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M -NL: Robust NL-means approach for PolSAR
images denoising

Gordana Drašković, Student Member, IEEE, Frédéric Pascal, Senior Member, IEEE, and Florence Tupin, Senior
Member, IEEE

Abstract—This paper proposes a new method for polarimetric
synthetic aperture radar (PolSAR) denoising. More precisely,
it seeks to address a new statistical approach for weights
computation in non-local (NL) approaches. The aim is to present
a simple criterion using M -estimators and to detect similar
pixels in an image. A binary hypothesis test is used to select
similar pixels which will be used for covariance matrix estimation
together with associated weights. The method is then compared
to an advanced state of the art PolSAR denoising method, NL-
SAR method [1]. The filter performances are measured by a set of
different indicators, including relative errors on incoherent target
decomposition parameters, coherences, polarimetric signatures,
and edge preservation on a set of simulated PolSAR images, as in
[2]. Finally, results for RADARSAT-2 PolSAR data are presented.

Index Terms—PolSAR, NL means, M -estimators, Wishart
distribution, Detection

I. INTRODUCTION

IN the past decades, there has been a growing interest for
polarimetric synthetic aperture radar (PolSAR) images and

their use for terrain classification, target detection etc. Speckle
in PolSAR data significantly degrades the image quality as
well as the application performances. In PolSAR images
each pixel is given by a complex-valued matrix (or vector)
formed out of backscattered signals in different combinations
of the linear received and transmitted polarizations. Since the
scatterers are distributed and due to the coherency of PolSAR
systems, this matrix has a random nature and is refereed
to as speckle noise. Therefore, in order to determine the
physical parameters of interest, a speckle reduction step is
usually applied, aiming at reducing the parameter fluctuations.
Different methods have been proposed to reduce speckle in
PolSAR data [3]. Recent approaches of image processing and
computer vision rely on patch-based comparison to select
similar samples. The idea was born with the first works of
Buades et al. [4], [5] and then extended and adopted to
(Pol)SAR images by several authors such as in [6], [7]. In
these methods, the covariance matrices (CMs) of scattering
vectors (SVs) are estimated using carefully selected samples in
order to reduce the speckle. The SVs are usually modelled by
complex circular Gaussian vectors, completely characterized
by their CM. The CM, unknown in practice, is then obtained
by averaging, i.e. using the well-known sample CM (SCM)
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which, in the Gaussian context, is known to be the Maximum
Likelihood (ML)-estimators (MLE) and Wishart distributed.

Nevertheless, the Gaussian distribution is not always a good
approximation for PolSAR data since, for instance, this model
is not able to describe textured scenarios. Therefore, it is nec-
essary to increase the complexity of the underlying distribution
model. This has been successfully done by introducing the
so-called Spherically Invariant Random Vectors (SIRV) [8].
The SIRV displays an observation as a product of a Gaussian
random process with the square root of a nonnegative random
scalar variable that contains the information about the texture
variation. Consequently, the SIRVs encompass a wide class of
well-known distributions such as t-distribution, K-distribution
or inverse Gaussian texture distribution etc. In a non-Gaussian
environment, the SCM may not provide accurate results for
the CM estimate. For this reason, M -estimators have been
introduced and broadly employed and analysed in robust
statistics and signal processing [9]–[11]. M -estimators are a
wide class of scatter matrix (SM)1 estimators robust to the data
model. These estimators are given by fixed-point equations
which makes the direct analysis of their statistical properties
very difficult. Nevertheless, it has been recently shown that
the behaviour of M -estimators can be well approximated by
Wishart distribution [12], [13] which is of great importance in
various applications.

In this paper, thanks to the new properties of M -estimators,
we introduce a new NL-means algorithm to estimate CM in
PolSAR data. Then, we evaluate performances of this method
and compare it to NL-SAR method. NL-SAR is a state of the
art method composed of several steps: pre-estimation, weights
computation, bias reduction and best estimate selection. In this
work, the focus is on the two first steps:
• Pre-estimation: Instead of using a Gaussian kernel, we

propose to use an M -estimator in order to pre-estimate
matrices in each pixel and compare patches.

