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Abstract—The reliability of steam generators in nuclear power 
plants has always been a challenging issue. Various diagnostic 
models have been proposed in the literature. However, no work 
has been reported on the development of a robust prediction 
model for forecasting the future health state of steam 
generators. In this paper, we propose an ARIMA-based 
prognostic approach for tracking the degradation evolution in a 
steam generator and further predicting its Remaining Useful 
Life (RUL) before breakdown. A case study concerning real 
degradation datasets from different steam generators is 
extensively investigated to validate the performance of the 
proposed model.   
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I.  INTRODUCTION 
The need of delivering safe and economic nuclear power 

and extending the life of existing plants maintaining the 
required safety margins has led to great emphasis on the 
development of predictive maintenance for nuclear power 
plants (NPPs). This is being particularly important in France 
where more than 85% of electricity is currently produced 
from nuclear reactors, the reliability and safety of NPPs have 
become important issues to ensure a stable electrical supply 
to the whole country [1]. Among the most critical 
components in a NPP, steam generators (SGs), which play a 
key role in transferring heat from the primary side to 
pressurized steam on the secondary side of the plant, often 
suffer various degradation mechanisms, such as flow 
accelerated corrosion [2]–[4], stress corrosion cracking [5]–
[8], and tube support plate (TSP) clogging or blockage [9]–
[13]. These unanticipated failures can lead to forced plant 
shutdowns, with significant economic losses. For example, 
between 2004 and 2006 three emergency shutdowns in 
French NPPs due to the degradation of SGs were reported 
[14]. These accidents were eventually identified to be caused 
by clogging of the flow holes of upper TSPs. To reduce the 
occurrences of such unexpected catastrophic breakdowns, the 
development of models for detecting incipient failures and 

predicting the future health state of equipment has become 
crucial.  

In the last decades, a great number of studies have been 
investigated to address the above problems. In [1], several 
simulations regarding the corrosion product deposits were 
carried out based on the physicochemical phenomena of TSP 
clogging. The results indicated that TSP clogging is a 
complicated process, highly influenced by a specific 
geometry and a large number of thermohydraulic and 
chemical parameters. To address this issue, Prusek et al. [9] 
proposed a specific model for TSP clogging including the 
TSP specific geometry and the induced thermohydraulic 
changes, which aimed to characterize and predict the 
localization and the growth rate of deposits during the 
clogging process. A fault diagnostic approach based on 
statistical techniques was, then, presented to quantify the 
clogging rate of a SG, by using the observations of its wide 
range level (WRL) response during a power transient [10]. 
Inspired by this work, Girard et al. [14] introduced a clogging 
rate indicator which can be used to quantify and assess the 
global effect of the clogging degradation on the dynamic 
behavior of SGs. However, most works reported in literature 
are concentrated on only detecting and characterizing the 
degradation in SGs. To the author’s knowledge, no work has 
been done on the prediction of the future degradation 
evolution of SGs and their remaining useful life (RUL) before 
breakdown. In brief, RUL is defined as the time left before 
the degradation of an equipment exceeds a failure threshold 
[15]. An accurate RUL prediction would allow utilities to 
timely schedule optimal maintenance operations at a 
convenient time rather than to suffer a forced outage with 
significant losses. Moreover, the earlier the RUL is predicted, 
the higher the chances are with limited damage to adjacent 
components, increasing plant safety, and minimizing 
downtime and maintenance costs [16]. 

In this paper, we present a data-driven prognostic 
approach for forecasting the future trajectory of the TSP 
clogging rate in SGs, and further estimate the RUL before 
breakdown. An autoregressive integrated moving average 



(ARIMA) model is employed to model and forecast the 
degradation tendency by exploiting the condition monitoring 
data measured during the operation of SGs. Various steam 
generator degradation datasets from NPPs are used to 
validate the effectiveness of the proposed approach.  

