

Hybrid probabilistic-possibilistic treatment of uncertainty in building energy models: a case study of sizing peak cooling loads

Fazel Khayatian, Maryam Meshkinkiya, Piero Baraldi, Francesco Di Maio,

Enrico Zio

▶ To cite this version:

Fazel Khayatian, Maryam Meshkinkiya, Piero Baraldi, Francesco Di Maio, Enrico Zio. Hybrid probabilistic-possibilistic treatment of uncertainty in building energy models: a case study of sizing peak cooling loads. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2018, 4 (4), 10.1115/1.4039784. hal-02194936

HAL Id: hal-02194936 https://centralesupelec.hal.science/hal-02194936

Submitted on 19 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1 Hybrid Probabilistic-Possibilistic Treatment of Uncertainty in

2 Building Energy Models: A Case Study of Sizing Peak

3 Cooling Loads

4 Fazel Khayatian^{1*}, Maryam MeshkinKiya², Piero Baraldi³, Francesco Di Maio⁴, Enrico Zio⁵

5

- ¹PhD Student, Department of Architecture Built Environment and Construction Engineering, Politecnico di Milano, Via
 Ponzio, 31, 20133 Milano, Italy. E-mail: fazel.khayatian@polimi.it
- 8 ²PhD Student, Department of Architecture Built Environment and Construction Engineering, Politecnico di Milano, Via
- 9 Ponzio, 31, 20133 Milano, Italy. E-mail: <u>maryam.meshkinkiya@polimi.it</u>
- ³Associate Professor, Department of Energy, Politecnico di Milano, Via Ponzio, 34/3, 20133 Milano, Italy. E-mail:
- 11 piero.baraldi@polimi.it
- ⁴Assistant Professor, Department of Energy, Politecnico di Milano, Via Ponzio, 34/3, 20133 Milano, Italy. E-mail:
- 13 <u>francesco.dimaio@polimi.it</u>
- ⁵Full Professor, Chaire Systems Science and the Energy Challenge, Fondation Electricite' de France, Laboratoire Genie
- 15 Industriel, CentraleSupélec/Université Paris-Saclay, Grande voie des Vignes, 92290 Chatenay-Malabry, France; Full
- 16 Professor, Department of Energy, Politecnico di Milano, Via Ponzio, 34/3, 20133 Milano, Italy. E-mail:
- 17 <u>enrico.zio@centralesupelec.fr; enrico.zio@polimi.it</u>

18 Abstract

19 Optimal sizing of peak loads has proven to be an important factor affecting the overall energy consumption of 20 HVAC systems. Uncertainty quantification of peak loads enables optimal configuration of the system by opting 21 for a suitable size factor. However, the representation of uncertainty in HVAC sizing has been limited to 22 probabilistic analysis and scenario-based cases, which may limit and bias the results. This study provides a 23 framework for uncertainty representation in building energy modeling, due to both random factors and imprecise 24 knowledge. The framework is shown by a numerical case study of sizing cooling loads, in which uncertain climatic 25 data is represented by probability distributions and human-driven activities are described by possibility 26 distributions. Cooling loads obtained from the hybrid probabilistic-possibilistic propagation of uncertainty are 27 compared to those obtained by pure probabilistic and pure possibilistic approaches. Results indicate that a pure 28 possibilistic representation may not provide detailed information on the peak cooling loads, whereas a pure 29 probabilistic approach may underestimate the effect of uncertain human behavior. The proposed hybrid

^{*} Corresponding author. Fax: (+39)23999486.

E-mail address: fazel.khayatian@polimi.it

30 representation and propagation of uncertainty in this paper can overcome these issues by proper handling of both31 random and limited data.

32 1. Introduction

33 Energy efficient building design merits special attention as the construction sector holds the largest share of energy 34 consumption in most countries (Birol 2010). The magnitude of energy consumption by the building sector has 35 resulted in governmental concerns that has led to implementing global and national regulations for promoting 36 energy efficiency in buildings (Guillén-Lambea, Rodríguez-Soria, and Marín 2016, Allouhi et al. 2015). To 37 comply with these regulations, new buildings are designed with special attention to both indoor comfort and 38 energy efficiency, while existing buildings undergo retrofits at envelope and systems levels. In either case, this 39 practice is associated with careful (re)design of the Heating Ventilation and Air-Conditioning (HVAC) systems. 40 Indeed, HVAC design is very sensitive to the implementation of optimal temperature and humidity control, which 41 may account for up to 60% of the total electric energy consumption of a building (Pérez-Lombard, Ortiz, and Pout 42 2008, Zhao et al. 2013, Vakiloroaya et al. 2014). Studies show that cooling loads dominate the majority of HVAC 43 energy consumption in office buildings (Wan Mohd Nazi et al. 2017) and optimal configuration of chillers can 44 result in substantial energy saving (Salari and Askarzadeh 2015).

45 The first necessary step for optimal design of HVAC system (that eventually results in the optimal configuration 46 of chillers/boilers) is to quantify the peak load on the heating/cooling system, which is commonly known as the 47 sizing process. Sizing the cooling system is frequently conducted according to the ASHRAE (Mitchell and Braun 48 2013) procedure that estimates peak loads by means of a nominal day (Design-Day) representing the hottest 49 climatic conditions throughout a year. The calculation procedure commonly known as the Radiant Time Series 50 method is a simplified approximation of the Heat Balance method. This procedure is among the most conventional 51 approaches for estimating peak cooling loads as it is reliable, easy to interpret, computationally inexpensive and 52 is accompanied by climatic design conditions for thousands of locations around the world (Schuetter, DeBaillie, 53 and Ahl 2014). However, the ASHRAE procedure is based on deterministic and conservative assumptions, which 54 overlook the uncertainty in environmental and occupant-related variables. It is argued that this approach results 55 in overestimating the peak loads (Djunaedy et al. 2011), since a common practice is to apply size factors to the 56 calculated cooling loads to reduce the risk of an undersized system. Inadequate size factors can cause the HVAC 57 system to rarely reach the intended load and result in inefficient energy performance (Yik et al. 1999).

58 Optimal characterization of the system by accounting for uncertainty in input quantities can be a reliable 59 alternative to experimental-based application of safety factors. Various studies have considered uncertain 60 quantities in the problem of sizing HVAC systems and calculating peak cooling loads (Sun, Huang, and Huang 61 2015, Cheng, Wang, and Yan 2016, Shen and Sun 2016, Gang, Wang, Xiao, et al. 2015, Burhenne et al. 2013, 62 Yıldız and Arsan 2011, Cheng et al. 2015, Lee and Schiavon 2014, Cheng et al. 2017). This has allowed more 63 accurate cooling load best estimates (Mui and Wong 2007), optimal cost-energy design (Rasouli et al. 2013) and 64 ideal configuration of the cooling systems (Gang, Wang, Shan, et al. 2015). In (Domínguez-Muñoz, Cejudo-65 López, and Carrillo-Andrés 2010), the authors propose a method for calculating peak loads based on stochastic 66 simulation, showing that calculating peak cooling loads while considering uncertainty can reduce the risk of 67 oversizing the HVAC system. In (Sun et al. 2014), a new framework for sizing the HVAC systems considering 68 uncertainty is introduced, combining actual weather data and random sampling of other uncertain variables to 69 obtain the peak loads.

70 In the context of building energy modelling dissimilar levels of information are available for different uncertain 71 input quantities, which should be handled with their respective appropriate representations (Wang et al. 2016, 72 Corotis 2015). Considering for example, the uncertainty associated with occupancy, in some cases, measured 73 historical data are available and occupancy patterns are represented through Markov Models (Page et al. 2008, 74 Richardson, Thomson, and Infield 2008, Wang, Yan, and Jiang 2011, Tahmasebi and Mahdavi 2015) or clustered 75 into a number of scenarios (D'Oca and Hong 2015, Miller, Nagy, and Schlueter 2015). Whereas in other cases, 76 limited historical data on the peak number of occupants were treated by probability density functions (Eisenhower 77 et al. 2012, Azar and Amoodi 2016, Kim 2016). As a result, representing occupant-related uncertainty in building 78 energy simulation calls for a change of perspective towards a *fit-for-purpose* treatment (Gaetani, Hoes, and Hensen 79 2016). This challenge is specifically important in peak load calculations, as it can result in (under)oversizing the 80 HVAC system.

In the present work, we distinguish between two types of uncertain quantities: (1) those affected by stochastic uncertainty, such as climatic parameters, whose randomness is due to their inherent variability, and (2) those affected by epistemic uncertainty, such as internal gains, whose uncertainty is due to lack of knowledge and information (Dubois and Prade 2009).

85 Stochastic uncertainty is typically represented by probability distributions whose parameters are estimated using
86 experimental (Oberkampf et al. 2002). For example, large amount of data collected form weather stations (e.g.

87 temperature, relative humidity and wind speed) are available for estimating the parameters of the probability 88 distributions representing the stochastic uncertainty of the climatic quantities. Specifically, in this study the 89 probability distributions representing uncertainties in the urban microclimatic are based on a large dataset of 90 hourly climatic data, collected from a weather station with close proximity to the studied building.

91 With respect to the epistemic uncertainty, in some cases, laboratory experiments are performed to quantify the 92 uncertainty of the physical properties of building components (e.g. thermal conductivity, solar heat gain 93 coefficient, moisture content, specific heat and mass). The repetition of experiments allows for a reliable 94 information representation, properly characterizing the quantity variability. In other cases where very scarce 95 information is available (e.g. internal gains of an unoccupied building which may be still in the design phase or 96 evacuated for restoration) one may resort to the elicitation of expert knowledge to represent uncertainty. Expert 97 elicitation is often of ambiguous quality in nature, and, therefore, may be difficult to describe through probability 98 distributions. Let us, for example, consider the case, in which we are aware of the minimum and maximum values 99 of an uncertain quantity. Since this information does not imply that the probability of occurrence of all 100 intermediate values is the same, the use of a uniform probability distribution is questionable (Klir 1994). 101 Similarly, the knowledge of the minimum, maximum and most probable values of an uncertain quantity, does not 102 allow the use of a triangular probability distribution. To our opinion, the literature of building energy modelling 103 have frequently (and inappropriately) represented the uncertainty on epistemic quantities, for which scarce 104 knowledge is available through probability distributions (Tian 2013, D'Oca, Hong, and Langevin 2018).

