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Abstract 18 

Optimal sizing of peak loads has proven to be an important factor affecting the overall energy consumption of 19 

HVAC systems. Uncertainty quantification of peak loads enables optimal configuration of the system by opting 20 

for a suitable size factor. However, the representation of uncertainty in HVAC sizing has been limited to 21 

probabilistic analysis and scenario-based cases, which may limit and bias the results. This study provides a 22 

framework for uncertainty representation in building energy modeling, due to both random factors and imprecise 23 

knowledge. The framework is shown by a numerical case study of sizing cooling loads, in which uncertain climatic 24 

data is represented by probability distributions and human-driven activities are described by possibility 25 

distributions. Cooling loads obtained from the hybrid probabilistic-possibilistic propagation of uncertainty are 26 

compared to those obtained by pure probabilistic and pure possibilistic approaches. Results indicate that a pure 27 

possibilistic representation may not provide detailed information on the peak cooling loads, whereas a pure 28 

probabilistic approach may underestimate the effect of uncertain human behavior. The proposed hybrid 29 
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representation and propagation of uncertainty in this paper can overcome these issues by proper handling of both 30 

random and limited data. 31 

1. Introduction 32 

Energy efficient building design merits special attention as the construction sector holds the largest share of energy 33 

consumption in most countries (Birol 2010). The magnitude of energy consumption by the building sector has 34 

resulted in governmental concerns that has led to implementing global and national regulations for promoting 35 

energy efficiency in buildings (Guillén-Lambea, Rodríguez-Soria, and Marín 2016, Allouhi et al. 2015). To 36 

comply with these regulations, new buildings are designed with special attention to both indoor comfort and 37 

energy efficiency, while existing buildings undergo retrofits at envelope and systems levels. In either case, this 38 

practice is associated with careful (re)design of the Heating Ventilation and Air-Conditioning (HVAC) systems. 39 

Indeed, HVAC design is very sensitive to the implementation of optimal temperature and humidity control, which 40 

may account for up to 60% of the total electric energy consumption of a building (Pérez-Lombard, Ortiz, and Pout 41 

2008, Zhao et al. 2013, Vakiloroaya et al. 2014). Studies show that cooling loads dominate the majority of HVAC 42 

energy consumption in office buildings (Wan Mohd Nazi et al. 2017) and optimal configuration of chillers can 43 

result in substantial energy saving (Salari and Askarzadeh 2015). 44 

The first necessary step for optimal design of HVAC system (that eventually results in the optimal configuration 45 

of chillers/boilers) is to quantify the peak load on the heating/cooling system, which is commonly known as the 46 

sizing process. Sizing the cooling system is frequently conducted according to the ASHRAE (Mitchell and Braun 47 

2013) procedure that estimates peak loads by means of a nominal day (Design-Day) representing the hottest 48 

climatic conditions throughout a year. The calculation procedure commonly known as the Radiant Time Series 49 

method is a simplified approximation of the Heat Balance method. This procedure is among the most conventional 50 

approaches for estimating peak cooling loads as it is reliable, easy to interpret, computationally inexpensive and 51 

is accompanied by climatic design conditions for thousands of locations around the world (Schuetter, DeBaillie, 52 

and Ahl 2014). However, the ASHRAE procedure is based on deterministic and conservative assumptions, which 53 

overlook the uncertainty in environmental and occupant-related variables. It is argued that this approach results 54 

in overestimating the peak loads (Djunaedy et al. 2011), since a common practice is to apply size factors to the 55 

calculated cooling loads to reduce the risk of an undersized system. Inadequate size factors can cause the HVAC 56 

system to rarely reach the intended load and result in inefficient energy performance (Yik et al. 1999). 57 



Optimal characterization of the system by accounting for uncertainty in input quantities can be a reliable 58 

alternative to experimental-based application of safety factors. Various studies have considered uncertain 59 

quantities in the problem of sizing HVAC systems and calculating peak cooling loads (Sun, Huang, and Huang 60 

2015, Cheng, Wang, and Yan 2016, Shen and Sun 2016, Gang, Wang, Xiao, et al. 2015, Burhenne et al. 2013, 61 

Yıldız and Arsan 2011, Cheng et al. 2015, Lee and Schiavon 2014, Cheng et al. 2017). This has allowed more 62 

accurate cooling load best estimates (Mui and Wong 2007), optimal cost-energy design (Rasouli et al. 2013) and 63 

ideal configuration of the cooling systems (Gang, Wang, Shan, et al. 2015). In (Domínguez-Muñoz, Cejudo-64 

López, and Carrillo-Andrés 2010), the authors propose a method for calculating peak loads based on stochastic 65 

simulation, showing that calculating peak cooling loads while considering uncertainty can reduce the risk of 66 

oversizing the HVAC system. In (Sun et al. 2014), a new framework for sizing the HVAC systems considering 67 

uncertainty is introduced, combining actual weather data and random sampling of other uncertain variables to 68 

obtain the peak loads. 69 

In the context of building energy modelling dissimilar levels of information are available for different uncertain 70 

input quantities, which should be handled with their respective appropriate representations (Wang et al. 2016, 71 

Corotis 2015). Considering for example, the uncertainty associated with occupancy, in some cases, measured 72 

historical data are available and occupancy patterns are represented through Markov Models (Page et al. 2008, 73 

Richardson, Thomson, and Infield 2008, Wang, Yan, and Jiang 2011, Tahmasebi and Mahdavi 2015) or clustered 74 

into a number of scenarios (D’Oca and Hong 2015, Miller, Nagy, and Schlueter 2015). Whereas in other cases, 75 

limited historical data on the peak number of occupants were treated by probability density functions (Eisenhower 76 

et al. 2012, Azar and Amoodi 2016, Kim 2016). As a result, representing occupant-related uncertainty in building 77 

energy simulation calls for a change of perspective towards a fit-for-purpose treatment (Gaetani, Hoes, and Hensen 78 

2016). This challenge is specifically important in peak load calculations, as it can result in (under)oversizing the 79 

HVAC system. 80 

In the present work, we distinguish between two types of uncertain quantities: (1) those affected by stochastic 81 

uncertainty, such as climatic parameters, whose randomness is due to their inherent variability, and (2) those 82 

affected by epistemic uncertainty, such as internal gains, whose uncertainty is due to lack of knowledge and 83 

information (Dubois and Prade 2009). 84 

Stochastic uncertainty is typically represented by probability distributions whose parameters are estimated using 85 

experimental (Oberkampf et al. 2002). For example, large amount of data collected form weather stations (e.g. 86 



temperature, relative humidity and wind speed) are available for estimating the parameters of the probability 87 

distributions representing the stochastic uncertainty of the climatic quantities. Specifically, in this study the 88 

probability distributions representing uncertainties in the urban microclimatic are based on a large dataset of 89 

hourly climatic data, collected from a weather station with close proximity to the studied building.  90 

With respect to the epistemic uncertainty, in some cases, laboratory experiments are performed to quantify the 91 

uncertainty of the physical properties of building components (e.g. thermal conductivity, solar heat gain 92 

coefficient, moisture content, specific heat and mass). The repetition of experiments allows for a reliable 93 

information representation, properly characterizing the quantity variability. In other cases where very scarce 94 

information is available (e.g. internal gains of an unoccupied building which may be still in the design phase or 95 

evacuated for restoration) one may resort to the elicitation of expert knowledge to represent uncertainty. Expert 96 

elicitation is often of ambiguous quality in nature, and, therefore, may be difficult to describe through probability 97 

distributions. Let us, for example, consider the case, in which we are aware of the minimum and maximum values 98 

of an uncertain quantity. Since this information does not imply that the probability of occurrence of all 99 

intermediate values is the same, the use of  a uniform probability distribution is questionable (Klir 1994). 100 

