!1d0
)2n

⋮ ⋮ ⋮ ⋱ ⋮

1 ei!Nd0
(

ei!Nd0
)2

⋯
(

ei!Nd0
)2n

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.
(31)

The first term in (31) is a nonsingular diagonal matrix. To obtain the full-rank conditions, we note that the second term in (31)
is the Vandermond matrix with complex entries. Recalling the properties of the determinant of a Vandermond matrix17, we
conclude that this matrix is singular if and only if there exist two elements of the second column such that their difference equals
zero. Hence the matrix Ze is of full rank if and only if the following conditions hold:

ei!id0 − e−i!id0 ≠ 0 for all i,
ei!id0 − ei!jd0 ≠ 0 for all i ≠ j,
ei!id0 − e−i!jd0 ≠ 0 for all i ≠ j,

where i, j ∈ {1,… , N}. These conditions are satisfied since !i ≠ !j for i ≠ j, and !id0 < � for all i.

Remark 6. Corollary 2 shows that the simple choice (30) will always ensure that the PE property of the regressor will be
preserved by Δ(t). Clearly, to design this operators it is sufficient to know and upper bound on the bandwidth of the systems
input signal, which is a reasonable assumption in most applications. However, increasing the size of the operators delays will
adversely affect the transient performance of the DREM estimator.
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TABLE 1 Standard deviation � of the parameter estimation errors

�̃1 �̃2 �̃3 �̃4
Gradient estimator (4) 1.67 1.25 0.39 0.59
DREM estimator (10) 0.1 0.11 0.27 0.02

Remark 7. Instrumental to establish the proofs of Proposition 2 and Proposition 3 is the assumption that the input signal consists
of a sum of sinusoids of different frequencies, i.e., given as (7). As indicated in Remark 1, the fundamental result of Proposition
1 is applicable to much wider class of input signals. Current investigation is under way to see whether the claims of Proposition
2 and Proposition 3 are still applicable in that case.

5 SIMULATION RESULTS

Consider the system of the form (1), where
B(p)
A(p)

=
b1p + b0

p2 + a1p + a0
=

2p + 1
p2 + p + 2

.

The regression model (2) is constructed following (3) where the choice �1 = 20, �0 = 100 yields

� =
[

98 19 1 2
]⊤ .

The estimators are initialized with zero initial conditions, thus �̃(0) = −�. The input signal is chosen as u(t) = sin(2�t)+cos(3t).
The DREM operators are chosen as time-delay elements following Corollary 2 and taking dc = 0 and d0 = 0.2.
The gains tuning was performed as follows. First, for the standard gradient estimator (4) it was found that with the gain matrix

Γ = diag(100, 50, 30, 10) parameter estimation errors converge to a neighborhood of zero in approximately 30 seconds, see
Fig. 1 a. Next, the gains of the DREM estimator were tuned to have a comparable transient time. It was found that this goal is
achieved choosing in (10) 
i = 1, where i = 1, 2, 3, 4, see Fig. 1 b. The figures illustrate that the DREM estimator significantly
outperforms the standard gradient solution since it provides monotonic transients without compromising the rate of convergence.
It can be argued that the choice of a diagonal gain matrix for the gradient estimator is restrictive since any positive-definite

matrix Γ can be chosen. However, the tuning procedure for the gradient estimator is not straightforward and requires multiple
trials. Thus, in practice the gain matrix is often restricted to be diagonal. In contrast, note that for the DREM estimator the
tuning procedure is rather simple and transparent since each gain 
i affects only the estimation error �̃i and does not affect other
elements of the vector �̃.
Next, the estimators that are tuned as described above are compared for the case when the measurements of the plant output

signal y(t) are distorted. The noise in measurements is modeled as a uniform random signal in the range from −0.1 to 0.1, while
the signal y(t) varies from −1.2 to 1.2 in the noise-free scenario. In this experiment we evaluate the standard deviation � of the
estimation errors �̃ after decay of the transients. Motivated by the results presented in Fig. 1 , the evaluation was performed on
the interval from 50 to 100 seconds. The results of evaluation are given in Table 1 . It can be seen that the DREM estimator
provides smaller deviation of the estimation errors; this can be partially explained noting that the DREM estimator requires
smaller gains to achieve the same transient time than the gradient estimator. However, it should be highlighted that the DREM
procedure involves a nonlinear signal transformation given by the calculation of the adjoint matrix. Thus, rigor analysis of noise
propagation for the DREM scheme is not straightforward and represents a possible direction of future research.