105 Possibilistic representation of scarce information is an alternative to the conventional probabilistic quantification 106 of uncertainty (Parsons 1996). This type of representation is particularly helpful in quantifying the uncertainty 107 associated with incomplete knowledge, where opting for probability distributions may distort the actual 108 information. In the practice of building energy modelling, a framework for handling both probabilistic and 109 possibilistic representations of uncertainty is necessary.

In this study, we describe different representations of uncertainties involved in the problem of sizing HVAC loads, in support of a successive optimal design of the HVAC system. To handle both probabilistic and possibilistic uncertainty representations, we resort to a hybrid uncertainty propagation method (Guyonnet et al. 2003). A homogeneous post-processing approach is introduced to process the outputs obtained by the hybrid uncertainty propagation. To highlight the effectiveness of the hybrid method, fully probabilistic and fully possibilistic treatments of the uncertainties are presented in a comparative numerical case study. 116 The main original contributions of this study include:

- Introducing a possibilistic representation of occupant-related uncertainty in building energy modelling.

Introducing the hybrid uncertainty treatment method for joint propagation of uncertainties represented
 by probability distributions (i.e. climatic data) and possibility distributions (i.e. internal gains).

Contrasting the advantages and drawbacks of pure probabilistic and pure possibilistic treatments of
 uncertainty, compared to the introduced hybrid method.

The paper is structured as follows: Section 2 provides a detailed description of the possibilistic representation of scarce knowledge and introduces the hybrid method for uncertainty propagation. Section 3 applies the hybrid method to a case study of sizing cooling loads for an office building, and demonstrates the results of the presented method in comparison with pure probabilistic and pure possibilistic representations. Section 4 draws the conclusions and provides suggestions for future work.

127 2. Possibilistic representation of uncertainty

Uncertainty can be categorized into two classes, i.e. aleatory and epistemic. Aleatory uncertainty deals with randomness due to inherent variability in the system behavior (e.g. outdoor temperature fluctuation), while epistemic uncertainty is derived from lack of knowledge on the process or system (e.g. the state of an HVAC system) (Zio 2013). For example, lack of accessible information on the value of a quantity, which enters as a parameter of the system or process model, can result in epistemic uncertainty (e.g. due to difficulties in collecting accurate measurements or the lack of time for data collection).

134 Although one may argue that probability theory is sufficient for handling both aleatory and epistemic uncertainty (Lindley 1987, Zadeh 2008), recent studies have challenged the probabilistic framework, highlighting its 135 136 limitations in representing incomplete knowledge (Dubois and Prade 2001, Cobb and Shenoy 2003, Haenni and 137 Lehmann 2003). Studies have reasoned that a fully probabilistic approach can distort the actual scarce knowledge 138 and impact the calculations obtained from the model (Dubois, Prade, and Smets 1996, Kohlas and Monney 2013). 139 It has been shown that misrepresenting epistemic uncertainty - as a result of incomplete knowledge - can lead to 140 faulty intuitions on the system's reliability (Chen et al. 2016, Zhang et al. 2017), and therefore, imprecise 141 probabilistic frameworks have been introduced to properly handle both classes of uncertainty(Rocchetta and 142 Patelli 2016). Take for example the uncertainty affecting the quantification of internal gains in a building, which 143 is commonly represented by means of uniform, triangular or Gaussian probability density functions (Eisenhower 144 et al. 2012, Hopfe and Hensen 2011, Heo, Choudhary, and Augenbroe 2012, Azar and Amoodi 2016, Kim 2016). 145 Adopting a uniform probability distribution for occupant density does not correctly characterize the uncertain 146 parameter, as we are not in complete ignorance of the number of occupants. On the other hand, assigning triangular 147 or Gaussian distributions to occupant density - based on linguistic propositions of the number of occupants - will 148 misrepresent the scarce information, as we do not know the frequency of occurrence, but rather, a range within 149 which occupant density may vary (Cooper, Ferson, and Ginzburg 1996, Baudrit, Dubois, and Perrot 2008). In this 150 study, we seek a reliable alternative for probabilistic treatment of epistemic uncertainty in building energy 151 modelling, namely, a framework that can faithfully represent the imperfect knowledge on occupant behavior 152 without distorting the information.

153 This goes under the framework of possibility theory for representing epistemic uncertainty (Zadeh 1999), where a possibility distribution value $\pi(x) \in [0,1]$ is allocated to each real value x in the range X. Expressing 154 $\pi(x) = 0$, indicates that the value x is considered impossible, whereas $\pi(x) = 1$ implies that at least one 155 156 interpretation of the value x is completely possible. Take for example the number of occupants in a bank at 10:00 a.m. of weekdays, where 10 employees work full-time and 7 to 10 visitors are anticipated. In this example, 157 observing less than 10 occupants is unexpected and surprising i.e. $\pi(x) = 0$, while encountering 17 occupants 158 is considered normal and the routine state of affairs i.e. $\pi(x) = 1$. Any number of occupants between 10 and 159 17, as well as 17 to 20, is characterized with a degree of certainty i.e. $0 < \pi(x) < 1$. According to the theory 160 161 of possibility, the likelihood of an event A is described by two limiting measures, the possibility Π and the necessity N, defined as (Dubois et al. 2000): 162

163
$$\Pi(A) = \sup_{x \in A} \pi(x)$$
 (Eq.1)

164
$$N(A) = 1 - \Pi(\overline{A}) = \inf_{x \notin A} (1 - \pi(x)).$$
 (Eq.2)

165 Let $\mathcal{P}(\pi)$ be a family of probability distributions such that for any event *A*, the probability measure of that event 166 P(A) is within the assigned necessity and possibility limits, i.e. $N(A) \le P(A) \le \Pi(A)$; then,

167
$$N(A) = \inf P(A)$$
 $\Pi(A) = \sup P(A)$ (Eq.3)

168 where the infimum and supremum probabilities represent the largest lower bound and the least upper bound of 169 all probability measures in \mathcal{P} . This representation of uncertainty is particularly helpful when the available data is 170 scarce or only the upper and lower bounds can be defined (e.g. uniform, triangular probability distributions). It is 171 possible to transform a possibility distribution into a family of probability distributions (Figure 1). For this, a 172 possibility distribution can be seen as a nested set of confidence intervals (Dubois and Prade 1992), which are the α -cuts of the distribution i.e. $[\underline{x}_{\alpha}, \overline{x}_{\alpha}] = \{x, \pi(x) \ge \alpha\}$. In this case, the necessity measure $N([\underline{x}_{\alpha}, \overline{x}_{\alpha}])$ 173 gives the degree of certainty contained in the α -cuts $[\underline{x}_{\alpha}, \overline{x}_{\alpha}]$. Then, each interval is represented with a range of 174 probability measures, such that $P(X \in [\underline{x}_{\alpha}, \overline{x}_{\alpha}]) \ge 1 - \alpha$ and $P(X \notin [\underline{x}_{\alpha}, \overline{x}_{\alpha}]) \approx \alpha$. 175

176 FIGURE 1. TRANSFORMATION OF POSSIBILITY DISTRIBUTION TO BELIEF FUNCTION.

177

178 2.1. Hybrid probabilistic-possibilistic uncertainty propagation

179 Uncertainty propagation is the process of numerically propagating the uncertainty associated to input quantities 180 of the model to the outputs of that model. In this section, we describe how randomness (represented using 181 probability distributions) and imprecision (represented using possibility distributions) can be jointly propagated (Guyonnet et al. 2003). Let us consider a model $Z = f(X_1, X_2, ..., X_k, X_{k+1}, ..., X_n)$, in which the output is 182 a function of n uncertain quantities X_i , i = 1, 2, ..., n. For ease of illustration, we consider that the first k183 quantities are aleatory with uncertainty represented by the probability distributions $p_{X_i}(x)$, i = 1, 2, ..., k, 184 whereas the remaining n - k quantities are epistemic with uncertainty represented by the possibility 185 distributions $\pi^{X_i}(x)$, i = k + 1, k + 2, ..., n. The procedure of propagating both types of uncertainty 186 187 consists of two nested loops (Baraldi and Zio 2008): Monte Carlo sampling from the probabilistic distributions 188 (outer loop) and approximation of the possibilistic distributions through α -cuts (inner loop). The following steps 189 are to be performed:

190 1. A k dimensional vector of random realizations (x₁, ..., x_k) is generated by Monte Carlo sampling
191 from the uncertain (probabilistic) quantities (X₁, ..., X_k).

192 2. α is set to zero and the related α-cuts of all possibility distributions (π<sup>X_{k+1},..., π^{X_n}) are found.
193 The possibility distributions are intervals of possible values of the possibilistic quantities
194 (X_{k+1},..., X_n).
</sup>

- 195 3. The supremum and infimum values $[\overline{f}_{\alpha}, \underline{f}_{\alpha}]$ of $f(x_1, \dots, x_k, X_{k+1}, \dots, X_n)$ are calculated, where
- 196 $(x_1, ..., x_k)$ is the vector of Monte Carlo-sampled probabilistic quantities from step 1, and 197 $(X_{k+1}, ..., X_n)$ are the values of the possibilistic quantities obtained from step 2.
- 198 4. A small increment ($\Delta \alpha$) is added to the value of α (e.g. $\Delta \alpha = 0.05$) and the new α -cuts are found.
- 199 5. Steps 3 and 4 are repeated while $\alpha \leq 1$.
- 200 6. Steps 1 to 5 are repeated until the desired number of Monte Carlo samples (m) are generated.

The outcomes of this procedure are *m* random realizations of n $\left(n = \left(\frac{1}{\Delta \alpha}\right)\right)$ possibility measures i.e. $(\pi_1, ..., \pi_m)$. It is worth noting that the number of realizations $(m \cdot n)$ should come from a tradeoff between computational cost and desired accuracy in the uncertainty description. Choosing a large value for $\Delta \alpha$ will fail to adequately describe the possibilistic representations, while selecting a small value can result in a considerable increase in computation time. Similarly, a small value of *m* could fail to appropriately define the probabilistic representations, while a large value could lead to a large computational time.