Similarly, the knowledge of the minimum, maximum and most probable values of an uncertain quantity, does not 101 

allow the use of a triangular probability distribution. To our opinion, the literature of building energy modelling 102 

have frequently (and inappropriately) represented the uncertainty on epistemic quantities, for which scarce 103 

knowledge is available through probability distributions (Tian 2013, D’Oca, Hong, and Langevin 2018).  104 

Possibilistic representation of scarce information is an alternative to the conventional probabilistic quantification 105 

of uncertainty (Parsons 1996). This type of representation is particularly helpful in quantifying the uncertainty 106 

associated with incomplete knowledge, where opting for probability distributions may distort the actual 107 

information.  In the practice of building energy modelling, a framework for handling both probabilistic and 108 

possibilistic representations of uncertainty is necessary. 109 

In this study, we describe different representations of uncertainties involved in the problem of sizing HVAC loads, 110 

in support of a successive optimal design of the HVAC system. To handle both probabilistic and possibilistic 111 

uncertainty representations, we resort to a hybrid uncertainty propagation method (Guyonnet et al. 2003). A 112 

homogeneous post-processing approach is introduced to process the outputs obtained by the hybrid uncertainty 113 

propagation. To highlight the effectiveness of the hybrid method, fully probabilistic and fully possibilistic 114 

treatments of the uncertainties are presented in a comparative numerical case study. 115 



The main original contributions of this study include: 116 

- Introducing a possibilistic representation of occupant-related uncertainty in building energy modelling. 117 

- Introducing the hybrid uncertainty treatment method for joint propagation of uncertainties represented 118 

by probability distributions (i.e. climatic data) and possibility distributions (i.e. internal gains). 119 

- Contrasting the advantages and drawbacks of pure probabilistic and pure possibilistic treatments of 120 

uncertainty, compared to the introduced hybrid method. 121 

The paper is structured as follows: Section 2 provides a detailed description of the possibilistic representation of 122 

scarce knowledge and introduces the hybrid method for uncertainty propagation. Section 3 applies the hybrid 123 

method to a case study of sizing cooling loads for an office building, and demonstrates the results of the presented 124 

method in comparison with pure probabilistic and pure possibilistic representations. Section 4 draws the 125 

conclusions and provides suggestions for future work. 126 

2. Possibilistic representation of uncertainty 127 

Uncertainty can be categorized into two classes, i.e. aleatory and epistemic. Aleatory uncertainty deals with 128 

randomness due to inherent variability in the system behavior (e.g. outdoor temperature fluctuation), while 129 

epistemic uncertainty is derived from lack of knowledge on the process or system (e.g. the state of an HVAC 130 

system) (Zio 2013). For example, lack of accessible information on the value of a quantity, which enters as a 131 

parameter of the system or process model, can result in epistemic uncertainty (e.g. due to difficulties in collecting 132 

accurate measurements or the lack of time for data collection).  133 

Although one may argue that probability theory is sufficient for handling both aleatory and epistemic uncertainty 134 

(Lindley 1987, Zadeh 2008), recent studies have challenged the probabilistic framework, highlighting its 135 

limitations in representing incomplete knowledge (Dubois and Prade 2001, Cobb and Shenoy 2003, Haenni and 136 

Lehmann 2003). Studies have reasoned that a fully probabilistic approach can distort the actual scarce knowledge 137 

and impact the calculations obtained from the model (Dubois, Prade, and Smets 1996, Kohlas and Monney 2013). 138 

It has been shown that misrepresenting epistemic uncertainty - as a result of incomplete knowledge - can lead to 139 

faulty intuitions on the system’s reliability (Chen et al. 2016, Zhang et al. 2017), and therefore, imprecise 140 

probabilistic frameworks have been introduced to properly handle both classes of uncertainty(Rocchetta and 141 

Patelli 2016). Take for example the uncertainty affecting the quantification of internal gains in a building, which 142 

is commonly represented by means of uniform, triangular or Gaussian probability density functions (Eisenhower 143 



et al. 2012, Hopfe and Hensen 2011, Heo, Choudhary, and Augenbroe 2012, Azar and Amoodi 2016, Kim 2016). 144 

Adopting a uniform probability distribution for occupant density does not correctly characterize the uncertain 145 

parameter, as we are not in complete ignorance of the number of occupants. On the other hand, assigning triangular 146 

or Gaussian distributions to occupant density – based on linguistic propositions of the number of occupants – will 147 

misrepresent the scarce information, as we do not know the frequency of occurrence, but rather, a range within 148 

which occupant density may vary (Cooper, Ferson, and Ginzburg 1996, Baudrit, Dubois, and Perrot 2008). In this 149 

study, we seek a reliable alternative for probabilistic treatment of epistemic uncertainty in building energy 150 

modelling, namely, a framework that can faithfully represent the imperfect knowledge on occupant behavior 151 

without distorting the information. 152 

This goes under the framework of possibility theory for representing epistemic uncertainty (Zadeh 1999), where 153 

a possibility distribution value 𝜋(𝑥) ∈ [0,1]  is allocated to each real value 𝑥  in the range 𝑋 . Expressing 154 

𝜋(𝑥) = 0, indicates that the value 𝑥 is considered impossible, whereas 𝜋(𝑥) = 1 implies that at least one 155 

interpretation of the value 𝑥 is completely possible. Take for example the number of occupants in a bank at 10:00 156 

a.m. of weekdays, where 10 employees work full-time and 7 to 10 visitors are anticipated. In this example, 157 

observing less than 10 occupants is unexpected and surprising i.e. 𝜋(𝑥) = 0, while encountering 17 occupants 158 

is considered normal and the routine state of affairs i.e. 𝜋(𝑥) = 1. Any number of occupants between 10 and 159 

17, as well as 17 to 20, is characterized with a degree of certainty i.e. 0 < 𝜋(𝑥) < 1. According to the theory 160 

of possibility, the likelihood of an event 𝐴 is described by two limiting measures, the possibility 𝛱 and the 161 

necessity 𝛮, defined as (Dubois et al. 2000): 162 

Π(𝐴) = sup
𝑥∈𝐴

𝜋 (𝑥)    (Eq.1) 163 

𝑁(𝐴) = 1 − Π(𝐴) = inf
𝑥∉𝐴

(1 − 𝜋 (𝑥)). (Eq.2) 164 

Let 𝒫(𝜋) be a family of probability distributions such that for any event 𝐴, the probability measure of that event 165 

𝑃(𝐴) is within the assigned necessity and possibility limits, i.e. 𝑁(𝐴) ≤ 𝑃(𝐴) ≤ Π(𝐴); then, 166 

𝑁(𝐴) = inf𝑃(𝐴) Π(𝐴) = sup𝑃(𝐴) (Eq.3) 167 



where the infimum and supremum probabilities represent the largest lower bound and the least upper bound of 168 

all probability measures in 𝒫. This representation of uncertainty is particularly helpful when the available data is 169 

scarce or only the upper and lower bounds can be defined (e.g. uniform, triangular probability distributions). It is 170 

possible to transform a possibility distribution into a family of probability distributions (Figure 1). For this, a 171 

possibility distribution can be seen as a nested set of confidence intervals (Dubois and Prade 1992), which are the 172 

𝛼-cuts of the distribution i.e. [𝑥𝛼 , 𝑥𝛼] = {𝑥, 𝜋(𝑥) ≥ 𝛼}. In this case, the necessity measure 𝑁([𝑥𝛼, 𝑥𝛼]) 173 

gives the degree of certainty contained in the 𝛼-cuts [𝑥𝛼, 𝑥𝛼]. Then, each interval is represented with a range of 174 

probability measures, such that 𝑃(𝑋 ∈ [𝑥𝛼 , 𝑥𝛼]) ≥ 1 − 𝛼 and 𝑃(𝑋 ∉ [𝑥𝛼, 𝑥𝛼]) ≈ 𝛼. 175 