• Weight computation: In this step, instead of learning
kernels to weights similarities, we first select similar
pixels based on the statistics of a robust similarity test
and, then, compute weights using only selected pixels.

These steps are repeated for a set of different parameters which
results in several estimates in each pixel. Finally, we perform
bias-reduction and select the best estimate as in NL-SAR.

This paper is organised as follows. Section II introduces
some background about PolSAR images and M -estimators.
Section III presents the proposed method and the correspond-

1SM is equal to the CM up to a scale factor when the latter exists.
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ing algorithm, with discussions. In Section IV the results for
simulated and RADARSAT-2 data are presented. Finally, some
conclusions are drawn in Section V.

Notations. Vectors (resp. matrices) are denoted by bold-
faced lowercase letters (resp. uppercase letters). T and H re-
spectively represent the transpose and the Hermitian operator.
Tr(·) represents the trace of a matrix. Finally, | · | stands for
the determinant of a matrix.

II. THEORETICAL BACKGROUND

A. PolSAR
Polarimetric SAR sensors measure the amplitude and phase

of backscattered signals in four combinations of the linear
received and transmitted polarizations: horizontal-horizontal
(HH), horizontal-vertical (HV), vertical-horizontal (VH) and
vertical-vertical (VV). These signals form the complex scat-
tering matrix S

S =

[
SHH SHV
SV H SV V

]
where SIJ denotes the complex scattering amplitude for the
received polarization I and the transmitted polarization J . The
reciprocity theorem says that the cross-pol channels of the
scattering matrix are equal, that is SHV = SV H . Therefore,
there are only three independent complex coefficients required
to characterize the SV s =

[
SHH

√
2SHV SV V

]T
or

alternatively, the SV is replaced by the linear transformation
k = 1√

2
[SHH + SV V SHH − SV V 2SHV ]

T known as the
Pauli representation of the SV [14].

B. PolSAR modeling
So far the most used model for underlying distribution of

PolSAR data is the complex Gaussian circular distribution. To
reduce the effect of inherent speckle noise, PolSAR images
are often spatially averaged, and the data are represented by
the SCM Σ̂SCM = 1

N

∑N
n=1 snsHn (or the sample coherency

matrix Σ̂SCM = 1
N

∑N
n=1 knkHn ). Under the assumption that

N > 3 the estimate is complex Wishart distributed with N
degrees of freedom (DoF) around the expectation value Σ
(true CM of Gaussian data).

Since the Gaussian distribution fails to give a good approxi-
mation in high textured scenarios an alternative is to use SIRV
model: k =

√
τn, where τ is a texture parameter whose distri-

bution is unspecified, with mean value equal to 1, and n is the
speckle vector, following a multivariate Gaussian distribution.
SIRV represent a subclass of complex elliptically symmetric
(CES) distributions. In this context, the performances of the
SCM can be really degraded and one needs other estimators
that are better adapted to a non-Gaussian framework.

C. M -estimators
Let (k1, . . . ,kN ) be an N -sample of m-dimensional com-

plex independent CES-distributed vectors (with the same
PDF). An M -estimator, is defined by the solution of the
following M -estimating equation

Σ̂ =
1

N

N∑
n=1

ϕ
(
kHn Σ̂

−1
kn

)
knkHn (1)

where ϕ is any real-valued weight function on [0,∞) (see [9])
that does not need to be related to the PDF of the underlying
distribution. Existence and uniqueness of the solution of (1)
as well as the convergence of the corresponding recursive
algorithm have already been shown, provided the function ϕ
satisfies a set of general assumptions [11]. In particular, the
resulting estimators are consistent estimators of the SM (up to
a scale factor). Some of widely used M -estimators are: Tyler’s
M -estimator [10], [15], Huber’s M -estimator, Student’s M -
estimator.

III. ROBUST M -NLMEANS METHOD

In this section we present step-by-step the proposed method
for weights computation and discuss about its benefits.