207 Notice that a two nested loops uncertainty propagation scheme has been adopted in the context of building energy
 208 modelling (de Wilde and Tian 2009), but in a different case in which all uncertainties are treated probabilistically.

209 2.2. Post-processing analysis of uncertain model outputs

The outcomes of the hybrid procedure i.e. the m possibility distributions $(\pi_1, ..., \pi_m)$ can be combined by using different methods, such as separate affectation of probability and possibility descriptions (Dubois, Fargier, and Fortin 2005), fuzzy prediction interval method (Guyonnet et al. 2003) and homogenous post-processing (Baudrit, Dubois, and Guyonnet 2006). The homogeneous post-processing method provides a tradeoff between the other two techniques and is based on the use of evidence theory, which is based on the allocation of basic probability assignments denoted by $v(E_i)$ to subsets ($E_i = 1, 2, ..., K$) of the uncertain quantity domain, with 216 $\sum_{i=1}^{K} v_i = 1$ (Shafer 1976). From the basic probability assignments $v(E_i)$, it is possible to obtain the belief 217 (*Bel*) and plausibility (*Pl*) measures:

218
$$Bel(A) = \sum_{E,E \subseteq A} v(E_i)$$
(Eq.4)

219
$$Pl(A) = \sum_{E,E \cap A \neq \emptyset} v(E_i) = 1 - Bel(\overline{A}). \quad (Eq.5)$$

220 Bel(A) measures the degree of belief that A will occur, while Pl(A) measures the extent to which A evidence 221 does not support the negation of A (Mauris et al. 2000). Notice that the possibility theory is a special case of the 222 evidence theory through which we can interpret belief and plausibility measures as probability bounds similar to 223 what is done in the possibility theory for the interpretation of the necessity and possibility measures (Eq. 1 - Eq.2). 224 Therefore, the probability that A lies within the belief and plausibility interval satisfies:

225
$$\forall P \in \mathcal{P}, Bel(A) \le P(A) \le Pl(A).$$
 (Eq.6)

226 Since the basic probability assignments, v, of evidence theory generalizes both probability and possibility 227 distributions, evidence theory provides a common framework for the hybrid modelling of uncertainty using both 228 probability and possibility distributions. The homogeneous post processing method used in this work for combining the *m* possibility distributions π_i , i = 1, 2, ..., m, is based on the aggregation of the basic belief 229 assignments v_i , i = 1, 2, ..., m, which can be obtained from the possibility distribution π_i (Masson and Denœux 230 231 2006), into a joint basic belief assignment. In (Baudrit, Dubois, and Guyonnet 2006) it is shown that this 232 aggregation step can be performed by using the evidence theory laws and allows directly computing, for any subset A, the corresponding belief and plausibility measures: 233

234
$$Pl(A) = \frac{1}{m} \sum_{i=1}^{m} \Pi_i(A)$$
 (Eq.7)

235
$$Bel(A) = \frac{1}{m} \sum_{i=1}^{m} N_i(A)$$
 (Eq.8)

where $N_i(A)$ and $\Pi_i(A)$ are the necessity and possibility measures derived from the possibility distributions $(\pi_1, ..., \pi_m)$, and m is the number of Monte Carlo realizations.

238 3. A case study of cooling load design for an office building

239 The effectiveness of the hybrid propagation method is illustrated by evaluating the peak cooling loads of a 30'000 240 m² office building (Figure 2) located in the center of Milano (Italy), which is undergoing a Core and Shell retrofit. 241 The renovations cover a wide range of properties i.e. internal architectural layout, building's envelope (walls, 242 windows, and roofs), and both electrical and mechanical systems. The logic behind choosing the current building 243 as the case study is that both aleatory and epistemic classes of uncertainty are available due to the in situ conditions 244 of the building. Aleatory uncertainty is unavoidable due to the randomness in climatic data. Epistemic uncertainty 245 is inevitable as the building is evacuated for renovation purposes, and therefore, the only information on occupant 246 behavior is accessible through experts' knowledge on occupancy patterns. The building serves as the headquarters 247 of a bank, consisting of six stories and two courtyards, as well as a ten story tower. To keep the simulation time 248 below 30 seconds per simulation (i.e. the maximum time available to run the numerous simulations needed for 249 performing the following analysis), each story is modelled as single thermal zone, except for the ground and fifth floors, which account for 3 and 2 thermal zones, respectively, giving rise to a 13 thermal zone model, because, to 250 251 some extent, they have non-continuous (detached) thermal boundaries. Non-occupied spaces (i.e. toilets, 252 staircases, and hallways are modelled as non-conditioned zones (Figure 3). Server rooms and Uninterrupted Power 253 Supply rooms are also modelled as non-conditioned zones, as cooling for these spaces will be provided by separate 254 Variable Refrigerant Flow (VRF) units. The surface to volume ratio of the building is 0.39, with a window to wall 255 ratio of approximately 42 %. The properties of the renovated envelope components, are displayed in Table 1. 256 Schedules of occupancy, lighting system, electric equipment and the HVAC system operation for the Design-Day 257 calculation are provided in Table 2. It should be noted that keeping the number of thermal zones low (equal to 13) 258 may lead to an underestimation of the peak cooling load, introducing a systematic error into the results obtained 259 with the application of the uncertainty propagation methods that will follow. As a matter of fact, reliance on a 260 detailed model (with 143 zones) and sizing peak cooling loads based on (already mentioned) overconservative 261 ASHRAE method (with 0.4% summer design condition) returns a peak cooling load equal to 615.3 kW, which is 262 3.2% larger than the 595.9 kW peak cooling load that is obtained using the simplified model (with 13 zones) adopted in this study. 263

264 FIGURE 2. THE CASE-STUDY BUILDING AS MODELLED IN DESIGNBUILDER SOFTWARE.

FIGURE 3. ZONING SCHEMA OF A SAMPLE FLOOR. THE SHADED ZONES ARE CONSIDERED AS NON CONDITIONED SPACES.

267 TABLE 1. ENVELOPE PROPERTIES OF THE CASE STUDY BUILDING (AFTER RETROFIT).

268 TABLE 2. PRESUMED PROPERTIES OF INTERNAL GAINS AND HVAC SYSTEMS. *THE METABOLIC

269 RATE IS CONSIDERED TO BE **120** W/PERSON FOR LIGHT OFFICE WORK.

271

Handbook of Fundamentals (HoF) (Handbook 2009), and is used as the baseline for comparison. In this method,

272 a 24 hour temperature profile (representing the hottest day of the year) is generated based on the ASHRAE's 273 "Fraction of Daily Temperature Range" Table. ASHRAE argues that the daily temperature variation is driven by 274 the heat from the sun, therefore, the table assigns a series of weights (i.e. 24 weights corresponding to each hour 275 of the day) to a single dry bulb temperature. This process generates a sinusoidal temperature profile that reaches 276 minimum at early morning and hits peak in the afternoon. In ASHRAE's Design-Day method, a single dry bulb 277 temperature value is chosen from the "Climatic Design Conditions" Table, which is published for each climate 278 by ASHRAE. In this study however, ASHRAE's deterministic Design-Day dry bulb temperature is replaced with 279 randomly sampled temperatures, whose probability of occurrence is obtained from a dataset gathered at a nearby 280 weather station. Then, daily temperature profiles are created by applying ASHRAE's "Fraction of Daily 281 Temperature Range" weights to the sampled dry bulb temperatures. A limitation of the method proposed in this 282 study is that the weights used for generating daily temperature profiles are deterministic. Since the temperature 283 transition from hour t to hour t + 1 in different days will always follow the same predefined pattern, the 284 generated sinusoidal daily temperature profiles is an oversimplification of the reality, as it disregards the inevitable 285 noise in the actual daily temperature fluctuation. Methods for simulating realistic time-series climatic profiles 286 have been proposed in (Li and Zio 2012, Sansavini et al. 2014, Rocchetta, Li, and Zio 2015, Naseri et al. 2016), 287 and can be considered for expanding the current study. The incident solar radiation on each surface is calculated 288 based on the "Clear-Sky Solar Radiation" method in an hourly interval. ASHRAE's "Clear-Sky Solar Radiation" 289 is the sum of beam, diffuse and ground reflected solar radiation received on each surface. The HoF design day 290 sizing procedure provides climatic properties for calculating peak cooling loads, based on three possible choices 291 of 0.4%, 1% and 2% design conditions. Each design condition is based on the maximum number of hours in a 292 year, during which the HVAC system may not be able to fully maintain the desired internal conditions. The dry 293 bulb temperature for 0.4% design condition can be obtained from the 0.4th percentile of the inverse cumulative 294 distribution function of all temperatures that are collected during a 25 year span and scaled to one year. In other

²⁷⁰ This latter cooling load (595.9 kW) follows the conventional Design-Day method as described in the ASHRAE

words, the 0.4% design condition tends to guarantee adequate cooling power for all conditions, except the mostextremely hot 35 hours of a year (one year is considered to be 8760 hours).

297 The building is modelled using the DesignBuilder software (Tindale 2005), which performs sizing calculations 298 according to the ASHRAE HoF procedure with the EnergyPlus calculation engine (Trčka and Hensen 2010, 299 Crawley et al. 2001). The JEPlus simulation manager is utilized to facilitate the rapid initialization of the 300 EnergyPlus software (Zhang 2009, Zhang and Korolija 2010, Zhang 2012). The same quantities selected in 301 (Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014) through a sensitivity analysis of 302 the variables affecting the peak cooling loads have been considered as affected by uncertainty. Although the 303 analysis in (Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014) refers to different 304 buildings and cities, the results of the sensitivity analysis are applicable to the current case study, given the 305 similarity between the two buildings in terms of comparable characteristics, recurrent internal gain profiles and 306 climatic design properties (Table 3). Note that the identification of the quantities whose uncertainty should be 307 treated within the analysis is typically a complex process, which in a general case should be based on the 308 application of sensitivity and uncertainty analysis techniques. Readers interested in this topic may refer to (Das et 309 al. 2014) in the context of probabilistic uncertainty representation, (Zahiri, Tavakkoli-Moghaddam, and Pishvaee 310 2014) in the context of possibilistic uncertainty representation, and (Singh and Markeset 2014) in the context of 311 hybrid probabilistic-possibilistic uncertainty treatment. The climatic variables with uncertain quantities consist of 312 outdoor dry bulb temperature and relative humidity, while the internal gains are occupant-related variables, with 313 uncertain quantities concerning the number of occupants (occupant density), lighting power and appliance power.