FIGURE 1. TRANSFORMATION OF POSSIBILITY DISTRIBUTION TO BELIEF FUNCTION. 176 

 177 

2.1. Hybrid probabilistic-possibilistic uncertainty propagation 178 

Uncertainty propagation is the process of numerically propagating the uncertainty associated to input quantities 179 

of the model to the outputs of that model. In this section, we describe how randomness (represented using 180 

probability distributions) and imprecision (represented using possibility distributions) can be jointly propagated 181 

(Guyonnet et al. 2003). Let us consider a model 𝑍 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑘, 𝑋𝑘+1, … , 𝑋𝑛), in which the output is 182 

a function of 𝑛  uncertain quantities 𝑋𝑖, 𝑖 = 1,2, … 𝑛 . For ease of illustration, we consider that the first 𝑘 183 

quantities are aleatory with uncertainty represented by the probability distributions 𝑝𝑋𝑖(𝑥), 𝑖 = 1,2, … , 𝑘 , 184 

whereas the remaining 𝑛 − 𝑘  quantities are epistemic with uncertainty represented by the possibility 185 

distributions 𝜋𝑋𝑖(𝑥), 𝑖 = 𝑘 + 1, 𝑘 + 2,… , 𝑛 . The procedure of propagating both types of uncertainty 186 

consists of two nested loops (Baraldi and Zio 2008): Monte Carlo sampling from the probabilistic distributions 187 

(outer loop) and approximation of the possibilistic distributions through 𝛼-cuts (inner loop).  The following steps 188 

are to be performed:  189 

1. A 𝑘 dimensional vector of random realizations (𝑥1, … , 𝑥𝑘) is generated by Monte Carlo sampling 190 

from the uncertain (probabilistic) quantities (𝑋1, … , 𝑋𝑘). 191 



2. 𝛼 is set to zero and the related 𝛼-cuts of all possibility distributions (𝜋𝑋𝑘+1 , … , 𝜋𝑋𝑛) are found. 192 

The possibility distributions are intervals of possible values of the possibilistic quantities 193 

(𝑋𝑘+1, … , 𝑋𝑛). 194 

3. The supremum and infimum values [𝑓
𝛼
, 𝑓𝛼] of 𝑓(𝑥1, … , 𝑥𝑘 , 𝑋𝑘+1, … , 𝑋𝑛) are calculated, where 195 

(𝑥1, … , 𝑥𝑘)  is the vector of Monte Carlo-sampled probabilistic quantities from step 1, and 196 

(𝑋𝑘+1, … , 𝑋𝑛) are the values of the possibilistic quantities obtained from step 2. 197 

4. A small increment (Δ𝛼) is added to the value of 𝛼 (e.g. Δ𝛼 = 0.05) and the new 𝛼-cuts are found. 198 

5. Steps 3 and 4 are repeated while 𝛼 ≤ 1. 199 

6. Steps 1 to 5 are repeated until the desired number of Monte Carlo samples (𝑚) are generated. 200 

The outcomes of this procedure are 𝑚  random realizations of 𝑛  (𝑛 = (
1

∆𝛼
))  possibility measures i.e. 201 

(𝜋1, … , 𝜋𝑚). It is worth noting that the number of realizations (𝑚. 𝑛) should come from a tradeoff between 202 

computational cost and desired accuracy in the uncertainty description. Choosing a large value for Δ𝛼 will fail to 203 

adequately describe the possibilistic representations, while selecting a small value can result in a considerable 204 

increase in computation time. Similarly, a small value of 𝑚 could fail to appropriately define the probabilistic 205 

representations, while a large value could lead to a large computational time. 206 

Notice that a two nested loops uncertainty propagation scheme has been adopted in the context of building energy 207 

modelling (de Wilde and Tian 2009), but in a different case in which all uncertainties are treated probabilistically. 208 

2.2. Post-processing analysis of uncertain model outputs 209 

The outcomes of the hybrid procedure i.e. the 𝑚  possibility distributions (𝜋1, … , 𝜋𝑚) can be combined by 210 

using different methods, such as separate affectation of probability and possibility descriptions (Dubois, Fargier, 211 

and Fortin 2005), fuzzy prediction interval method (Guyonnet et al. 2003) and homogenous post-processing 212 

(Baudrit, Dubois, and Guyonnet 2006). The homogeneous post-processing method provides a tradeoff between 213 

the other two techniques and is based on the use of evidence theory, which is  based on the allocation of basic 214 

probability assignments denoted by 𝑣(𝐸𝑖) to subsets (𝐸𝑖 = 1,2, … , 𝐾) of the uncertain quantity domain, with 215 



∑ 𝑣𝑖 = 1𝐾
𝑖=1  (Shafer 1976). From the basic probability assignments 𝑣(𝐸𝑖), it is possible to obtain the belief 216 

(𝐵𝑒𝑙) and plausibility (𝑃𝑙) measures: 217 

𝐵𝑒𝑙(𝐴) = ∑ 𝑣(𝐸𝑖)𝐸,𝐸⊆𝐴    (Eq.4) 218 

𝑃𝑙(𝐴) = ∑ 𝑣(𝐸𝑖)𝐸,𝐸∩𝐴≠∅ = 1 − 𝐵𝑒𝑙(�̅�). (Eq.5) 219 

𝐵𝑒𝑙(𝐴) measures the degree of belief that 𝐴 will occur, while 𝑃𝑙(𝐴) measures the extent to which 𝐴 evidence 220 

does not support the negation of 𝐴 (Mauris et al. 2000). Notice that the possibility theory is a special case of the 221 

evidence theory through which we can interpret belief and plausibility measures as probability bounds similar to 222 

what is done in the possibility theory for the interpretation of the necessity and possibility measures (Eq. 1 - Eq.2). 223 

Therefore, the probability that 𝐴 lies within the belief and plausibility interval satisfies: 224 

∀𝑃 ∈ 𝒫, 𝐵𝑒𝑙(𝐴) ≤ 𝑃(𝐴) ≤ 𝑃𝑙(𝐴).  (Eq.6) 225 

Since the basic probability assignments, 𝑣 , of evidence theory generalizes both probability and possibility 226 

distributions, evidence theory provides a common framework for the hybrid modelling of uncertainty using both 227 

probability and possibility distributions. The homogeneous post processing method used in this work for 228 

combining the 𝑚 possibility distributions 𝜋𝑖 , 𝑖 = 1,2, . . , 𝑚, is based on the aggregation of the basic belief 229 

assignments 𝑣𝑖 , 𝑖 = 1,2, . . , 𝑚, which can be obtained from the possibility distribution 𝜋𝑖  (Masson and Denœux 230 

2006), into a joint basic belief assignment. In (Baudrit, Dubois, and Guyonnet 2006) it is shown that this 231 

aggregation step can be performed by using the evidence theory laws and allows directly computing, for any 232 

subset 𝐴, the corresponding belief and plausibility measures: 233 

𝑃𝑙(𝐴) =
1

𝑚
∑ Π𝑖(𝐴)
𝑚
𝑖=1    (Eq.7) 234 

𝐵𝑒𝑙(𝐴) =
1

𝑚
∑ 𝑁𝑖(𝐴)
𝑚
𝑖=1    (Eq.8) 235 

where 𝑁𝑖(𝐴) and Π𝑖(𝐴) are the necessity and possibility measures derived from the possibility distributions 236 

(𝜋1, … , 𝜋𝑚), and 𝑚 is the number of Monte Carlo realizations. 237 



3. A case study of cooling load design for an office building 238 

The effectiveness of the hybrid propagation method is illustrated by evaluating the peak cooling loads of a 30’000 239 

m2 office building (Figure 2) located in the center of Milano (Italy), which is undergoing a Core and Shell retrofit. 240 