6 CONCLUSIONS AND FUTUREWORK

We have addressed in this paper the critical question of selection of the operators introduced in DREM estimators to generate
the extended regressor matrix Φ(t). As it has been widely documented in the publications1,2,3,4,5,11,6, a suitable choice of these
operators is essential to guarantee a good transient performance of the DREM estimator. It has been shown that, for the particular
task of identification of LTI systems, the PE condition for exponential convergence of the parameter errors of gradient (or least-
squares) estimators cannot be relaxed by DREM. On the other hand, we have proven that this convergence property is preserved
in DREM for almost all choices of the operators, and some simple selection rules for them have been reported.
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(a) The gradient estimator (4)
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(b) The DREM estimator (10)

FIGURE 1 Parameter estimation errors of the gradient and DREM estimators.

Within the context of identification we are currently exploring the use of DREM for some practical problems where under-
excitation is prevalent. For instance, for identification of the Thevenin equivalent of the power network for synchronisation18 or
adaptive active damping in power converters19, or for the estimation of a power system inertia and active power imbalance20.
In these kind of applications it is not expected to achieve consistent estimation, being sufficient to ensure fast convergence to a
neighborhood of the true parameters, a feature that due to its monotonicity property can be guaranteed by DREM.
A far reaching objective is the use of DREM in classical model reference adaptive control (MRAC) of LTI systems. Unfortu-

nately, it has been shown that the fundamental self-tuning property—required in these applications to ensure global tracking of
the reference model output without PE—is lost with the use of DREM. On the other hand, with DREM-based controllers it has
been possible in21 to remove the key assumptions of known sign of the high frequency gain in direct MRAC and the use of pro-
jections in indirect MRAC for multivariable systems. Also, in22, the monotonicity property of the parameter estimation errors
is used in22 to propose a globally stable DREM-based MRAC for SISO systems with the only knowledge of a lower bound in
the high-frequency gain.
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APPENDIX

APPENDIX A: TECHNICAL LEMMAS

Lemma 1. Consider matrix functions A,B ∶ ℝ+ → ℝq×q with A(t) bounded, and each entry of B(t) tending to zero
exponentially fast. Then

lim
t→∞

|det {A(t) + B(t)} − det {A(t)}| = 0.

Proof. First, we recall Leibnitz formula for the determinant of a square matrix C(t) ∈ ℝq×q , which is given by

det{C(t)} =
∑

�∈Sq

(

sign(�)
q
∏

i=1
ci,�i(t)

)

,

where Sq is the set of permutations of the set {1, 2,… , q}, sign(�) is the signature of the permutation � and ci,�i(t) is the (i, �i)-th
element of the matrix C(t), see17 for further details.
Define C(t) ∶= A(t) + B(t). Then,

det{C(t)} =
∑

�∈Sn

(

sign(�)
n
∏

i=1

(

ai,�i(t) + bi,�i(t)
)

)

.

But

sign(�)
n
∏

i=1

(

ai,�i(t) + bi,�i(t)
)

=

(

sign(�)
n
∏

i=1
ai,�i(t)

)

+ f�(t),

where f�(t) is equal to a product of sign(�) and of a finite sum of products of elements ai,�i(t) and bi,�i(t) such that at least one
of the multipliers in each product is an entry of the matrix B(t). Since all elements of matrix function A(t) are bounded, the
function f�(t) tends to zero exponentially for all � ∈ Sn. Besides,

∑

�∈Sn

(

sign(�)
n
∏

i=1
ai,�i(t)

)

= det A(t).

Therefore, the function

det{C(t)} =
∑

�∈Sn

[(

sign(�)
n
∏

i=1
ai,�i(t)

)

+ f�(t)

]

= det A(t) +
∑

�∈Sn

f�(t)

and

lim
t→∞

|det {A(t) + B(t)} − det {A(t)}| = lim
t→∞

|

|

|

|

|

|

∑

�∈Sn

f�(t)
|

|

|

|

|

|

= 0.

Lemma 2. LetΔ ∶ ℝ+ → ℝ be a differentiable almost-periodic function with a bounded first derivative. IfΔ(t) is not identically
zero, then Δ(t) is PE.