TABLE 3. ASHRAE CLIMATIC DESIGN PROPERTIES FOR MILANO COMPARED TO ATLANTA AND MALAGA

316 Concerning the former type of variables, HoF provides the required climatic information for sizing HVAC loads 317 from databases of weather stations. For the current case study, the HoF resorts to Linate or Malpensa weather 318 stations, where Linate is often more preferable considering its proximity to Milano city center, where the studied building is located. However, it is argued that weather stations located in open flat areas outside the city (e.g. 319 320 airports), cannot adequately characterize the Urban Heat Island (UHI) intensity of the city center (Thevenard 321 2010, Paolini et al. 2016, 2017). To address UHI intensity in the cooling load calculations, in this work we use 322 on-site climatic data from Brera weather station, which is located in the center of Milano city (Lombardia 2006). 323 The extracted climatic data consist of dry bulb temperature and relative humidity. This data is used to calculate 324 the design dry bulb temperature, the Mean Coincident Wet Bulb temperature (MCWB), the Mean Coincident Dry

Bulb temperature Range (MDBR) for 0.4%, 1% and 2% design conditions. Three "*Control Samples*" are proposed that correspond to 0.4%, 1% and 2% design conditions of Linate airport weather station. Similarly, 3 "*Case Studies*" are considered for Brera weather station corresponding to 0.4%, 1% and 2% design conditions (Table 4). It is found that for 0.4% design condition, the dry bulb temperature in city center is 0.9°C higher than in Linate, while the MCWB and the MDBR in the city center are 1.9°C and 1.5°C lower, respectively. The obtained climatic differences between Linate airport and Brera weather station are in agreement with the UHI effects reported in literature (Thevenard and Cornick 2013).

332 The latter category of variables with uncertain quantities, namely occupant density, lighting and appliance power, 333 are parameters that are difficult to quantify, as accurate measurements of human activities require a great amount 334 of time and effort (Wang et al. 2016). In many cases, little to no information is available on occupant behavior 335 and, therefore, designers often rely on nominal values provided by ASHRAE or occasionally resort to personal 336 experience. Meanwhile, the reliability of ASHRAE recommended occupancy profiles for office buildings has also 337 been subject to debate (Duarte, Van Den Wymelenberg, and Rieger 2013). Therefore, in this work, we sought 338 experts' opinions on internal gains during the peak cooling load period. Experts suggested the presence of 1200 people during peak cooling loads, while recommending 150 kW and 180 kW for lighting and appliance power, 339 340 respectively. The occupant density (0.04 person/m²) suggested by the experts is slightly lower than the ASHRAE's 341 nominal value for office spaces density (0.05 person/ m^2). The presumed lighting power density (5 W/ m^2) is notably lower than ASHRAE's recommendations for office spaces (10.5 W/m²). This is due to the fact that the 342 343 newly designed lighting configuration benefits from a fully dimmable LED system (2.2 - 9.6 W/m2). Since we 344 are accounting for a clear sky in the ASHRAE Design-Day calculations and have access to adequate daylight, 345 experts have set the lighting power density to almost half of the maximum available power.

TABLE 4. COMPARISON OF 0.4%, 1% AND 2% DESIGN CONDITIONS FOR LINATE AIRPORT AND BRERA CITY CENTER.

348

Considering that the process of sizing cooling loads for 0.4%, 1% and 2% design conditions follows a similar pattern, explaining each design condition individually is redundant. Therefore, in the following sections, the uncertainty quantification process is fully described for 0.4% design conditions, although it has been performed and analyzed for all three design conditions.

FIGURE 4. REPRESENTATION OF CLIMATIC VARIABLES WITH UNCERTAIN QUANTITIES: DRY BULB TEMPERATURE (TOP) AND MCWB TEMPERATURE (BOTTOM) THROUGH PROBABILISTIC

REPRESENTATIONS (BLUE-SOLID) AND THEIR TRANSFORMATION INTO POSSIBILISTIC MEASURES (RED-DASHED).

FIGURE 5. REPRESENTATION OF HUMAN-DOMINATED VARIABLES WITH UNCERTAIN QUANTITIES: OCCUPANT DENSITY (TOP), LIGHTING POWER (MIDDLE) AND APPLIANCE POWER (BOTTOM) THROUGH PROBABILISTIC REPRESENTATIONS (BLUE-SOLID) AND THEIR TRANSFORMATION INTO POSSIBILISTIC MEASURES (RED-DASHED).

361

362 3.1. Probabilistic representation

The most common approach for quantifying uncertainty in peak cooling load calculations is through a pure probabilistic approach. In this method, all measures (temperature, relative humidity, occupant density, lighting power and appliance power) are represented by means of a probability distribution.

Alongside UHI effects, the return period of extreme climatic conditions is also associated with uncertainty (Huang 2014). The collected weather data from Brera weather station cover a 17-year span from 1998 to 2015. Since this period may not be adequate to account for a reliable return period of 25 years, we incorporated a 0.5°C standard deviation to the calculated dry bulb temperature of Brera station (Figure 4 - Top). This variation is recommended for 0.4% cooling design conditions at locations with climatic characteristics comparable to Milano (standard deviations of 0.4°C and 0.3°C have been suggested for 1% and 2% design conditions, respectively) (Thevenard 2010). The MCWB is calculated from the dry bulb temperature and relative humidity, and adopts a "Burr Type XUI" analybility distribution function (Tigure 4 - Dottom) (User the self 2000).

373 XII" probability distribution function (Figure 4 - Bottom) (Handbook 2009).

The probabilistic approach for characterizing scarce knowledge on occupant behavior is commonly characterized by probability density functions, either normal (Hopfe and Hensen 2011) or triangular (Heo, Choudhary, and Augenbroe 2012). Although, the experts recommended the presence of 1200 occupants, they did expect this value to vary between 1000 and 1250. Similarly, the peak lighting and appliance power are expected to have ± 15 kW and ± 30 kW variation respectively. Here, we adopt triangular probability distributions to characterize the uncertainties concerning internal gains (Figure 5).

A total of 1000 random samples have been generated by Latin hypercube sampling (Helton and Davis 2003) ($V^i = x_1^i, x_2^i, x_3^i, x_4^i, x_5^i, i = 1, ..., 1000$), and fed to JEPlus tool for sizing calculations. The output is a set of 1000 random cooling loads.

383 3.2. Possibilistic representation

A pure possibilistic approach is also studied. It is worth noting that this approach is not common in sizing HVAC
loads. However, (Ruparathna, Hewage, and Sadiq 2017) performed a life cycle assessment of building energy

retrofit by resorting to the theory of possibility. Furthermore, epistemic uncertainty has been implemented in
HVAC control techniques by means of fuzzy parameters (Sunitha and Behera 2016, Keshtkar et al. 2015).

388 It is also important to note that using a possibilistic representation of an uncertain quantity takes a more 389 conservative attitude. A possibility measure of 1 is a weaker statement compared to a probability of 1, as the 390 possibilistic unit value states that the occurrence of an event is possible, expected and not surprising, whereas a 391 probability of 1 states that the event is certain. For comparison purposes, we perform probability-possibility 392 transformation to describe a probabilistic representation in possibility theory terms. Detailed descriptions on 393 probability-possibility (possibility-probability) transformations can be found in (Dubois, Prade, and Sandri 1993, 394 Dubois et al. 2004, Dubois, Prade, and Smets 2008, Flage et al. 2013). In this study, we adopt the Variable 395 Transformation method described in (Mouchaweh et al. 2006), as it is easy to implement and provides a reasonable 396 approximation of both representations. Figure 4 and 5 illustrate the possibilistic transformations of climatic 397 variables and internal gains, respectively.

According to the theory of possibility, distributions may be transformed to a set of α -cuts (see section 2). The increment $\Delta \alpha$ is set to 0.001 and, therefore, 1001 values corresponding to lower bounds of each quantity, and another 1001 values as the upper limiting bounds are found. Eventually 2002 inputs are generated for all lower and upper bounds, where each input vector consists of 5 variables i.e. $\underline{V}^i = \underline{x}_1^i, \underline{x}_2^i, \underline{x}_3^i, \underline{x}_4^i, \underline{x}_5^i$ and $\overline{V}^i =$ $\overline{x}_1^i, \overline{x}_2^i, \overline{x}_3^i, \overline{x}_4^i, \overline{x}_5^i, i = 1, ..., 1001$. The inputs are fed into JEPlus tool and two sets of cooling loads are obtained. The outputs are presented through the possibility $\overline{\Pi}$ and necessity N measures.