The renovations cover a wide range of properties i.e. internal architectural layout, building’s envelope (walls, 241 

windows, and roofs), and both electrical and mechanical systems. The logic behind choosing the current building 242 

as the case study is that both aleatory and epistemic classes of uncertainty are available due to the in situ conditions 243 

of the building. Aleatory uncertainty is unavoidable due to the randomness in climatic data. Epistemic uncertainty 244 

is inevitable as the building is evacuated for renovation purposes, and therefore, the only information on occupant 245 

behavior is accessible through experts’ knowledge on occupancy patterns. The building serves as the headquarters 246 

of a bank, consisting of six stories and two courtyards, as well as a ten story tower. To keep the simulation time 247 

below 30 seconds per simulation (i.e. the maximum time available to run the numerous simulations needed for 248 

performing the following analysis), each story is modelled as single thermal zone, except for the ground and fifth 249 

floors, which account for 3 and 2 thermal zones, respectively, giving rise to a 13 thermal zone model, because, to 250 

some extent, they have non-continuous (detached) thermal boundaries. Non-occupied spaces (i.e. toilets, 251 

staircases, and hallways are modelled as non-conditioned zones (Figure 3). Server rooms and Uninterrupted Power 252 

Supply rooms are also modelled as non-conditioned zones, as cooling for these spaces will be provided by separate 253 

Variable Refrigerant Flow (VRF) units. The surface to volume ratio of the building is 0.39, with a window to wall 254 

ratio of approximately 42 %. The properties of the renovated envelope components, are displayed in Table 1. 255 

Schedules of occupancy, lighting system, electric equipment and the HVAC system operation for the Design-Day 256 

calculation are provided in Table 2. It should be noted that keeping the number of thermal zones low (equal to 13) 257 

may lead to an underestimation of the peak cooling load, introducing a systematic error into the results obtained 258 

with the application of the uncertainty propagation methods that will follow. As a matter of fact, reliance on a 259 

detailed model (with 143 zones) and sizing peak cooling loads based on (already mentioned) overconservative 260 

ASHRAE method (with 0.4% summer design condition) returns a peak cooling load equal to 615.3 kW, which is 261 

3.2% larger than the 595.9 kW peak cooling load that is obtained using the simplified model (with 13 zones) 262 

adopted in this study. 263 

FIGURE 2. THE CASE-STUDY BUILDING AS MODELLED IN DESIGNBUILDER SOFTWARE. 264 



FIGURE 3. ZONING SCHEMA OF A SAMPLE FLOOR. THE SHADED ZONES ARE CONSIDERED AS NON-265 
CONDITIONED SPACES. 266 

TABLE 1. ENVELOPE PROPERTIES OF THE CASE STUDY BUILDING (AFTER RETROFIT). 267 

TABLE 2. PRESUMED PROPERTIES OF INTERNAL GAINS AND HVAC SYSTEMS. *THE METABOLIC 268 
RATE IS CONSIDERED TO BE 120 W/PERSON FOR LIGHT OFFICE WORK. 269 

This latter cooling load (595.9 kW) follows the conventional Design-Day method as described in the ASHRAE 270 

Handbook of Fundamentals (HoF) (Handbook 2009), and is used as the baseline for comparison. In this method, 271 

a 24 hour temperature profile (representing the hottest day of the year) is generated based on the ASHRAE’s 272 

“Fraction of Daily Temperature Range” Table. ASHRAE argues that the daily temperature variation is driven by 273 

the heat from the sun, therefore, the table assigns a series of weights (i.e. 24 weights corresponding to each hour 274 

of the day) to a single dry bulb temperature. This process generates a sinusoidal temperature profile that reaches 275 

minimum at early morning and hits peak in the afternoon. In ASHRAE’s Design-Day method, a single dry bulb 276 

temperature value is chosen from the “Climatic Design Conditions” Table, which is published for each climate 277 

by ASHRAE. In this study however, ASHRAE’s deterministic Design-Day dry bulb temperature is replaced with 278 

randomly sampled temperatures, whose probability of occurrence is obtained from a dataset gathered at a nearby 279 

weather station. Then, daily temperature profiles are created by applying ASHRAE’s “Fraction of Daily 280 

Temperature Range” weights to the sampled dry bulb temperatures. A limitation of the method proposed in this 281 

study is that the weights used for generating daily temperature profiles are deterministic. Since the temperature 282 

transition from hour 𝑡  to hour 𝑡 + 1  in different days will always follow the same predefined pattern, the 283 

generated sinusoidal daily temperature profiles is an oversimplification of the reality, as it disregards the inevitable 284 

noise in the actual daily temperature fluctuation. Methods for simulating realistic time-series climatic profiles 285 

have been proposed in (Li and Zio 2012, Sansavini et al. 2014, Rocchetta, Li, and Zio 2015, Naseri et al. 2016), 286 

and can be considered for expanding the current study. The incident solar radiation on each surface is calculated 287 

based on the “Clear-Sky Solar Radiation” method in an hourly interval. ASHRAE’s “Clear-Sky Solar Radiation” 288 

is the sum of beam, diffuse and ground reflected solar radiation received on each surface. The HoF design day 289 

sizing procedure provides climatic properties for calculating peak cooling loads, based on three possible choices 290 

of 0.4%, 1% and 2% design conditions. Each design condition is based on the maximum number of hours in a 291 

year, during which the HVAC system may not be able to fully maintain the desired internal conditions. The dry 292 

bulb temperature for 0.4% design condition can be obtained from the 0.4th percentile of the inverse cumulative 293 

distribution function of all temperatures that are collected during a 25 year span and scaled to one year. In other 294 



words, the 0.4% design condition tends to guarantee adequate cooling power for all conditions, except the most 295 

extremely hot 35 hours of a year (one year is considered to be 8760 hours). 296 

The building is modelled using the DesignBuilder software (Tindale 2005), which performs sizing calculations 297 

according to the ASHRAE HoF procedure with the EnergyPlus calculation engine (Trčka and Hensen 2010, 298 

Crawley et al. 2001). The JEPlus simulation manager is utilized to facilitate the rapid initialization of the 299 

EnergyPlus software (Zhang 2009, Zhang and Korolija 2010, Zhang 2012). The same quantities selected in 300 

(Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014) through a sensitivity analysis of 301 

the variables affecting the peak cooling loads have been considered as affected by uncertainty. Although the 302 

analysis in (Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014) refers to different 303 

buildings and cities, the results of the sensitivity analysis are applicable to the current case study, given the 304 

similarity between the two buildings in terms of comparable characteristics, recurrent internal gain profiles and 305 

climatic design properties (Table 3). Note that the identification of the quantities whose uncertainty should be 306 

treated within the analysis is typically a complex process, which in a general case should be based on the 307 

application of sensitivity and uncertainty analysis techniques. Readers interested in this topic may refer to (Das et 308 

al. 2014) in the context of probabilistic uncertainty representation, (Zahiri, Tavakkoli-Moghaddam, and Pishvaee 309 

2014) in the context of possibilistic uncertainty representation, and (Singh and Markeset 2014) in the context of 310 

hybrid probabilistic-possibilistic uncertainty treatment. The climatic variables with uncertain quantities consist of 311 

outdoor dry bulb temperature and relative humidity, while the internal gains are occupant-related variables, with 312 

uncertain quantities concerning the number of occupants (occupant density), lighting power and appliance power. 313 

TABLE 3. ASHRAE CLIMATIC DESIGN PROPERTIES FOR MILANO COMPARED TO ATLANTA AND 314 
MALAGA 315 

Concerning the former type of variables, HoF provides the required climatic information for sizing HVAC loads 316 

from databases of weather stations. For the current case study, the HoF resorts to Linate or Malpensa weather 317 

stations, where Linate is often more preferable considering its proximity to Milano city center, where the studied 318 

building is located. However, it is argued that weather stations located in open flat areas outside the city (e.g. 319 

airports), cannot adequately characterize the Urban Heat Island (UHI) intensity of the city center (Thevenard 320 