The rest of the paper is organized as follows. Section II 
provides a brief introduction to the steam generator 
considered in this study. Section III presents the proposed 
prognostic approach for predicting the degradation trend and 
the RUL of the SG. The experimental results are shown in 
Section IV, and Section V concludes the paper.   

 
 

II. STEAM GENERATOR DEGRADATION 
 

 
Figure 1.  Schematic of a model 51B steam generator in frontal cut [14].   

 

A. Steam Generators 
Steam generators (SGs) are critical components for 

pressurized water reactors (PWRs), which serve as heat 
exchangers for feeding steam to electricity generators. In 
particular, each SG  consists of several reserved-U tubes, 
between 3000 and 6000 tubes, as illustrated in Fig. 1 [14]. The 

primary flow comes from the nuclear reactor core through the 
hot leg, circulates inside the tubes and goes back to the core 
by the cold leg. A pressure typically equal to approximately 
15.5 Mpa is maintained in this flow to avoid extended boiling 
phenomena in the core. Outside the tubes, the secondary flow 
circulates through the bundle and is transformed into steam, 
which flows to drive the turbines. The tubes of the SGs are 
supported by several plates, called tube support plates (TSPs), 
and flow holes allow the secondary flow to circulate through 
these plates. At the top of the tube bundle, the steam flow is 
separated into liquid phase and steam phase.  

 

B. TSP Clogging Degradation 
Particles and dissolved species produced by metal 

oxidation of plant components circulates, with the feedwater. 
Moreover, impurities and contaminants from make-up water, 
the auxiliary feedwater and condenser leak also contribute to 
the circulation in the steam flow. These circulated particles are 
called corrosion products and a small part of them is 
eliminated by the purges located at the bottom of SGs. 
However, most of the material which cannot be removed by 
the flow still remains and produces deposits, which lead to 
performance downgrade [17]. 

In short, TSP clogging is a deposit at the inlet of TSP flow 
holes, as illustrated in Fig. 2 [9]. This deposit phenomenon can 
induce high transverse velocity in the secondary flow, 
degrading the recirculation ratio of SGs, and eventually 
leading to vibrations and tubes cracks. 

   
 

 
Figure 2.  Tube support plate clogging: top view of a clean flow hole on 

the left side and an entirely blocked flow hole on the right side [9].   

 

III. PROPOSED ARIMA-BASED PROGNOSTIC APPROACH  

A. ARIMA Model 
The degradation state of SGs over time can be treated as a 

time series by autoregressive models. In this study, an 
autoregressive integrated moving average (ARIMA) model 
[18] is employed to identify the underlying structure in the 
acquired data and further forecast the future states of 
degradation.  

 



 
Figure 3.  An illustration of the RUL estimation scheme: (a) Prediction at time t; (b) Prediction at time t+𝛿. 

 
 
In general, an ARIMA model is specified by a 

combination of three order parameters: (p, d, q), which 
correspond to the following processes:  

1) Autoregressive (AR) component: refers to the use of 
past values in the regression model for the actual series X. The 
autoregressive parameter p specifies the number of lags used 
in the model. 

2) Integrated (I) component: represents the degree of 
differencing, specified by the integrated parameter d. The 
integrated component can also be used to stabilize the series 
when the stationary assumption is not met. 

3) Moving average (MA) component: indicates the error of 
the model as a combination of previous errors. The order q 
specifies the number of lagged forecast errors used in the 
model.  

Autoregressive, differencing, and moving average 
components make up a non-seasonal ARIMA model which 
can be defined as follows: 

 

 , (1) 
where 

 

, (2) 

 
where x(t) is the actual degradation state series, {𝜙$} and {𝜃'} 
are the parameters of the AR and MA components, 
respectively, L is the lag operator, 𝜀(𝑡) is the random error at 
time t. 

To develop an ARIMA model, the three following steps 
are repeated until a satisfactory model is obtained:  

1) Model identification: values for the orders of the 
autoregressive, differencing, and moving average 
components, namely p, d, and q, respectively, are 
hypothesized using a training set of time series data. A fitness 
criterion is also defined.   