404

3.3. Hybrid probabilistic – possibilistic representation

405 In this section, random (aleatory) variability is considered for climatic features i.e. dry bulb temperature and 406 MCWB, which are described by probability distributions (see section 3.1). Since the building was under retrofit, 407 not much information regarding human-dominated quantities can be obtained. In fact, resorting to experts' 408 knowledge is the only way to obtain information on an evacuated building without any historical data on occupant 409 behavior. This situation may be encountered in many cooling design scenarios, and therefore, dealing with scarce 410 data merits careful consideration from two different points of view. First, the variability of occupant density and 411 lighting/appliance power are prone to have dependencies between them. Therefore, representing each of these 412 variables by a separate probability density function will neglect their dependencies and distort the original 413 knowledge. Second, gathering information on human behavior can be associated with high imprecision, where

- the information may be categorized into an epistemic class. For this reason, the scarce data on occupant-relatedvariables has been represented by possibilistic representations (see Section 3.2).
- 416 The vector of the input quantities which will be considered uncertain is formed by 5 features. Dry bulb temperature 417 and MCWB uncertainty is described by probability distributions and the two quantities are indicated by X_1 and X_2 , respectively, whereas occupant density, lighting power and appliance power uncertainty is described by 418 possibility distributions and they are indicated by π^{X_3} , π^{X_4} , and π^{X_5} respectively. A set of m = 1000 random 419 samples $(x_1^i, x_2^i), i = 1, ..., m$ are generated from their respective probability distributions $p_{x1}(x)$ and 420 $p_{x2}(x)$. For the remaining 3 features (possibilistic quantities), the value of $\Delta \alpha$ is set to 0.01 and therefore 101 421 422 α -cuts are defined. The corresponding upper and lower boundaries of each α -cut are identified from the possibility distributions of occupant density (π^{X_3}) , lighting power (π^{X_4}) and appliance power (π^{X_5}) . One vector 423 containing a temperature value (denoted x_1^1) and a MCWB value (denoted x_2^1) is selected from the matrix of m 424 425 random samples. This vector is concatenated with the *lower limiting bounds* obtained from the first α -cut of the possibility distributions $\pi^{X_3}(x)$, $\pi^{X_4}(x)$ and $\pi^{X_5}(x)$, generating the vector $\underline{V_1} = x_1^1, x_2^1, \underline{x_3}^1, \underline{x_4}^1, \underline{x_5}^1$. 426 Inserting the vector \underline{V}_1^1 in the EnergyPlus *.idf script and executing the sizing calculation produces a single value, 427 namely, the infimum bound of all plausible peak cooling loads that correspond to dry-bulb temperature x_1^1 , 428 MCWB x_2^1 , and α -cut one (occupant density \underline{x}_3^1 , lighting power \underline{x}_4^1 and appliances power \underline{x}_5^1). Similarly, we 429 concatenate the same vector of random values (x_1^1, x_2^1) with the <u>upper limiting bounds</u> of the first α -cut of 430 possibility distributions $\pi^{X_3}(x)$, $\pi^{X_4}(x)$ and $\pi^{X_5}(x)$, generating vector $\overline{V}_1^1 = x_1^1, x_2^1, \overline{x}_3^1, \overline{x}_4^1, \overline{x}_5^1$. Once 431 432 more, values of dry-bulb temperature, MCWB, occupant density, lighting power and appliance power is replaced in the EnergyPlus *.idf script with \overline{V}_1^1 and the sizing calculation is executed. The output of the second simulation 433 returns the upper bound of all plausible peak cooling loads that correspond to dry-bulb temperature x_1^1 , MCWB 434 x_2^1 and α -cut one (occupant density \overline{x}_3^1 , lighting power \overline{x}_4^1 and appliances power \overline{x}_5^1). At this point we have 435 436 obtained the two (upper and lower limiting) values, within which lies all plausible peak cooling loads corresponding to random vector i=1 (x_1^i, x_2^i) and α -cut j=1 (x_3^j, x_4^j, x_5^j) . This procedure, based on the use of 437 438 the extrema of the α -cuts of the epistemic quantities for the computation of the α -cut extrema of the

439 corresponding peak cooling loads is derived from the intuition that the system's response to epistemic uncertain 440 quantities (x_3^j, x_4^j, x_5^j) is monotonic, arguing that larger occupant density, lighting power and appliance power 441 will result in larger internal heat gains, and therefore, larger cooling loads.

The process of obtaining the limiting bounds is repeated until the randomly generated vector i=1 (x_1^i , x_2^i) is 442 443 concatenated with all n=101 lower bounds and n=101 upper bounds obtained from the α -cuts of the possibility distributions π^{X_3} , π^{X_4} and π^{X_5} . As a result, we obtain $\underline{V}_1^j = x_1^1, x_2^1, \underline{x}_3^j, \underline{x}_4^j, \underline{x}_5^j, j = 1, ..., n$ and $\overline{V}_1^j = x_1^1, x_2^1, \underline{x}_3^1, \underline{x}_4^j, \underline{x}_5^j, j = 1, ..., n$ 444 $x_1^1, x_2^1, \overline{x}_3^j, \overline{x}_4^j, \overline{x}_5^j, j = 1, ..., n$, through which 202 sizing calculations are executed. At this stage, we have 445 defined all plausible ranges of peak cooling loads that correspond to temperature x_1^1 , MCWB x_2^1 and all plausible 446 internal gains. The same procedure is repeated m = 1000 times for different random vectors of dry bulb 447 temperature and MCWB $(x_1^i, x_2^i), i = 1, ..., m$, and their corresponding $n=101 \alpha$ -cuts $(x_3^j, x_4^j, x_5^j), j = 1, ..., m$ 448 449 1, ..., n, producing m * n peak cooling loads for each limiting (upper/lower) bound. To facilitate this process 450 through JEPlus, a batch of 1000 iterations are executed, each containing two sets of 101 simulations (1000*2*101 451 jobs). The described procedure is presented in the form of a flowchart in Figure 6. The flowchart consists of two 452 loops, where the outer loop is responsible for generating random vectors and the inner loop handles the possibilistic variables. The two loops provide the $n=101 \alpha$ -cuts of m=1000 possibility distributions (V_i^j , V_i^j), 453 i = 1, ..., m; j = 1, ..., n, which are aggregated by using the homogenous post-processing technique (see 454 Section 2.2). This produces the two limiting cumulative distributions, Pl and Bel, of the cooling load reported 455 456 in Figure 7. In practice, the lower cumulative distribution, Bel, of the output is obtained by computing the average 457 of the m=1000 necessity measures and the upper cumulative distribution, Pl, by computing the average of the 458 m=1000 possibility distributions according to Eqs. 7 and 8.

459 FIGURE 6. FLOWCHART OF HYBRID PROBABILISTIC-POSSIBILISTIC UNCERTAINTY PROPAGATION 460 DERIVED FROM (BARALDI AND ZIO 2008).

461 FIGURE 7. LIMITING PROBABILITY BOUNDS DERIVED FROM THE OUTPUTS OF THE HYBRID
462 METHOD BY USING HOMOGENEOUS POST PROCESSING.

463

464 **3.4.** Results and comparison

465 In the post-processing stage, the outputs of all three methods (probabilistic, possibilistic and hybrid) are presented 466 as cumulative distributions. Contrary to the probabilistic approach which returns a single percentile for each 467 cooling load, the possibilistic and hybrid methods provide a range of percentiles. The range in the possibilistic approach is enclosed by the possibility (Π) and necessity (N) measures, whereas the hybrid method returns the 468 boundary of the range through plausibility (Pl) and belief (Bel) functions. Figure 9 displays a comparison 469 470 between the cumulative distributions of the hybrid probabilistic-possibilistic uncertainty propagation and the pure 471 probabilistic and pure possibilistic methods for 0.4% design condition of the case study. It is observed that the 472 outputs of the pure probabilistic representation (green continuous line denoted "MC") are contained between the plausibility function (blue dashed line denoted "Pl") and the belief functions (blue dotted line denoted "Bel") of 473 474 the hybrid method. Also, the Pl and Bel functions extracted from the hybrid method are within the possibility function (red dashed line denoted " Π ") and necessity function (red dotted line denoted "N") of the pure 475 possibilistic representation. The effects of treating all uncertain variables probabilistically, versus treating climatic 476 477 data probabilistically and internal gains possibilistically, can be seen by the distance between the *Pl* and MC distributions, as well as the distance between MC and Bel. This distance represents our incomplete knowledge 478 479 on internal gains and, therefore, appears as a range with limiting bounds. Similarly, the effects of representing all 480 data possibilistically, versus treating climatic data probabilistically and internal gains possibilistically, are shown by the distance between Π and Pl, as well as the distance between Bel and N. 481

482 FIGURE 8. MAPPING OUTPUTS FROM PURE PROBABILISTIC (MC), HYBRID (Pl, Bel) AND PURE 483 POSSIBILISTIC (Π, N) UNCERTAINTY TREATMENTS FOR 0.4% DESIGN CONDITION.

484

From the computational point of view, the hybrid method is considerably more demanding than the pure probabilistic and possibilistic approaches. Since simulations are only conducted for the sizing process, each simulation lasts roughly 35 seconds on an Intel[®] Core[™] i7-3610QM @ 2.30- 3.10 GHz processor with 8 logical cores and enabled multi-processing, executing mini-batches of 8 parallel jobs at a time. The overall simulation time for the pure probabilistic and the pure possibilistic methods are 1.2 and 2.5 hours respectively (35 seconds per simulation where 1000 and 2002 simulations are run for the pure probabilistic and possibilistic approach respectively). Execution of the hybrid method requires 250 hours (35 seconds per simulations for 202'000 totalruns).

493 To compare the outputs of each representation, a quantitative assessment is provided (Table 5). Each value selected from the x axis (denoted "Peak cooling load"), will cross the Π , Pl, MC, Bel and N distributions in 494 495 five different points along the y axis (denoted "ecdf"). Take Control sample A from Table 4 with a peak cooling 496 load of 595.9 kW. This value intercepts the MC distribution at the 51^{st} percentile, or in other words, would suffice to cover 51% of uncertain events (Figure 10). Mapping Control Sample A on the Pl and Bel measures of the 497 498 hybrid method reveals that 595.9 kW would be able to cover between 23% and 73% of uncertain events. The 499 observed difference between the pure probabilistic approach and the hybrid method is the result of forcing a 500 probability density function onto human-dominated uncertain measures (i.e. internal gains). Mapping Control 501 Sample A on the Π and N distributions will correspond to the 0th and 97th percentiles, implying that 595.9 kW would be able to cover anywhere between 0% and 97% of uncertain events. This, basically means that the pure 502 503 possibilistic approach provides no information regarding the performance of Control Sample A. As expected, the 504 pure probabilistic approach returns a crisp output and is the most sensitive of the three methods, whereas the pure 505 possibilistic approach is the most cautious of the three approaches.

FIGURE 9. MAPPING "CONTROL SAMPLE A" AND "CASE STUDY A" ON THE CUMULATIVE DISTRIBUTIONS OF UNCERTAIN PEAK COOLING LOADS FOR THE 0.4% DESIGN CONDITION. TOP: PURE PROBABILISTIC. MIDDLE: HYBRID PROBABILISTIC-POSSIBILISTIC. BOTTOM: PURE POSSIBILISTIC.