2010, Paolini et al. 2016, 2017). To address UHI intensity in the cooling load calculations, in this work we use 321 

on-site climatic data from Brera weather station, which is located in the center of Milano city (Lombardia 2006). 322 

The extracted climatic data consist of dry bulb temperature and relative humidity. This data is used to calculate 323 

the design dry bulb temperature, the Mean Coincident Wet Bulb temperature (MCWB), the Mean Coincident Dry 324 



Bulb temperature Range (MDBR) for 0.4%, 1% and 2% design conditions. Three “Control Samples” are proposed 325 

that correspond to 0.4%, 1% and 2% design conditions of Linate airport weather station. Similarly, 3 “Case 326 

Studies” are considered for Brera weather station corresponding to 0.4%, 1% and 2% design conditions (Table 327 

4). It is found that for 0.4% design condition, the dry bulb temperature in city center is 0.9℃ higher than in 328 

Linate, while the MCWB and the MDBR in the city center are 1.9℃ and 1.5℃ lower, respectively. The 329 

obtained climatic differences between Linate airport and Brera weather station are in agreement with the UHI 330 

effects reported in literature (Thevenard and Cornick 2013). 331 

The latter category of variables with uncertain quantities, namely occupant density, lighting and appliance power, 332 

are parameters that are difficult to quantify, as accurate measurements of human activities require a great amount 333 

of time and effort (Wang et al. 2016). In many cases, little to no information is available on occupant behavior 334 

and, therefore, designers often rely on nominal values provided by ASHRAE or occasionally resort to personal 335 

experience. Meanwhile, the reliability of ASHRAE recommended occupancy profiles for office buildings has also 336 

been subject to debate (Duarte, Van Den Wymelenberg, and Rieger 2013). Therefore, in this work, we sought 337 

experts’ opinions on internal gains during the peak cooling load period. Experts suggested the presence of 1200 338 

people during peak cooling loads, while recommending 150 kW and 180 kW for lighting and appliance power, 339 

respectively. The occupant density (0.04 person/m2) suggested by the experts is slightly lower than the ASHRAE’s 340 

nominal value for office spaces density (0.05 person/m2). The presumed lighting power density (5 W/m2) is 341 

notably lower than ASHRAE’s recommendations for office spaces (10.5 W/m2). This is due to the fact that the 342 

newly designed lighting configuration benefits from a fully dimmable LED system (2.2 - 9.6 W/m2). Since we 343 

are accounting for a clear sky in the ASHRAE Design-Day calculations and have access to adequate daylight, 344 

experts have set the lighting power density to almost half of the maximum available power. 345 

TABLE 4. COMPARISON OF 0.4%, 1% AND 2% DESIGN CONDITIONS FOR LINATE AIRPORT AND 346 
BRERA CITY CENTER. 347 

 348 

Considering that the process of sizing cooling loads for 0.4%, 1% and 2% design conditions follows a similar 349 

pattern, explaining each design condition individually is redundant. Therefore, in the following sections, the 350 

uncertainty quantification process is fully described for 0.4% design conditions, although it has been performed 351 

and analyzed for all three design conditions. 352 

FIGURE 4. REPRESENTATION OF CLIMATIC VARIABLES WITH UNCERTAIN QUANTITIES: DRY BULB 353 
TEMPERATURE (TOP) AND MCWB TEMPERATURE (BOTTOM) THROUGH PROBABILISTIC 354 



REPRESENTATIONS (BLUE-SOLID) AND THEIR TRANSFORMATION INTO POSSIBILISTIC MEASURES 355 
(RED-DASHED). 356 

FIGURE 5. REPRESENTATION OF HUMAN-DOMINATED VARIABLES WITH UNCERTAIN QUANTITIES: 357 
OCCUPANT DENSITY (TOP), LIGHTING POWER (MIDDLE) AND APPLIANCE POWER (BOTTOM) 358 
THROUGH PROBABILISTIC REPRESENTATIONS (BLUE-SOLID) AND THEIR TRANSFORMATION INTO 359 
POSSIBILISTIC MEASURES (RED-DASHED). 360 

 361 

3.1. Probabilistic representation 362 

The most common approach for quantifying uncertainty in peak cooling load calculations is through a pure 363 

probabilistic approach. In this method, all measures (temperature, relative humidity, occupant density, lighting 364 

power and appliance power) are represented by means of a probability distribution. 365 

Alongside UHI effects, the return period of extreme climatic conditions is also associated with uncertainty (Huang 366 

2014). The collected weather data from Brera weather station cover a 17-year span from 1998 to 2015. Since this 367 

period may not be adequate to account for a reliable return period of 25 years, we incorporated a 0.5℃ standard 368 

deviation to the calculated dry bulb temperature of Brera station (Figure 4 - Top). This variation is recommended 369 

for 0.4% cooling design conditions at locations with climatic characteristics comparable to Milano (standard 370 

deviations of 0.4℃ and 0.3℃ have been suggested for 1% and 2% design conditions, respectively) (Thevenard 371 

2010). The MCWB is calculated from the dry bulb temperature and relative humidity, and adopts a “Burr Type 372 

XII” probability distribution function (Figure 4 - Bottom) (Handbook 2009). 373 

The probabilistic approach for characterizing scarce knowledge on occupant behavior is commonly characterized 374 

by probability density functions, either normal (Hopfe and Hensen 2011) or triangular (Heo, Choudhary, and 375 

Augenbroe 2012). Although, the experts recommended the presence of 1200 occupants, they did expect this value 376 

to vary between 1000 and 1250. Similarly, the peak lighting and appliance power are expected to have ±15 kW 377 

and ±30 kW variation respectively. Here, we adopt triangular probability distributions to characterize the 378 

uncertainties concerning internal gains (Figure 5). 379 

A total of 1000 random samples have been generated by Latin hypercube sampling (Helton and Davis 2003) (𝑉𝑖 =380 

𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 , 𝑥4

𝑖 , 𝑥5
𝑖 , 𝑖 = 1,… ,1000), and fed to JEPlus tool for sizing calculations. The output is a set of 1000 381 

random cooling loads. 382 

3.2. Possibilistic representation 383 

A pure possibilistic approach is also studied. It is worth noting that this approach is not common in sizing HVAC 384 

loads. However, (Ruparathna, Hewage, and Sadiq 2017) performed a life cycle assessment of building energy 385 



retrofit by resorting to the theory of possibility. Furthermore, epistemic uncertainty has been implemented in 386 

HVAC control techniques by means of fuzzy parameters (Sunitha and Behera 2016, Keshtkar et al. 2015). 387 

It is also important to note that using a possibilistic representation of an uncertain quantity takes a more 388 

conservative attitude. A possibility measure of 1 is a weaker statement compared to a probability of 1, as the 389 

possibilistic unit value states that the occurrence of an event is possible, expected and not surprising, whereas a 390 

probability of 1 states that the event is certain. For comparison purposes, we perform probability-possibility 391 

transformation to describe a probabilistic representation in possibility theory terms. Detailed descriptions on 392 

probability-possibility (possibility-probability) transformations can be found in (Dubois, Prade, and Sandri 1993, 393 

Dubois et al. 2004, Dubois, Prade, and Smets 2008, Flage et al. 2013). In this study, we adopt the Variable 394 

Transformation method described in (Mouchaweh et al. 2006), as it is easy to implement and provides a reasonable 395 

approximation of both representations. Figure 4 and 5 illustrate the possibilistic transformations of climatic 396 

variables and internal gains, respectively. 397 

According to the theory of possibility, distributions may be transformed to a set of 𝛼-cuts (see section 2). The 398 

increment ∆𝛼 is set to 0.001 and, therefore, 1001 values corresponding to lower bounds of each quantity, and 399 

another 1001 values as the upper limiting bounds are found. Eventually 2002 inputs are generated for all lower 400 

and upper bounds, where each input vector consists of 5 variables i.e. 𝑉𝑖 = 𝑥
1
𝑖 , 𝑥