A. Robust pre-estimation

In order to compute the (dis)similarity between two pixels,
one needs to compute a pre-estimation of the CM. In NL-
SAR, this pre-estimation is done using truncated Gaussian on
the patch of the size S = (2s+1)×(2s+1). In this method we
propose to use a Student’s M -estimator given as the solution
of

Σ̂t =
m+ ν/2

S

S∑
n=1

knkHn

ν/2 + kHn Σ̂
−1
t kn

(2)

where m is the vector dimension and ν is the DoF parameter.
This estimator is very interesting since it represents a sort
of trade-off between the SCM (ν → ∞) and the Tyler’s
estimator (ν = 0), the least and the most robust estimators. The
SCM can be completely degraded with only one outlier while,
on the other hand, the Tyler’s estimator is entirely resistant
to aberrations but gives the estimation of so-called “shape”
matrix, i.e. loses the information about matrix power. There-
fore, the Student’s M -estimator represents a good compromise
that simultaneously can be robust and preserves the power
information.

B. Pixel selection

Using these pre-estimated values, neighbouring samples are
selected around each pixel. The central pixel at location l is
compared to all pixels in a circular window following a spiral
path (see [1] for more details). To compute the dissimilarities
between two pixels instead of classical generalized likelihood
ratio tests (GLRT), we propose to use the Box’s M-test defined
as

L =

∣∣∣Σ̂1

∣∣∣S/2 ∣∣∣Σ̂2

∣∣∣S/2∣∣∣Σ̂∣∣∣S
where Σ̂1 is obtained with a sample k(1) = (k1, . . . ,kS), Σ̂2

with k(2) = (kS+1, ...,k2S) and Σ̂ with k = (k(1),k(2)). This
statistic has values between 0 and 1, where the values close to
0 reject the hypothesis that the matrices Σ̂1 and Σ̂2 are equal
and values close to 1 accept it. By modifying the statistic L,
Box has obtained the approximated χ2 distribution:

u = −2(1− β)ln(L) ∼ χ2(m(m+ 1)/2)
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with β = 3
2S

2m2+3m−1
6(m+1) , where m is the size of the SV,

usually 3.We then propose to compute the similarity between
two patches centred in pixels l and l′ as

∆ (l, l′) =
∑
τ

u [(l + τ) , (l′ + τ)] , (3)

where τ ∈ [−p, p] is a 2-D shift indicating the location within
each patch of size P = (2p+1)× (2p+1). Dissimilarities are
then compared to the threshold in order to select similar pixels.
Under the hypothesis H0 that two patches follow the same
ditribution, ∆ has the χ2 distribution with d = 1

2m(m+ 1)P
DoF. The critical region of the test is the given by{

Rc = ∆,∆ > χ2
Pfa

(d)
}

with Pfa the probability of false alarm and χ2
Pfa

(d) the
quantile of order 1− Pfa of the χ2(d).

C. Weights computation

Once similar pixels are chosen, we proceed to the weights
computation. To define the weights from the dissimilarity
measure ∆ (l, l′), we propose to use an exponential kernel

ω(l, l′) =

{
e−
|∆(l,l′)−c|

λ if l 6= l′

1 if l = l′.
(4)

The parameter c = E [∆(l, l′)|H0] is the expected dissimi-
larity of two patches under the H0 and the threshold λ can be
computed as λ = F−1χ2(d)(1 − PFA). This mapping from the
(dis)similarities to the weights prevents any pixel from having
a larger weight than the central pixel. The parameter c has
been introduced in order to give a weight close to 1 when
the compared pixels comes from the same distribution while
preventing the noise enforcing. We normalize the quantity with
λ in order to obtain comparable weight values for different
values of p.