2) Parameter estimation: using non-linear optimization 
techniques (e.g. least-squares method), hyperparameters of 
the ARIMA equations are estimated for minimizing the 
overall error between model output and measured data. In 
order to efficiently identify the optimal hyperparameters of the 
ARIMA model, a random search optimization strategy [19] is 
used in this study. 

3) Model validation: several standard diagnostic metrics 
(e.g. Akaike Information criterion (AIC), Bayesian 
Information criterion (BIC), and final prediction error (FPE)) 
can be used to evaluate the adequacy of the ARIMA model. 
In this work, AIC is used for evaluating the goodness-of-fit of 
the model.  

 

B. Degradation Trajectory Prediction and RUL Estimation 
The process of predicting future degradation states and 

estimating the RUL is illustrated in Fig. 3. The blue solid line 
represents actual observations of degradation measured in 
time.  

At time 𝑡, the historical observations {𝑥-, 𝑖 = 1, … , 𝑡} are 
employed for optimizing the hyperparameters of the ARIMA 
model. The optimized model is, then, used to generate a 
forecasted degradation trajectory until reaching the 
prediction horizon T, as depicted by the green dashed line in 
Fig. 3(a). The RUL at time 𝑡, 𝑅𝑈𝐿$67,8 , can be defined as the 
time required for the forecasted trajectory to reach the failure 
threshold, as follows: 
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where 𝐹𝑇$67,8  is the failure time forecasted at the prediction 
time 𝑡. Note that the future degradation states and the RUL 
are predicted using only the past observations, because future 
observations {𝑥8;<,𝑘 = 1, … , 𝑇 − 𝑡} have not been collected 
yet.  

At the next prediction period (𝑡 + 𝛿), where 𝛿 is the time 
interval between two consecutive periods (𝛿 = 3 months in 
the following case study), the hyperparameters of the 
ARIMA model are updated when the new measurements are 
available. Using this updated model, a new degradation 
trajectory (the red dashed line in Fig. 3(b)) and the RUL at 
time (𝑡 + 𝛿), 𝑅𝑈𝐿$67,8;@, are predicted. This update process 
is continued in this manner until the end of the time horizon 
T. Finally, a multistep-ahead prediction of the degradation 
trajectory is obtained by concatenating the forecasted 
trajectories at each prediction time across the entire life of the 
SG.    

 
 

IV. RESULTS & DISCUSSION 
In this section, a case study is carried out to validate the 

developed prognostic approach, including the degradation 
data of three different SGs. These datasets were acquired as 
the result of a TSP clogging diagnosis. The degradation of the 
SGs were obtained over a period of 15 years, with a total 
number of 5000 observations, as shown in Fig. 4, which 
corresponds to the operating period of the considered SGs 
before the chemical cleaning performed in 2006 [14]. In Fig. 
4, the vertical axis represents the TSP clogging percentage 
rate of the SGs, ranging from 0% to 100%. Based on the 
expert judgement, a failure threshold is defined at 80% of the 
degradation rate, which corresponds to the critical clogging 
level with a substantial risk of tube cracking [14].  

To evaluate the performance of the proposed approach, 
three popular forecast accuracy metrics are considered: a) 
Root Mean Square Error (RMSE); b) Mean Absolute 
Percentage Error (MAPE); c) Mean Absolute Scaled Error 
(MASE) [20]. The definitions of these metrics are, 
respectively, given as follows: 
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where N is the number of observations, 𝑥 and 𝑥A are the actual 
and predicted degradation states, respectively.  
 
 

 
Figure 4.  Raw degradation series of steam generator Nos. 1-3.  

 

 
Figure 5.  Pre-processed degradation series of steam generator Nos. 1-3 by 

LOWESS.  

 
To reduce the unwanted noise in the measured data, a local 

regression filter, called Locally Weighted Scatterplot 
Smoothing (LOWESS) [21], is adopted to preprocess the 
datasets with a span value of 1.5%. The preprocessed results 
are shown in Fig. 5. 