510 TABLE 5. ADEQUACY ASSESSMENT OF PEAK COOLING LOADS FOR LINATE AND BRERA STATIONS 511 BASED ON PROBABILISTIC (PROB.), POSSIBILISTIC (POSS.) AND HYBRID UNCERTAINTY 512 TREATMENTS.

513 In practice, HVAC designers often make up for the uncertainty by applying sizing factors to the estimated peak 514 cooling load. However, based on the building type and designer's experience the magnitude of the safety margin 515 may greatly vary. Previous studies argued that the application of uncertainty quantification is a reliable alternative 516 to the experimental-based application of safety factors, consequently, lowering the risk of oversizing the system 517 (Domínguez-Muñoz, Cejudo-López, and Carrillo-Andrés 2010, Sun et al. 2014). In the case study, we are looking 518 for a value which can cover 90% of uncertain events for the 0.4% design condition. Therefore, we seek the cooling 519 load corresponding to the 90th percentile on the cumulative distributions. Also, we seek the suitable size factor 520 that enables Control Sample A (595.9 kW) to cover all uncertain events except the worst 10%. The pure probabilistic approach reaches the 90th percentile at 607.2 kW and, therefore, a size factor of 1.019 is assigned. 521

522 To achieve the same level of confidence on the outputs of the hybrid method we intercept the 90th percentile on 523 the Bel distribution, which returns a peak cooling load of 612.3 kW and a 1.028 size factor. The desired 524 confidence from the pure possibilistic method is obtained by intercepting the 90th percentile at the N distribution, 525 returning a peak cooling load of 619.6 kW and a 1.04 size factor. It is worth noting that these results are effected 526 by the systematic error introduced by the simplification of the building's thermal zones (i.e. 3.2% for the 0.4%

527 summer design condition). Therefore, designers should take caution when simplifying the thermal zoning, to

528 obtain a reasonable tradeoff between the overhead systematic error due to building model simplifications and

529 computational cost of simulations, to be run within the uncertainty propagation method proposed, that are shown

530 to be methodologically suitable to address these problems of epistemic and aleatory uncertainty propagation.

531 Improper representation of internal gains through probability distributions neglects the lack of accurate

532 measurements, and the inherent epistemic nature of uncertainty associated with the peak lighting and equipment

533 power, as well as the maximum number of occupants. In each random generation, the pure probabilistic

534 approach forces a single probability of occurrence on each internal gain component. Therefore, the pure

535 probabilistic approach is the most risky among the three uncertainty representation and propagation methods. It

536 is observed that the output of the pure possibilistic approach is the most conservative of the three methods.

537 Consequently, a possibilistic representation of climatic variables is prone to overestimate the peak cooling load

538 and is not recommended for sizing cooling loads under uncertainty. The hybrid method on the other hand,

539 provides a somewhat conservative range of confidence that is less risky compared to the pure probabilistic

540 approach and less conservative than the pure possibilistic approach. Therefore, the outputs of the hybrid method

541 are less likely to undersize the system with respect to the pure probabilistic approach and to oversize it in

542 comparison with the pure possibilistic approach. Since the pure probabilistic approach returns a crisp output for

543 every percentile, it can be a suitable starting point for estimating the size factor. In the meantime, the belief and

544 plausibility measures obtained from the hybrid method can work as the support of the pure probabilistic method,

545 by quantifying the magnitude of confidence due to incomplete knowledge on internal gains.

546

FIGURE 10. ASSIGNING SIZE FACTORS FOR DIFFERENT UNCERTAINTY REPRESENTATIONS. TOP: 0.4% DESIGN CONDITION, MIDDLE: 1% DESIGN CONDITION, BOTTOM: 2% DESIGN CONDITION. 547

548

549 Figure 11 displays the results of all three uncertainty quantification methods i.e. probabilistic (denoted 550 "Probability Theory), possibilistic (denoted "Possibility Theory") and hybrid (denoted "Evidence Theory") for 551 0.4%, 1% and 2% cooling design conditions. It is observed that the pure probabilistic method and the hybrid 552 method demonstrate close performances, specifically in high percentiles. This phenomenon is generally evident after the 90th percentile, regardless of the type of design condition (0.4%, 0.1% or 2%). It also indicates that in 553 554 our case study, a probabilistic representation of internal gains will result in a slightly undersized system. Therefore, 555 we suggest the application of pure probabilistic uncertainty treatment for sizing cooling loads, only in buildings 556 with deterministic occupancy profiles. The slopes of the necessity (N) and possibility (Π) measures reveal the 557 effect of treating climatic variables (dry bulb, MCWB) as scarce knowledge and is mainly evident at 2% design 558 conditions. The fixed distance between the Pl and Bel measures indicate that the magnitude of effect of 559 uncertainties in human-dominated variables (i.e. internal gains) is constant at all climatic conditions. This is 560 related to the fact that in our case study, all design conditions are mainly dominated by climatic variables rather 561 than internal gains.

562 The probabilistic treatment of uncertainty provides a crisp output for each percentile, which may deem risky as it 563 overlooks the lack of knowledge on activities dominated by human-behavior. The hybrid approach on the other 564 hand provides a range of values (cooling loads) which are equally plausible. This means that even though the real 565 value of the peak cooling load is unknown, one may assume that encountering any value outside the provided 566 range is unlikely (implausible). To contrast how the provided range may assist designers in decision support, a 567 comparative assessment of resorting to each method is provided. Let us assume that the designer tends to select a 568 single chiller by using ASHRAE's 1% summer design conditions, while seeking a reliability of 99%. In this case, 569 choosing the 99th percentile from the pure probabilistic framework returns a peak cooling load of 609 kW. In this 570 case, designers often opt for the closet option that is larger than the estimated load, i.e. a chiller with a reference 571 cooling capacity of 650 kW. The hybrid method returns two values for the 99th percentile which define the range 572 of most plausible occurrences, i.e. encountering any peak cooling load between 594 kW and 610 kW is equally plausible. By resorting to the 99th percentile of the Pl measure (594 kW), one can opt for a chiller with a reference 573 cooling power of 600 kW. It is also possible to rely on the 99th percentile of the *Bel* measure (610 kW) and select 574 575 a chiller with a 650 kW reference cooling capacity, which will be identical to the outcome of a purely probabilistic-576 based decision. Therefore, it can be inferred that forcing unavailable information on occupant density, lighting 577 power and appliance power in the form of probability distributions, results in overestimating the peak cooling 578 load and eventually eliminating some design choices. It is observed that opting different frameworks for handling 579 uncertainty can provide dissimilar options, and therefore adds to the degrees of freedom provided to the designer 580 for decision making. This level of versatility will explicitly come in handy when sequencing multiple chillers for achieving optimal operational COP. Meanwhile, gathering further information on the aforementioned epistemic
uncertain quantities can prevent overestimation of peak cooling loads and provide more reliable cooling capacity.

583 4. Conclusion

The existing literature on uncertainty assessment of HVAC systems assumes random variability for all uncertain parameters. This approach can be challenged in situations of scarce and incomplete knowledge. In this paper, we address this concern by characterizing aleatory uncertainties with probability and epistemic uncertainty with possibility representations. The study offers a hybrid uncertainty propagation method so that both aleatory and epistemic classes of uncertainty are properly introduced to the model. The proposed method is able to propagate the uncertainty through the model with minimal information loss. Results are presented in the form of plausibility and belief functions.

591 A numerical case study is provided to compare the effects of adopting the hybrid uncertainty treatment to the pure 592 probabilistic and possibilistic representations. In this study, climatic data (i.e. temperature and humidity) are 593 characterized with probability density functions while human-dominated events (i.e. occupant density, appliance 594 power and lighting power) are represented by possibility distributions. The introduced hybrid treatment of 595 uncertainty can be useful in support of the optimal design of chillers' configuration (balancing operating expenses 596 and capital expenditure). The hybrid treatment of uncertainty is particularly important from the HVAC system 597 design point of view, when designers have limited access to complete information regarding building 598 characteristics. The hybrid approach may be well fitting for buildings with unpredictable occupancy patterns (e.g. 599 hospitals), where quantifying the exact number of occupants is extremely difficult to quantify. Therefore, opting 600 for a hybrid probabilistic-possibilistic framework for Bayesian calibration of building energy models is a potential 601 for future studies (Pedroni et al. 2015). The hybrid treatment of uncertainty could also be evaluated when dealing 602 with control regimes of autonomous building components (shading and lighting systems), where incomplete 603 knowledge over occupant behavior and a system's state may have dependencies. In other situations, i.e. buildings 604 with more predictable occupancy patterns (e.g. schools), results may be less sensitive to the hybrid approach, 605 when compared to pure probabilistic representations.