Proof. Define g(t) ∶= (Δ(t))2 and note that g(t) is an almost-periodic as well. Since Δ(t) is not identically zero, it follows that
there exits t0 such that g(t0) > 0. Since the derivative of g(t) is bounded there exist a0 > 0, b0 > a0, such that t0 ∈ [a0, b0] and

b0

∫
a0

g(s)ds ≥ �g

for some �g > 0.
Function g(t) enjoys the following property of almost-periodic functions16: for any � > 0 there exists L� > 0 such that for

any t⋆ there exists (an �-translation) � ∈ [t⋆, t⋆ + L�] such that for all t it holds

|g(t) − g(t + �)| < �. (1)
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In other words, for any interval of length L� we can find a value � belonging to this interval, such that � is an (alomost-)period3
of g(t) up to accuracy �.
Define � = �g

2(b0−a0)
and choose L� correspondingly. Consider the interval [t⋆, t⋆ + L�] for some t⋆, and choose � as an

�-translation of g(t) belonging to this interval. Then

t⋆ ≤ a0 + � < b0 + � ≤ t⋆ + L� + b0,

and recalling (1)
t⋆+L�+b0

∫
t⋆

g(s)ds ≥

b0+�

∫
a0+�

g(s)ds ≥

b0

∫
a0

g(s)ds − �(b0 − a0) ≥
�g
2
.

Since t⋆ can be chosen arbitrary, it follows that there exist TΔ = L� + b0 and �Δ =
�g
2
such that

t+TΔ

∫
t

(Δ(s))2 ds ≥ �Δ

for all t, i.e. Δ(t) is PE.

Lemma 3. LetN ≥ n and consider the matrix function

Fss(t) = Z diag({�j}2Nj=1)W
⊤,

where Z and W are complex matrices of size (2n) × (2N), and �j are complex numbers. Denote Zj1,…,j2n , Wj1,…,j2n square
matrices composed of columns j1,… , j2n of matrices Z andW respectively, and Cj1,…,j2n = det(Zj1,…,j2n) det(Wj1,…,j2n). Then

det(Fss(t)) =
∑

1≤j1<j2<…<j2n≤2N
Cj1,…,j2n

( 2n
∏

i=1
�ji

)

.

Proof. Every element of matrix Fss(t) has a form Fk,m(t) =
∑2N
j=1 �j�k,m,j , where �k,m,j are complex numbers. Therefore the

determinant of Fss(t) is a sum of products of 2n such elements, and it has the following form

det(Fss(t)) =
∑

j1∈{1,…,2N},…,j2n∈{1,…,2N}
bj1,…,j2n

( 2n
∏

i=1
�ji

)

,

where bj1,…,j2n are complex numbers, and all sets {j1,… , j2n} are distinct.
Now we show that summation over the sets {j1,… , j2n} where there are equal numbers among numbers j1,… , j2n is zero.

Indeed, choose a set {j1,… , j2n} and assume that at least two numbers are equal. Allow �j = 0 for all j ∉ {j1,… , j2n}. Since
there are equal numbers among numbers j1,… , j2n, there are at most 2n − 1 nonzero elements �j and rank

(

diag{�j}
)

< 2n,
and therefore det(Fss(t)) = 0. On the other hand it is equal to

det(Fss(t)) =
∑

k1∈{j1,…,j2n},…,k2n∈{j1,…,j2n}
bk1,…,k2n

( 2n
∏

i=1
�ki

)

.

It follows that summation over any set {j1,… , j2n} where there are at least two equal numbers is zero and without loss of
generality we can assume that

det(Fss(t)) =
∑

1≤j1<j2<…<j2n≤2N
bj1,…,j2n

( 2n
∏

i=1
�ji

)

. (2)

Now fix numbers j1 <… < j2n and let the rest numbers �j be zero. Then

Fss(t) = Zj1,…,j2n diag({�jk}
2n
k=1)W

⊤
j1,…,j2n

.

All matrices in the right hand side are square. Therefore det(Fss(t)) = Cj1,…,j2n

(

∏2n
i=1 �ji

)

. But (2) implies det(Fss(t)) =

bj1,…,j2n

(

∏2n
i=1 �ji

)

. Hence, bj1,…,j2n = Cj1,…,j2n , and the claim is proven.

3If g(t) is a periodic function with period T , then we have L0 = T , and for any interval of length T we can choose �, e.g. 2T , 3T and so on, such that g(t) = g(t + �)
for all t.
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