Finally, the weighted maximum likelihood estimator is given
by the weighted means

Σ̂NL(l) =

∑
l′ ω(l, l′)k′k′H∑

l′ ω(l, l′)
. (5)

The method is recapped in Algorithm 1: First, the maximum
sizes of search windows W , patch P and pre-estimation scale
S are set together with the threshold λ and the constant c
that differs for each patch size. Then, the pre-estimation is
performed for all pixels in the image and for all values of
0 ≤ s ≤ S where s = 0 means the pre-estimation is off,
i.e. the matrix is equal to kkH for the pixel at location l
with coordinates (x, y). Then, for all window sizes the central
pixel is compared to all pixels in the window using the pre-
estimations corresponding to different values of s and different
sizes of patches to perform the patch comparison. Then,
for each triple of (s, p, w) an estimate Σ̂NL is computed.
Afterwards, for each Σ̂NL the new one Σ̂NLRB is obtained
in order to reduce the bias introduced in the first one and
finally, the best one (with highest number of looks) is selected
for each pixel giving the final filtered image. This final part,
enclosed within the box, is the same as in NL-SAR and will
not be detailed because of lack of space.

Algorithm 1: M -NL method

Initialization: W,P,S, λ, c, ν
forall x, y do

for s = 0 : S (scale size) do
Pre-estimation with (2)

forall x, y (coordinates of pixel l) do
for w = 1 :W (search window size) do

Compute ∆x and ∆y
x′ = x+ ∆x
y′ = y + ∆y; . coordinates of pixel l’
for s = 0 : S do

for p = 1 : P (patch size) do
Compute ∆(l, l′) with (3)
if ∆(l, l′) ≤ λ[p] then

Compute ω(l, l′) with (4)
else

ω(l, l′)← 0

forall s, p, w do
Compute Σ̂NL with (5)
Bias-reduction step → Σ̂NLRB

return The best estimate

IV. EXPERIMENTS: IMPLEMENTATION AND EVALUATION

A. Simulated data

In this section the results obtained for simulated and Pol-
SAR data are presented. The simulated images have been
generated using a Markov Random Field (MRF) following a
Gibbs distribution as in [2]. Then, a polarimetric behavior has
been assigned to the different parts of the designed images.
The polarimetric signatures have been sampled from the Pol-
SAR data as explained in the reference. The procedure is the
following: First, a random number C of polarimetric classes is
chosen between 3 and 5, C−1 classes for distributed scatterers
and the last class for point scatters (targets). A ground truth is
generated using a MRF and the targets correspond to squares
of sizes varying between 2 × 2 and 5 × 5 pixels. For each
distributed scatterer, one of the seven possible polarimetric
signatures is randomly assigned and the Gaussian speckle
noise is generated according to them. Finally, the targets
generated using the remaining eighth polarimetric signature
are added to the speckle noise. The exact values of CMs
can be found in [2]. After the denoising, the set of following
parameters has been evaluated:

• Radiometric parameters σ: diagonal elements of the CM
(power information)

• Complex correlation parameters ρ: derived from the three
complex off-diagonal terms (channels correlation)

• Incoherent decomposition parameters: Entropy (H),
Anisotropy (A) and the mean Alpha angle (α) - scattering
mechanism

• Co-polar and cross-polar polarization signatures (PS)[16]
• Edge preservation (EP).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 1: Application to simulated data: results for two different
realizations. (a), (e) - ground truth, (b), (f) - speckle, (c), (g) - results
obtained with NL-SAR, (d), (h) - results obtained with M -NL, (i),
(j) - difference between the results and ground truth for NL-SAR and
M -NL, respectively

For the first three groups of parameters the estimated value
is obtained as the corresponding mean value from the pixels
for every scattering class (SC) and for every simulated image,

given the filter. Then, the absolute relative bias of the estimated
parameter is computed. The final (average) value is chosen as
the median across all the simulated images and the various
SCs. Then, the co- and cross-polar signatures of the average
CM of the pixels belonging to a given SC of every simulated
image are obtained (91x181 values). The average value for
each class and image is obtained as a median value of absolute
relative bias for every orientation and ellipticity angle. Then,
as in previous case, the final value is obtained as the median
across all the images and classes. Finally, edge preservation is
measured on the boundary positions between extended targets.
First, the gradient preservation (GP) is obtained as the average
ratio between the observed gradient values on the power bands
of the filtered power band image to the gradient values on the
ground truth image. Then, the simple mapping from GP to EP
is performed in order to give a measure close to 0 in the case
of edge oversmoothing or undersmoothing and values close to
1 for good edge preservation.