In this study, cooling loads are estimated by means of dry bulb and MCWB temperature. However, resorting to
dew point temperature, humidity ratio and mean coincident dry bulb temperature (for dehumidification purposes)
is not expected to alter the methodological scheme followed for the analysis. Also, it is advised to perform
simplifications on the thermal zoning with cautious, and seek for a tradeoff that does not oversimply the model

- 610 while maintaining a reasonable simulation time. As a last remark, scarce information (such as occupant density)
- 611 can occasionally contain more information than the studied example, although not enough to fit a probability
- 612 density function. In such cases, the application of Chebyshev's inequality can provide a suitable fit for all family
- of probability distributions and, therefore, is a potential for expanding the provided framework.
- 614 **References**
- Allouhi, A, Y El Fouih, T Kousksou, A Jamil, Y Zeraouli, and Y Mourad. 2015. "Energy consumption and
 efficiency in buildings: current status and future trends." *Journal of Cleaner Production*109:118-130.
- Azar, Elie, and Ahmed Al Amoodi. 2016. "Quantifying the impact of uncertainty in human actions on
 the energy performance of educational buildings." Proceedings of the 2016 Winter Simulation
 Conference.
- Baraldi, Piero, and Enrico Zio. 2008. "A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis." *Risk Analysis* 28 (5):1309-1326.
- Baudrit, Cédric, Didier Dubois, and Dominique Guyonnet. 2006. "Joint propagation and exploitation of
 probabilistic and possibilistic information in risk assessment." *IEEE transactions on fuzzy systems* 14 (5):593-608.
- Baudrit, Cédric, Didier Dubois, and Nathalie Perrot. 2008. "Representing parametric probabilistic
 models tainted with imprecision." *Fuzzy sets and systems* 159 (15):1913-1928.
- Birol, Fatih. 2010. "World energy outlook 2010." *International Energy Agency* 1.
- Burhenne, Sebastian, Olga Tsvetkova, Dirk Jacob, Gregor P Henze, and Andreas Wagner. 2013.
 "Uncertainty quantification for combined building performance and cost-benefit analyses."
 Building and Environment 62:143-154.
- Chen, Ning, Dejie Yu, Baizhan Xia, and Michael Beer. 2016. "Uncertainty analysis of a structural–
 acoustic problem using imprecise probabilities based on p-box representations." *Mechanical Systems and Signal Processing* 80:45-57.
- Cheng, Qi, Shengwei Wang, and Chengchu Yan. 2016. "Robust optimal design of chilled water systems
 in buildings with quantified uncertainty and reliability for minimized life-cycle cost." *Energy and Buildings* 126:159-169.
- Cheng, Qi, Shengwei Wang, Chengchu Yan, and Fu Xiao. 2015. "Probabilistic approach for uncertainty based optimal design of chiller plants in buildings." *Applied Energy*.
- Cheng, Qi, Shengwei Wang, Chengchu Yan, and Fu Xiao. 2017. "Probabilistic approach for uncertaintybased optimal design of chiller plants in buildings." *Applied Energy* 185 (Part 2):1613-1624.
 doi: <u>https://doi.org/10.1016/j.apenergy.2015.10.097</u>.
- 643 Cobb, Barry R, and Prakash P Shenoy. 2003. "A comparison of Bayesian and belief function reasoning."
 644 *Information Systems Frontiers* 5 (4):345-358.
- 645 Cooper, J Arlin, Scott Ferson, and Lev Ginzburg. 1996. "Hybrid processing of stochastic and subjective
 646 uncertainty data." *Risk Analysis* 16 (6):785-791.
- 647 Corotis, Ross B. 2015. "An Overview of Uncertainty Concepts Related to Mechanical and Civil
 648 Engineering." ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B:
 649 Mechanical Engineering 1 (4):040801.
- Crawley, Drury B, Linda K Lawrie, Frederick C Winkelmann, Walter F Buhl, Y Joe Huang, Curtis O
 Pedersen, Richard K Strand, Richard J Liesen, Daniel E Fisher, and Michael J Witte. 2001.
 "EnergyPlus: creating a new-generation building energy simulation program." *Energy and buildings* 33 (4):319-331.

- 654Das, Payel, Clive Shrubsole, Benjamin Jones, Ian Hamilton, Zaid Chalabi, Michael Davies, Anna655Mavrogianni, and Jonathon Taylor. 2014. "Using probabilistic sampling-based sensitivity656analyses for indoor air quality modelling." Building and environment 78:171-182.
- de Wilde, Pieter, and Wei Tian. 2009. "Identification of key factors for uncertainty in the prediction of
 the thermal performance of an office building under climate change." *Building Simulation* 2
 (3):157-174. doi: 10.1007/s12273-009-9116-1.
- Djunaedy, Ery, Kevin Van den Wymelenberg, Brad Acker, and Harshana Thimmana. 2011. "Oversizing
 of HVAC system: Signatures and penalties." *Energy and Buildings* 43 (2):468-475.
- Domínguez-Muñoz, Fernando, José M Cejudo-López, and Antonio Carrillo-Andrés. 2010. "Uncertainty
 in peak cooling load calculations." *Energy and Buildings* 42 (7):1010-1018.
- Duarte, Carlos, Kevin Van Den Wymelenberg, and Craig Rieger. 2013. "Revealing occupancy patterns
 in an office building through the use of occupancy sensor data." *Energy and Buildings* 67:587595.
- Dubois, Didier, Hélene Fargier, and Jérôme Fortin. 2005. "The empirical variance of a set of fuzzy
 intervals." The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ'05.
- Dubois, Didier, Laurent Foulloy, Gilles Mauris, and Henri Prade. 2004. "Probability-possibility
 transformations, triangular fuzzy sets, and probabilistic inequalities." *Reliable computing* 10
 (4):273-297.
- Dubois, Didier, Etienne Kerre, Radko Mesiar, and Henri Prade. 2000. "Fuzzy interval analysis." In
 Fundamentals of fuzzy sets, 483-581. Springer.
- Dubois, Didier, and Henri Prade. 1992. "When upper probabilities are possibility measures." *Fuzzy sets and systems* 49 (1):65-74.
- Dubois, Didier, and Henri Prade. 2001. "Possibility theory, probability theory and multiple-valued
 logics: A clarification." *Annals of mathematics and Artificial Intelligence* 32 (1):35-66.
- Dubois, Didier, and Henri Prade. 2009. "Formal representations of uncertainty." *Decision-Making Process: Concepts and Methods*:85-156.
- Dubois, Didier, Henri Prade, and Sandra Sandri. 1993. "On possibility/probability transformations." In
 Fuzzy logic, 103-112. Springer.
- Dubois, Didier, Henri Prade, and Philippe Smets. 1996. "Representing partial ignorance." *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans* 26 (3):361-377.
- Dubois, Didier, Henri Prade, and Philippe Smets. 2008. "A definition of subjective possibility."
 International Journal of Approximate Reasoning 48 (2):352-364.
- D'Oca, Simona, and Tianzhen Hong. 2015. "Occupancy schedules learning process through a data mining framework." *Energy and Buildings* 88:395-408.
- D'Oca, Simona, Tianzhen Hong, and Jared Langevin. 2018. "The human dimensions of energy use in buildings: A review." *Renewable and Sustainable Energy Reviews* 81:731-742.
- Eisenhower, Bryan, Zheng O'Neill, Vladimir A Fonoberov, and Igor Mezić. 2012. "Uncertainty and
 sensitivity decomposition of building energy models." *Journal of Building Performance Simulation* 5 (3):171-184.
- Flage, Roger, Piero Baraldi, Enrico Zio, and Terje Aven. 2013. "Probability and Possibility Based
 Representations of Uncertainty in Fault Tree Analysis." *Risk Analysis* 33 (1):121-133.
- 695 Gaetani, Isabella, Pieter-Jan Hoes, and Jan LM Hensen. 2016. "Occupant behavior in building energy 696 simulation: towards a fit-for-purpose modeling strategy." *Energy and Buildings* 121:188-204.
- Gang, Wenjie, Shengwei Wang, Kui Shan, and Diance Gao. 2015. "Impacts of cooling load calculation
 uncertainties on the design optimization of building cooling systems." *Energy and Buildings* 94:1-9.
- Gang, Wenjie, Shengwei Wang, Fu Xiao, and Dian-ce Gao. 2015. "Robust optimal design of building
 cooling systems considering cooling load uncertainty and equipment reliability." *Applied Energy* 159:265-275.
- Guillén-Lambea, Silvia, Beatriz Rodríguez-Soria, and José M Marín. 2016. "Review of European
 ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings

- 705 (nZEB)/Passivhaus. Comparison with the USA." *Renewable and Sustainable Energy Reviews*706 62:561-574.
- Guyonnet, Dominique, Bernard Bourgine, Didier Dubois, Hélène Fargier, Bernard Côme, and Jean-Paul
 Chilès. 2003. "Hybrid approach for addressing uncertainty in risk assessments." *Journal of environmental engineering* 129 (1):68-78.
- Haenni, Rolf, and Norbert Lehmann. 2003. "Implementing belief function computations."
 International Journal of Intelligent Systems 18 (1):31-49.
- Handbook, ASHRAE Fundamentals. 2009. "American society of heating, refrigerating and air conditioning engineers." *Inc.: Atlanta, GA, USA*.
- Helton, Jon C, and Freddie Joe Davis. 2003. "Latin hypercube sampling and the propagation of
 uncertainty in analyses of complex systems." *Reliability Engineering & System Safety* 81
 (1):23-69.
- Heo, Yeonsook, Ruchi Choudhary, and GA Augenbroe. 2012. "Calibration of building energy models
 for retrofit analysis under uncertainty." *Energy and Buildings* 47:550-560.
- Hopfe, Christina J, and Jan LM Hensen. 2011. "Uncertainty analysis in building performance simulation
 for design support." *Energy and Buildings* 43 (10):2798-2805.
- Huang, Yu Joe. 2014. "An Evaluation of ASHRAE's Climatic Design Conditions Against Actual Long-Term
 Recorded Weather Data." *ASHRAE Transactions* 120:V1.
- Keshtkar, Azim, Siamak Arzanpour, Fazel Keshtkar, and Pouria Ahmadi. 2015. "Smart residential load
 reduction via fuzzy logic, wireless sensors, and smart grid incentives." *Energy and Buildings* 104:165-180.
- Kim, Young-Jin. 2016. "Comparative study of surrogate models for uncertainty quantification of
 building energy model: Gaussian Process Emulator vs. Polynomial Chaos Expansion." *Energy and Buildings* 133:46-58.
- Klir, George J. 1994. "On the alleged superiority of probabilistic representation of uncertainty." *IEEE Transactions on Fuzzy Systems* 2 (1):27-31.
- Kohlas, Jürg, and Paul-André Monney. 2013. A mathematical theory of hints: An approach to the
 Dempster-Shafer theory of evidence. Vol. 425: Springer Science & Business Media.
- Lee, Kwang Ho, and Stefano Schiavon. 2014. "Influence of three dynamic predictive clothing insulation
 models on building energy use, HVAC sizing and thermal comfort." *Energies* 7 (4):1917-1934.
- Li, Yanfu, and Enrico Zio. 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system." *Renewable Energy* 41:235-244.
- Lindley, Dennis V. 1987. "The Probability Approach to the Treatment of Uncertainty in Artificial
 Intelligence and Expert Systems."17-24. doi: 10.1214/ss/1177013427.
- Combardia, ARPA. 2006. "Rapporto sullo stato dell'ambiente in Lombardia." *Milan: Regione Lombardia*.
- Masson, Marie-Hélène, and Thierry Denœux. 2006. "Inferring a possibility distribution from empirical data." *Fuzzy sets and systems* 157 (3):319-340.
- Mauris, Gilles, Lamia Berrah, Laurent Foulloy, and Alain Haurat. 2000. "Fuzzy handling of measurement
 errors in instrumentation." *IEEE Transactions on instrumentation and measurement* 49 (1):89 93.
- Miller, Clayton, Zoltán Nagy, and Arno Schlueter. 2015. "Automated daily pattern filtering of measured
 building performance data." *Automation in Construction* 49:1-17.
- 748 Mitchell, John W, and James E Braun. 2013. *Principles of heating, ventilation, and air conditioning in* 749 *buildings*: Wiley.
- Mouchaweh, M Sayed, Mohamed Said Bouguelid, Patrice Billaudel, and Bernard RiERA. 2006.
 "Variable probability-possibility transformation." *International Journal of Approximate Reasoning*.
- 753 Mui, KW, and LT Wong. 2007. "Cooling load calculations in subtropical climate." *Building and* 754 *environment* 42 (7):2498-2504.