2
𝑖 , 𝑥

3
𝑖 , 𝑥

4
𝑖 , 𝑥

5
𝑖  and 𝑉

𝑖
=401 

𝑥1
𝑖
, 𝑥2

𝑖
, 𝑥3

𝑖
, 𝑥4

𝑖
, 𝑥5

𝑖
, 𝑖 = 1,… ,1001. The inputs are fed into JEPlus tool and two sets of cooling loads are 402 

obtained. The outputs are presented through the possibility 𝛱 and necessity 𝛮 measures. 403 

3.3. Hybrid probabilistic – possibilistic representation 404 

In this section, random (aleatory) variability is considered for climatic features i.e. dry bulb temperature and 405 

MCWB, which are described by probability distributions (see section 3.1). Since the building was under retrofit, 406 

not much information regarding human-dominated quantities can be obtained. In fact, resorting to experts’ 407 

knowledge is the only way to obtain information on an evacuated building without any historical data on occupant 408 

behavior. This situation may be encountered in many cooling design scenarios, and therefore, dealing with scarce 409 

data merits careful consideration from two different points of view. First, the variability of occupant density and 410 

lighting/appliance power are prone to have dependencies between them. Therefore, representing each of these 411 

variables by a separate probability density function will neglect their dependencies and distort the original 412 

knowledge. Second, gathering information on human behavior can be associated with high imprecision, where 413 



the information may be categorized into an epistemic class. For this reason, the scarce data on occupant-related 414 

variables has been represented by possibilistic representations (see Section 3.2). 415 

The vector of the input quantities which will be considered uncertain is formed by 5 features. Dry bulb temperature 416 

and MCWB uncertainty is described by probability distributions and the two quantities are indicated by 𝑋1 and 417 

𝑋2, respectively, whereas occupant density, lighting power and appliance power uncertainty is described by 418 

possibility distributions and they are indicated by 𝜋𝑋3 , 𝜋𝑋4 , and 𝜋𝑋5  respectively. A set of 𝑚 = 1000 random 419 

samples (𝑥1
𝑖 , 𝑥2

𝑖 ), 𝑖 = 1,… ,𝑚  are generated from their respective probability distributions 𝑝𝑥1(𝑥)  and 420 

𝑝𝑥2(𝑥). For the remaining 3 features (possibilistic quantities), the value of Δ𝛼 is set to 0.01 and therefore 101 421 

𝛼 -cuts are defined. The corresponding upper and lower boundaries of each 𝛼 -cut are identified from the 422 

possibility distributions of occupant density (𝜋𝑋3), lighting power (𝜋𝑋4) and appliance power (𝜋𝑋5). One vector 423 

containing a temperature value (denoted 𝑥1
1) and a MCWB value (denoted 𝑥2

1) is selected from the matrix of 𝑚 424 

random samples. This vector is concatenated with the lower limiting bounds obtained from the first 𝛼-cut of the 425 

possibility distributions 𝜋𝑋3(𝑥) , 𝜋𝑋4(𝑥)  and 𝜋𝑋5(𝑥) , generating the vector 𝑉1
1 = 𝑥1

1, 𝑥2
1, 𝑥

3
1, 𝑥

4
1, 𝑥

5
1 . 426 

Inserting the vector 𝑉1
1 in the EnegyPlus *.idf script and executing the sizing calculation produces a single value, 427 

namely, the infimum bound of all plausible peak cooling loads that correspond to dry-bulb temperature 𝑥1
1 , 428 

MCWB 𝑥2
1, and 𝛼-cut one (occupant density 𝑥3

1, lighting power 𝑥4
1

 and appliances power 𝑥5
1

). Similarly, we 429 

concatenate the same vector of random values (𝑥1
1 , 𝑥2

1) with the upper limiting bounds of the first 𝛼-cut of 430 

possibility distributions 𝜋𝑋3(𝑥) , 𝜋𝑋4(𝑥)  and 𝜋𝑋5(𝑥) , generating vector 𝑉1
1
= 𝑥1

1, 𝑥2
1, 𝑥3

1
, 𝑥4

1
, 𝑥5

1
. Once 431 

more, values of dry-bulb temperature, MCWB, occupant density, lighting power and appliance power is replaced 432 

in the EnergyPlus *.idf script with 𝑉1
1
 and the sizing calculation is executed. The output of the second simulation 433 

returns the upper bound of all plausible peak cooling loads that correspond to dry-bulb temperature 𝑥1
1, MCWB 434 

𝑥2
1 and 𝛼-cut one (occupant density 𝑥3

1
, lighting power 𝑥4

1
 and appliances power 𝑥5

1
) . At this point we have 435 

obtained the two (upper and lower limiting) values, within which lies all plausible peak cooling loads 436 

corresponding to random vector i=1 (𝑥1
𝑖  , 𝑥2

𝑖 )  and 𝛼-cut j=1 (𝑥3
𝑗
, 𝑥4

𝑗
, 𝑥5

𝑗
). This procedure, based on the use of 437 

the extrema of the 𝛼 -cuts of the epistemic quantities for the computation of the 𝛼 -cut extrema of the 438 



corresponding peak cooling loads is derived from the intuition that the system’s response to epistemic uncertain 439 

quantities (𝑥3
𝑗
, 𝑥4

𝑗
, 𝑥5

𝑗
) is monotonic, arguing that larger occupant density, lighting power and appliance power 440 

will result in larger internal heat gains, and therefore, larger cooling loads.  441 

The process of obtaining the limiting bounds is repeated until the randomly generated vector i=1 (𝑥1
𝑖  , 𝑥2

𝑖 ) is 442 

concatenated with all 𝑛=101 lower bounds and 𝑛 =101 upper bounds obtained from the 𝛼-cuts of the possibility 443 

distributions 𝜋𝑋3 , 𝜋𝑋4  and 𝜋𝑋5 . As a result, we obtain  𝑉1
𝑗
= 𝑥1

1, 𝑥2
1, 𝑥

3
𝑗 , 𝑥

4
𝑗 , 𝑥

5
𝑗 , 𝑗 = 1,… ,𝑛  and 𝑉1

𝑗
=444 

𝑥1
1, 𝑥2

1, 𝑥3
𝑗
, 𝑥4

𝑗
, 𝑥5

𝑗
, 𝑗 = 1,… , 𝑛, through which 202 sizing calculations are executed. At this stage, we have 445 

defined all plausible ranges of peak cooling loads that correspond to temperature 𝑥1
1, MCWB 𝑥2

1 and all plausible 446 

internal gains. The same procedure is repeated 𝑚 =1000 times for different random vectors of dry bulb 447 

temperature and MCWB (𝑥1
𝑖  , 𝑥2

𝑖 ), 𝑖 = 1, … ,𝑚, and their corresponding 𝑛=101 𝛼-cuts (𝑥3
𝑗
, 𝑥4

𝑗
, 𝑥5

𝑗
), 𝑗 =448 

1, … , 𝑛, producing 𝑚 ∗ 𝑛 peak cooling loads for each limiting (upper/lower) bound. To facilitate this process 449 

through JEPlus, a batch of 1000 iterations are executed, each containing two sets of 101 simulations (1000*2*101 450 

jobs). The described procedure is presented in the form of a flowchart in Figure 6. The flowchart consists of two 451 

loops, where the outer loop is responsible for generating random vectors and the inner loop handles the 452 

possibilistic variables. The two loops provide the 𝑛=101 𝛼–cuts of 𝑚=1000 possibility distributions (𝑉𝑖
𝑗
, 𝑉𝑖

𝑗
), 453 

𝑖 = 1, … ,𝑚; 𝑗 = 1,… , 𝑛, which are aggregated by using the homogenous post-processing technique (see 454 