In order to perform the comparison, we have simulated
one hundred 128× 128 artificial PolSAR images as described
previously. The set of parameters used in both methods is:
window size: {32, 52, . . . , 252}, patch size: {32, 52, . . . , 112}
and scale: {0, 1, 2}. Since the speckle is Gaussian, we have
chosen ν to be big enough (ν = 100) in order to preserve the
information about the texture and ensure the convergence of
the solution in the pre-estimation step. The values for λ have
been computed using the corresponding formula from Section
III-C.

Figure 1 shows the results for two different simulated
images. The images are presented in the following order,
from left to right and from top to bottom: original image
(ground truth), speckle, NL-SAR results and M -NL results.
The first image Figure 1(a) contains two classes for distributed
scatterers. As can be seen from Figure 1(c) et Figure 1(d) the
homogeneous areas are much better smoothed with M -NL
than with NL-SAR while the edges are better captured and
less blurred. The second image Figure 1(e) consists of three
SCs. In this case we display the filtered images together with
the difference of the filtered image and corresponding ground
truth in order to better visualize the results. From Figure 1(i)
and Figure 1(j) one can see that in some parts of the images the
noise is apparently more reduced with M -NL. This is the most
visible (green points) at the image borders, one can look for
instance the top border and corners of the images. Obviously,
the M -NL gives an estimation closer to the ground truth in
both cases. The visualization of the difference also reveals that
most of the targets are better estimated with M -NL, which
can not be seen directly from Figure 1(g) and Figure 1(h).
Some of them are marked in red squares. Table I lists the

Filters σ |ρ| ∠ρ H
NL-SAR 2.21 7.47 11.96 14.51
M -NL 1.56 9.10 14.47 14.49

α A PS EP
NL-SAR 35.84 10.51 1.15 0.45
M -NL 33.96 10.97 1.05 0.56

Table I: Filtering results for simulated data: all measures but EP
(EP ∈ [0, 1]) are absolute relative errors in %.
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evaluation parameters defined above. Numerical results have
been computed over the set of simulated PolSAR images
and the final values are compared. One can note that M -NL
outperforms NL-SAR in almost all measures except ρ and A.
Thus, it could be more convenient to use NL-SAR for terrain
classification based on correlation coefficient or when measur-
ing surface roughness implementing anisotropy parameter. On
the other hand, M -NL gives better estimation of radiometric
parameters, almost all incoherent decomposition parameters,
polarisation signatures and edge preservation parameters. A
significant improvement in edge preservation is also visually
noticeable on the simulated images, thus these results are not
surprising.

B. RADARSAT-2 PolSAR data

Speckle NL-SAR M -NL

Figure 2: Real data: San Francisco Bay - 512×512 PolSAR images.
From left to right: speckle, results obtained with NL-SAR and results
obtained with M -NL.

Finally, the results for real data are given. Three different
parts of San Francisco Bay are presented from top to bottom
representing different scenarios in PolSAR images such as
water, vegetation and urban areas. In this case, we do not
dispose of any information about the ground truth, thus one can
analyze the results only visually. First, one can note that M -
NL better smoothes the homogeneous areas, while preserving
well the edges in textured scenarios. It can also be noted that,
as in the case of simulated data, M -NL gives results with
higher contrast.

Last but not least, we would like to mention that an advan-
tage of this method is also its simplicity, since after the pre-
estimation it immediately starts to measure the dissimilarities
and computes weights using a single, simple formula. On
the other side, NL-SAR needs first to analyze noise in a
homogeneous area in order to learn its distribution. Then,
when the denoising step starts, a binary search is necessary

to find the corresponding quantile and then a mapping is used
to evaluate the weight, which obviously requires more steps.

V. CONCLUSION

This paper has investigated a new statistical approach for
NL estimation in PolSAR imagery. The proposed method
relies on M -estimators and has been compared to the NL-
SAR method showing better results. It should be noted that
the proposed method has common steps with NL-SAR. Yet,
the estimation of NL estimates, the crucial part of any NL
denoising method, is based on the statistical behavior of M -
estimators, which improves the method simplicity.
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