- Naseri, Masoud, Piero Baraldi, Michele Compare, and Enrico Zio. 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions." *Reliability Engineering & System Safety* 152:66-82.
- Oberkampf, William L, Sharon M DeLand, Brian M Rutherford, Kathleen V Diegert, and Kenneth F Alvin.
 2002. "Error and uncertainty in modeling and simulation." *Reliability Engineering & System* Safety 75 (3):333-357.
- Page, Jessen, Darren Robinson, Nicolas Morel, and J-L Scartezzini. 2008. "A generalised stochastic
 model for the simulation of occupant presence." *Energy and buildings* 40 (2):83-98.
- Paolini, Riccardo, Andrea Zani, Maryam MeshkinKiya, Veronica Lucia Castaldo, Anna Laura Pisello,
 Florian Antretter, Tiziana Poli, and Franco Cotana. 2016. "The hygrothermal performance of
 residential buildings at urban and rural sites: sensible and latent energy loads and indoor
 environmental conditions." *Energy and Buildings*.
- Paolini, Riccardo, Andrea Zani, Maryam MeshkinKiya, Veronica Lucia Castaldo, Anna Laura Pisello,
 Florian Antretter, Tiziana Poli, and Franco Cotana. 2017. "The hygrothermal performance of
 residential buildings at urban and rural sites: Sensible and latent energy loads and indoor
 environmental conditions." *Energy and Buildings* 152 (Supplement C):792-803. doi:
 https://doi.org/10.1016/j.enbuild.2016.11.018.
- Parsons, Simon. 1996. "Current approaches to handling imperfect information in data and knowledge
 bases." *IEEE Transactions on knowledge and data engineering* 8 (3):353-372.
- Pedroni, Nicola, E Zio, A Pasanisi, and M Couplet. 2015. "Empirical comparison of two methods for the
 Bayesian update of the parameters of probability distributions in a two-level hybrid
 probabilistic-possibilistic uncertainty framework for risk assessment." *ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering* 2 (1):04015015.
- Pérez-Lombard, Luis, José Ortiz, and Christine Pout. 2008. "A review on buildings energy consumption
 information." *Energy and buildings* 40 (3):394-398.
- Rasouli, Mohammad, Gaoming Ge, Carey J Simonson, and Robert W Besant. 2013. "Uncertainties in
 energy and economic performance of HVAC systems and energy recovery ventilators due to
 uncertainties in building and HVAC parameters." *Applied Thermal Engineering* 50 (1):732-742.
- Richardson, Ian, Murray Thomson, and David Infield. 2008. "A high-resolution domestic building
 occupancy model for energy demand simulations." *Energy and buildings* 40 (8):1560-1566.
- Rocchetta, R, YF Li, and Enrico Zio. 2015. "Risk assessment and risk-cost optimization of distributed
 power generation systems considering extreme weather conditions." *Reliability Engineering & System Safety* 136:47-61.
- Rocchetta, R., and E. Patelli. 2016. "Imprecise probabilistic framework for power grids risk assessment
 and sensitivity analysis." In *Risk, Reliability and Safety: Innovating Theory and Practice*, 2789 2796. CRC Press.
- Ruparathna, Rajeev, Kasun Hewage, and Rehan Sadiq. 2017. "Economic evaluation of building energy retrofits: A fuzzy based approach." *Energy and Buildings* 139:395-406.
- Salari, Elahe, and Alireza Askarzadeh. 2015. "A new solution for loading optimization of multi-chiller
 systems by general algebraic modeling system." *Applied Thermal Engineering* 84:429-436.
- Sansavini, Giovanni, Roberta Piccinelli, LR Golea, and Enrico Zio. 2014. "A stochastic framework for
 uncertainty analysis in electric power transmission systems with wind generation."
 Renewable Energy 64:71-81.
- Schuetter, Scott, Lee DeBaillie, and Doug Ahl. 2014. "Future climate impacts on building design."
 ASHRAE Journal 56 (9):36-44.
- 800 Shafer, Glenn. 1976. *A mathematical theory of evidence*. Vol. 1: Princeton university press Princeton.
- 801Shen, Limei, and Yongjun Sun. 2016. "Performance comparisons of two system sizing approaches for802net zero energy building clusters under uncertainties." Energy and Buildings 127:10-21.
- Singh, Maneesh, and Tore Markeset. 2014. "Hybrid models for handling variability and uncertainty in
 probabilistic and possibilistic failure analysis of corroded pipes." *Engineering Failure Analysis* 42:197-209.

- 806Sun, Yongjun, Pei Huang, and Gongsheng Huang. 2015. "A multi-criteria system design optimization807for net zero energy buildings under uncertainties." *Energy and Buildings* 97:196-204.
- Sun, Yuming, Li Gu, CF Jeff Wu, and Godfried Augenbroe. 2014. "Exploring HVAC system sizing under
 uncertainty." *Energy and Buildings* 81:243-252.
- Sunitha, KA, and Saswati Behera. 2016. "Comparision of Conventional Control Techniques For An
 Energy Efficient HVAC Systems." *International Journal of Applied Engineering Research* 11
 (6):4258-4263.
- Tahmasebi, Farhang, and Ardeshir Mahdavi. 2015. "The sensitivity of building performance simulation
 results to the choice of occupants' presence models: a case study." *Journal of Building Performance Simulation*:1-11.
- Thevenard, Didier. 2010. "Influence of Long-Term Trends and Period of Record Selection on the
 Calculation of Cilmatic Design Conditions and Degree Days." *ASHRAE Transactions* 116 (1).
- Thevenard, Didier, and Steve Cornick. 2013. "Revising ASHRAE Climatic Data for Design and Standards–
 Part 1: Overview and Data." ASHRAE Transactions 119 (2).
- Tian, Wei. 2013. "A review of sensitivity analysis methods in building energy analysis." *Renewable and Sustainable Energy Reviews* 20:411-419.
- Tindale, A. 2005. "Designbuilder software." *Stroud, Gloucestershire, Design-Builder Software Ltd.*
- Trčka, Marija, and Jan LM Hensen. 2010. "Overview of HVAC system simulation." *Automation in Construction* 19 (2):93-99.
- Vakiloroaya, Vahid, Bijan Samali, Ahmad Fakhar, and Kambiz Pishghadam. 2014. "A review of different
 strategies for HVAC energy saving." *Energy Conversion and Management* 77:738-754.
- Wan Mohd Nazi, Wan Iman, Mohammad Royapoor, Yaodong Wang, and Anthony Paul Roskilly. 2017.
 "Office building cooling load reduction using thermal analysis method A case study." *Applied Energy* 185 (Part 2):1574-1584. doi: <u>https://doi.org/10.1016/j.apenergy.2015.12.053</u>.
- Wang, Chuang, Da Yan, and Yi Jiang. 2011. "A novel approach for building occupancy simulation."
 Building simulation.
- Wang, Qinpeng, Godfried Augenbroe, Ji-Hyun Kim, and Li Gu. 2016. "Meta-modeling of occupancy
 variables and analysis of their impact on energy outcomes of office buildings." *Applied Energy*174:166-180.
- Yik, FWH, WL Lee, J Burnett, and P Jones. 1999. "Chiller plant sizing by cooling load simulation as a
 means to avoid oversized plant." *HKIE Transactions* 6 (2):19-25.
- Yıldız, Yusuf, and Zeynep Durmuş Arsan. 2011. "Identification of the building parameters that influence
 heating and cooling energy loads for apartment buildings in hot-humid climates." *Energy* 36
 (7):4287-4296.
- Zadeh, Lotfi A. 1999. "Fuzzy sets as a basis for a theory of possibility." *Fuzzy sets and systems* 100:934.
- Zadeh, Lotfi A. 2008. "Is there a need for fuzzy logic?" *Information sciences* 178 (13):2751-2779.
- Zahiri, Behzad, Reza Tavakkoli-Moghaddam, and Mir Saman Pishvaee. 2014. "A robust possibilistic
 programming approach to multi-period location–allocation of organ transplant centers under
 uncertainty." *Computers & Industrial Engineering* 74:139-148.
- Zhang, Hao, Loc Ha, Quanwang Li, and Michael Beer. 2017. "Imprecise probability analysis of steel
 structures subject to atmospheric corrosion." *Structural Safety* 67:62-69.
- Zhang, Yi. 2009. "Parallel EnergyPlus and the development of a parametric analysis tool." 11th
 Conference of International Building Performance Association IBPSA, Glasgow, UK.
- Zhang, Yi. 2012. "Use jEPlus as an efficient building design optimisation tool." CIBSE ASHRAE technical
 symposium, London.
- Zhang, Yi, and Ivan Korolija. 2010. "Performing complex parametric simulations with jEPlus." 9th SET
 Conference Proceedings, Shanghai, China.
- Zhao, Peng, Gregor P Henze, Sandro Plamp, and Vincent J Cushing. 2013. "Evaluation of commercial
 building HVAC systems as frequency regulation providers." *Energy and Buildings* 67:225-235.
- Zio, Enrico. 2013. The Monte Carlo simulation method for system reliability and risk analysis: Springer.