Section 2.2). This produces the the two limiting cumulative distributions, Pl and Bel, of the cooling load reported 455 

in Figure 7. In practice, the lower cumulative distribution, Bel, of the output is obtained by computing the average 456 

of the m=1000 necessity measures and the upper cumulative distribution, Pl, by computing the average of the 457 

m=1000 possibility distributions according to Eqs. 7 and 8. 458 

FIGURE 6. FLOWCHART OF HYBRID PROBABILISTIC-POSSIBILISTIC UNCERTAINTY PROPAGATION 459 
DERIVED FROM (BARALDI AND ZIO 2008). 460 

FIGURE 7. LIMITING PROBABILITY BOUNDS DERIVED FROM THE OUTPUTS OF THE HYBRID 461 
METHOD BY USING HOMOGENEOUS POST PROCESSING. 462 

 463 



3.4. Results and comparison 464 

In the post-processing stage, the outputs of all three methods (probabilistic, possibilistic and hybrid) are presented 465 

as cumulative distributions. Contrary to the probabilistic approach which returns a single percentile for each 466 

cooling load, the possibilistic and hybrid methods provide a range of percentiles. The range in the possibilistic 467 

approach is enclosed by the possibility (𝛱) and necessity (𝑁) measures, whereas the hybrid method returns the 468 

boundary of the range through plausibility (𝑃𝑙) and belief (𝐵𝑒𝑙) functions. Figure 9 displays a comparison 469 

between the cumulative distributions of the hybrid probabilistic-possibilistic uncertainty propagation and the pure 470 

probabilistic and pure possibilistic methods for 0.4% design condition of the case study. It is observed that the 471 

outputs of the pure probabilistic representation (green continuous line denoted “MC”) are contained between the 472 

plausibility function (blue dashed line denoted “𝑃𝑙”) and the belief functions (blue dotted line denoted “𝐵𝑒𝑙”) of 473 

the hybrid method. Also, the 𝑃𝑙 and 𝐵𝑒𝑙 functions extracted from the hybrid method are within the possibility 474 

function (red dashed line denoted “𝛱”) and necessity function (red dotted line denoted “𝑁”) of the pure 475 

possibilistic representation. The effects of treating all uncertain variables probabilistically, versus treating climatic 476 

data probabilistically and internal gains possibilistically, can be seen by the distance between the 𝑃𝑙 and MC 477 

distributions, as well as the distance between MC and 𝐵𝑒𝑙. This distance represents our incomplete knowledge 478 

on internal gains and, therefore, appears as a range with limiting bounds. Similarly, the effects of representing all 479 

data possibilistically, versus treating climatic data probabilistically and internal gains possibilistically, are shown 480 

by the distance between 𝛱 and 𝑃𝑙, as well as the distance between 𝐵𝑒𝑙 and 𝑁. 481 

FIGURE 8. MAPPING OUTPUTS FROM PURE PROBABILISTIC (MC), HYBRID (𝑷𝒍,𝑩𝒆𝒍) AND PURE 482 

POSSIBILISTIC (𝜫,𝑵) UNCERTAINTY TREATMENTS FOR 0.4% DESIGN CONDITION. 483 

 484 

From the computational point of view, the hybrid method is considerably more demanding than the pure 485 

probabilistic and possibilistic approaches. Since simulations are only conducted for the sizing process, each 486 

simulation lasts roughly 35 seconds on an Intel® CoreTM i7-3610QM @ 2.30- 3.10 GHz processor with 8 logical 487 

cores and enabled multi-processing, executing mini-batches of 8 parallel jobs at a time. The overall simulation 488 

time for the pure probabilistic and the pure possibilistic methods are 1.2 and 2.5 hours respectively (35 seconds 489 

per simulation where 1000 and 2002 simulations are run for the pure probabilistic and possibilistic approach 490 



respectively). Execution of the hybrid method requires 250 hours (35 seconds per simulations for 202’000 total 491 

runs).  492 

To compare the outputs of each representation, a quantitative assessment is provided (Table 5). Each value 493 

selected from the x axis (denoted “Peak cooling load”), will cross the𝛱, 𝑃𝑙, MC, 𝐵𝑒𝑙 and 𝑁 distributions in 494 

five different points along the y axis (denoted “ecdf”). Take Control sample A from Table 4 with a peak cooling 495 

load of 595.9 kW. This value intercepts the MC distribution at the 51st percentile, or in other words, would suffice 496 

to cover 51% of uncertain events (Figure 10). Mapping Control Sample A on the 𝑃𝑙 and 𝐵𝑒𝑙 measures of the 497 

hybrid method reveals that 595.9 kW would be able to cover between 23% and 73% of uncertain events. The 498 

observed difference between the pure probabilistic approach and the hybrid method is the result of forcing a 499 

probability density function onto human-dominated uncertain measures (i.e. internal gains). Mapping Control 500 

Sample A on the 𝛱 and 𝑁 distributions will correspond to the 0th and 97th percentiles, implying that 595.9 kW 501 

would be able to cover anywhere between 0% and 97% of uncertain events. This, basically means that the pure 502 

possibilistic approach provides no information regarding the performance of Control Sample A. As expected, the 503 

pure probabilistic approach returns a crisp output and is the most sensitive of the three methods, whereas the pure 504 

possibilistic approach is the most cautious of the three approaches.  505 

FIGURE 9. MAPPING “CONTROL SAMPLE A” AND “CASE STUDY A” ON THE CUMULATIVE 506 
DISTRIBUTIONS OF UNCERTAIN PEAK COOLING LOADS FOR THE 0.4% DESIGN CONDITION. TOP: 507 
PURE PROBABILISTIC. MIDDLE: HYBRID PROBABILISTIC-POSSIBILISTIC. BOTTOM: PURE 508 
POSSIBILISTIC. 509 

TABLE 5.  ADEQUACY ASSESSMENT OF PEAK COOLING LOADS FOR LINATE AND BRERA STATIONS 510 
BASED ON PROBABILISTIC (PROB.), POSSIBILISTIC (POSS.) AND HYBRID UNCERTAINTY 511 
TREATMENTS. 512 

In practice, HVAC designers often make up for the uncertainty by applying sizing factors to the estimated peak 513 

cooling load. However, based on the building type and designer’s experience the magnitude of the safety margin 514 

may greatly vary. Previous studies argued that the application of uncertainty quantification is a reliable alternative 515 

to the experimental-based application of safety factors, consequently, lowering the risk of oversizing the system 516 

(Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014). In the case study, we are looking 517 

for a value which can cover 90% of uncertain events for the 0.4% design condition. Therefore, we seek the cooling 518 

load corresponding to the 90th percentile on the cumulative distributions. Also, we seek the suitable size factor 519 

that enables Control Sample A (595.9 kW) to cover all uncertain events except the worst 10%. The pure 520 

probabilistic approach reaches the 90th percentile at 607.2 kW and, therefore, a size factor of 1.019 is assigned. 521 



To achieve the same level of confidence on the outputs of the hybrid method we intercept the 90th percentile on 522 

the 𝐵𝑒𝑙  distribution, which returns a peak cooling load of 612.3 kW and a 1.028 size factor. The desired 523 

confidence from the pure possibilistic method is obtained by intercepting the 90th percentile at the 𝑁 distribution, 524 

returning a peak cooling load of 619.6 kW and a 1.04 size factor. It is worth noting that these results are effected 525 

by the systematic error introduced by the simplification of the building’s thermal zones (i.e. 3.2% for the 0.4% 526 

summer design condition). Therefore, designers should take caution when simplifying the thermal zoning, to 527 

obtain a reasonable tradeoff between the overhead systematic error due to building model simplifications and 528 

computational cost of simulations, to be run within the uncertainty propagation method proposed, that are shown 529 

to be methodologically suitable to address these problems of epistemic and aleatory uncertainty propagation. 530 