To perform the proposed prognostic approach, each 
dataset is initially divided into two different subsets: a training 
dataset and a test dataset. In this study, the first prediction 
starting point is set to a specific date of January 1st, 2002. The 
observations before the prediction starting point, for each SG, 
are used as the training dataset for developing the prediction 
model, while the remaining data are reserved as the test 
dataset, which is employed for evaluating the effectiveness of 
the proposed approach. At each prediction period, new 
collected measurements are used to timely update the 
hyperparameters of the prediction model and the forecasted 
degradation trajectory as described in Section III. The 
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forecasted RUL of the equipment is also updated at each 
prediction period. An illustration of the degradation trajectory 
prediction of the proposed model at the 3rd and 10th prediction 
periods for SG No. 1 is shown in Fig. 6. 

 

 
Figure 6.  Degradation trajectory prediction for steam generator No. 1: (a) 
At the 3rd prediction period; (b) At the 10th prediction period.    

 
 

Figs. 7 and 8 show the multistep-ahead prediction and the 
RUL estimation of the proposed approach across the lifetime 
of SG No. 1. As shown in these Figures, the proposed 
approach exhibits satisfactory performance in accurately 
predicting the degradation trajectory and the RUL of the 
considered SG. This is due to the advantageous capability of 
the proposed prediction model in dynamically updating 
knowledge about the current degradation trend of the target 
SG when new measurements come.   
 

 
Figure 7.  Degradation trajectory prediction for steam generator No. 1.  

 
Figure 8.  RUL prediction for steam generator No. 1.  

 
Figs. 9 and 10 show the results of exploiting the proposed 

model for other SGs, and performance comparisons in terms 
of prediction accuracy is given in Tables 1 and 2. In Table 2, 
the error metric represents the percentage error between the 
actual RUL and the predicted RUL at the same date, defined 
as follows: 

 

 
, (7) 

 
where RULact is the actual RUL of the SGs. The results clearly 
show that the proposed approach has achieved an excellent 
performance throughout the entire lives of different SGs. As 
can be seen in Table 2, the prediction performance of the 
proposed model, for all considered SGs, becomes more 
accurate when more available measurements come. In 
particular, at the prediction point in January 2006, the 
proposed model can completely predict the true RUL of the 
SG No. 3 without error. 
 

 
Figure 9.  Degradation trajectory prediction for steam generator No. 2.  

Prediction period #3
start from Jul-2002 

Predicted RUL = 1377 days

Actual RUL = 1090 days

Available observations

Prediction period #10
start from Apr-2004 

Available observations

Actual RUL = 450 days

Predicted RUL = 563 days

(a)

(b)
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RULact − RULpre,t
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×100%



 
Figure 10.  Degradation trajectory prediction for steam generator No. 3.  

 
 

TABLE I. PERFORMANCE EVALUATION OF DEGRADATION EVOLUTION 
PREDICTION. 

 
 
 

TABLE 2. PERFORMANCE EVALUATION OF RUL PREDICTION. 

 
 

V. CONCLUSIONS 
In this paper, a prognostic model based on ARIMA is 

proposed to predict the evolution of the TSP clogging 
degradation in steam generators. The advantage of the 
proposed model lies in the capability to adaptively and timely 
update its prediction performance when new measurements 
are collected. The results indicate that the proposed prognostic 
model is able to accurately predict the future trajectory of the 
TSP clogging rate and the RUL across different steam 
generators.  
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Testing dataset RMSE MAPE MASE
SG_1 0.83 0.74 19.13
SG_2 0.65 0.50 18.41
SG_3 0.81 0.75 18.35
Average 0.76 0.67 18.63

Testing 
dataset Current date Actual RUL 

(day)
Predicted 

RUL (day) Error (%)

SG_1
Jan-2002 1271 1638 28.87

Jul-2004 359 438 22.00

SG_2
Jan-2002 803 1007 25.40

Jan-2004 73 65 10.96

SG_3
Jan-2002 1580 1638 3.67

Jan-2006 119 119 0