Improper representation of internal gains through probability distributions neglects the lack of accurate 531 

measurements, and the inherent epistemic nature of uncertainty associated with the peak lighting and equipment 532 

power, as well as the maximum number of occupants. In each random generation, the pure probabilistic 533 

approach forces a single probability of occurrence on each internal gain component. Therefore, the pure 534 

probabilistic approach is the most risky among the three uncertainty representation and propagation methods. It 535 

is observed that the output of the pure possibilistic approach is the most conservative of the three methods. 536 

Consequently, a possibilistic representation of climatic variables is prone to overestimate the peak cooling load 537 

and is not recommended for sizing cooling loads under uncertainty. The hybrid method on the other hand, 538 

provides a somewhat conservative range of confidence that is less risky compared to the pure probabilistic 539 

approach and less conservative than the pure possibilistic approach. Therefore, the outputs of the hybrid method 540 

are less likely to undersize the system with respect to the pure probabilistic approach and to oversize it in 541 

comparison with the pure possibilistic approach. Since the pure probabilistic approach returns a crisp output for 542 

every percentile, it can be a suitable starting point for estimating the size factor. In the meantime, the belief and 543 

plausibility measures obtained from the hybrid method can work as the support of the pure probabilistic method, 544 

by quantifying the magnitude of confidence due to incomplete knowledge on internal gains. 545 

FIGURE 10. ASSIGNING SIZE FACTORS FOR DIFFERENT UNCERTAINTY REPRESENTATIONS. TOP: 546 
0.4% DESIGN CONDITION, MIDDLE: 1% DESIGN CONDITION, BOTTOM: 2% DESIGN CONDITION. 547 

 548 

Figure 11 displays the results of all three uncertainty quantification methods i.e. probabilistic (denoted 549 

“Probability Theory), possibilistic (denoted “Possibility Theory”) and hybrid (denoted “Evidence Theory”) for 550 

0.4%, 1% and 2% cooling design conditions. It is observed that the pure probabilistic method and the hybrid 551 



method demonstrate close performances, specifically in high percentiles. This phenomenon is generally evident 552 

after the 90th percentile, regardless of the type of design condition (0.4%, 0.1% or 2%). It also indicates that in 553 

our case study, a probabilistic representation of internal gains will result in a slightly undersized system. Therefore, 554 

we suggest the application of pure probabilistic uncertainty treatment for sizing cooling loads, only in buildings 555 

with deterministic occupancy profiles. The slopes of the necessity (𝑁) and possibility (𝛱) measures reveal the 556 

effect of treating climatic variables (dry bulb, MCWB) as scarce knowledge and is mainly evident at 2% design 557 

conditions. The fixed distance between the 𝑃𝑙  and 𝐵𝑒𝑙  measures indicate that the magnitude of effect of 558 

uncertainties in human-dominated variables (i.e. internal gains) is constant at all climatic conditions. This is 559 

related to the fact that in our case study, all design conditions are mainly dominated by climatic variables rather 560 

than internal gains.  561 

The probabilistic treatment of uncertainty provides a crisp output for each percentile, which may deem risky as it 562 

overlooks the lack of knowledge on activities dominated by human-behavior. The hybrid approach on the other 563 

hand provides a range of values (cooling loads) which are equally plausible. This means that even though the real 564 

value of the peak cooling load is unknown, one may assume that encountering any value outside the provided 565 

range is unlikely (implausible). To contrast how the provided range may assist designers in decision support, a 566 

comparative assessment of resorting to each method is provided. Let us assume that the designer tends to select a 567 

single chiller by using ASHRAE’s 1% summer design conditions, while seeking a reliability of 99%. In this case, 568 

choosing the 99th percentile from the pure probabilistic framework returns a peak cooling load of 609 kW. In this 569 

case, designers often opt for the closet option that is larger than the estimated load, i.e. a chiller with a reference 570 

cooling capacity of 650 kW. The hybrid method returns two values for the 99th percentile which define the range 571 

of most plausible occurrences, i.e. encountering any peak cooling load between 594 kW and 610 kW is equally 572 

plausible. By resorting to the 99th percentile of the 𝑃𝑙 measure (594 kW), one can opt for a chiller with a reference 573 

cooling power of 600 kW. It is also possible to rely on the 99th percentile of the 𝐵𝑒𝑙 measure (610 kW) and select 574 

a chiller with a 650 kW reference cooling capacity, which will be identical to the outcome of a purely probabilistic-575 

based decision. Therefore, it can be inferred that forcing unavailable information on occupant density, lighting 576 

power and appliance power in the form of probability distributions, results in overestimating the peak cooling 577 

load and eventually eliminating some design choices.  It is observed that opting different frameworks for handling 578 

uncertainty can provide dissimilar options, and therefore adds to the degrees of freedom provided to the designer 579 

for decision making. This level of versatility will explicitly come in handy when sequencing multiple chillers for 580 



achieving optimal operational COP. Meanwhile, gathering further information on the aforementioned epistemic 581 

uncertain quantities can prevent overestimation of peak cooling loads and provide more reliable cooling capacity. 582 

4. Conclusion 583 

The existing literature on uncertainty assessment of HVAC systems assumes random variability for all uncertain 584 

parameters. This approach can be challenged in situations of scarce and incomplete knowledge. In this paper, we 585 

address this concern by characterizing aleatory uncertainties with probability and epistemic uncertainty with 586 

possibility representations. The study offers a hybrid uncertainty propagation method so that both aleatory and 587 

epistemic classes of uncertainty are properly introduced to the model. The proposed method is able to propagate 588 

the uncertainty through the model with minimal information loss. Results are presented in the form of plausibility 589 

and belief functions.  590 

A numerical case study is provided to compare the effects of adopting the hybrid uncertainty treatment to the pure 591 

probabilistic and possibilistic representations. In this study, climatic data (i.e. temperature and humidity) are 592 

characterized with probability density functions while human-dominated events (i.e. occupant density, appliance 593 

power and lighting power) are represented by possibility distributions. The introduced hybrid treatment of 594 

uncertainty can be useful in support of the optimal design of chillers’ configuration (balancing operating expenses 595 

and capital expenditure).  The hybrid treatment of uncertainty is particularly important from the HVAC system 596 

design point of view, when designers have limited access to complete information regarding building 597 

characteristics. The hybrid approach may be well fitting for buildings with unpredictable occupancy patterns (e.g. 598 

hospitals), where quantifying the exact number of occupants is extremely difficult to quantify. Therefore, opting 599 

for a hybrid probabilistic-possibilistic framework for Bayesian calibration of building energy models is a potential 600 

for future studies (Pedroni et al. 2015). The hybrid treatment of uncertainty could also be evaluated when dealing 601 

with control regimes of autonomous building components (shading and lighting systems), where incomplete 602 

knowledge over occupant behavior and a system’s state may have dependencies. In other situations, i.e. buildings 603 

with more predictable occupancy patterns (e.g. schools), results may be less sensitive to the hybrid approach, 604 

when compared to pure probabilistic representations. 605 

In this study, cooling loads are estimated by means of dry bulb and MCWB temperature. However, resorting to 606 

dew point temperature, humidity ratio and mean coincident dry bulb temperature (for dehumidification purposes) 607 

is not expected to alter the methodological scheme followed for the analysis. Also, it is advised to perform 608 

simplifications on the thermal zoning with cautious, and seek for a tradeoff that does not oversimply the model 609 



while maintaining a reasonable simulation time. As a last remark, scarce information (such as occupant density) 610 

can occasionally contain more information than the studied example, although not enough to fit a probability 611 

density function. In such cases, the application of Chebyshev’s inequality can provide a suitable fit for all family 612 

of probability distributions and, therefore, is a potential for expanding the provided framework.  613 
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