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A B S T R A C T

As a prerequisite to nondestructive testing of damaged fibered laminates, the
Green’s function, corresponding with an undamaged structure, and the elec-
tromagnetic fields associated with the damaged one are investigated herein.
For the undamaged fibered laminate, benefiting from the periodicity of the
fibers within each layer, the field solution follows the scattering-matrix-based
method using the Floquet theorem. Yet, the periodicity is destroyed by the
analytical source (for the Green’s function) or by damages, and the Floquet
theorem cannot be directly applied to compute the associated scattering matri-
ces. The array scanning method is introduced to that effect. Inserting fictitious
sources to get a quasi-periodic source array, the modeling approach for un-
damaged laminates can be used to compute the field with the source array, the
integration of which cancels the effects of the fictitious sources and yields the
Green’s function. With the multipole method, field disturbances by damages,
which include missing, displaced, shrunk, and expanded fibers and circular
inclusions inside fibers, are accurately modeled by setting equivalent sources
inside sound fibers, and the array scanning method applies. Modeling accu-
racy and efficiency of the approaches are illustrated by numerical simulations.

1. Introduction

Fiber-reinforced laminates are widely used in aerospace and automotive industries due to advantages in stiffness

and weight. Each layer of the laminate is composed of a planar slab and an embedded periodic fiber array. Fiber

material might be glass or graphite, and the slab itself is usually made of epoxy or polyester. Stacking the reinforced
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slabs yields the concerned structure and, to provide strength along various directions, fiber orientations in different

layers usually differ. Nondestructive testing of potential damages inside is necessary in order to ensure reliability

and safety. Electromagnetic (EM) means can be used to that effect because of broad applicability on both conductive

[1] and dielectric [2] composites. Correspondingly, accurate modeling and high-resolution imaging methods are

requested to guarantee the detection performances, the former rarely reported in literature and being focused onto in

the present contribution.

As indicated, modeling of damaged and undamaged laminates is required to better study impacts of damages

and configure the testing systems, but may not be easily handled by commercial softwares (e.g., COMSOL) as the

boundary conditions are not clear due to the periodicity at different directions in each layer. Efforts have been made

by (some of) present authors. Without damages, the modeling approach refers to works in [3] where fields near slab

boundaries are expanded into plane-wave expansions (PWEs) in order to facilitate modes matching, and the multipole

method [4] is adopted to analyze the fiber array. However, the applicability of such methods to the disorganized

structure is prevented by the fact that the periodicities are destroyed. Approximated field solutions can be provided by

brute-force codes running FDTD [5] or FEM [6] methods. Since regions near the damages are those of main interest, a

truncated model (a cell) of the laminate centered on the damages is often investigated. To guarantee accuracy, testing

the field convergence is needed by enlarging the cell, i.e., increasing the truncation size. A similar methodology

is followed in our previous work [7], save periodic conditions being set at the end sides of the cell to fabricate a

new, fictitious periodic structure; then, quasi-periodic theories apply. But the unknown approximation errors (due to

lack of the true solution) and possibly heavy computational cost in case of low-loss materials show the necessity of

developing a more sophisticate modeling.

Contributions have been made by authors in [8] on efficiently and accurately modeling damaged single-layer

laminates with missing, displaced, shrunk, and expanded fibers and circular inclusions inside fibers. Defects are

electromagnetically equivalent to sources within the initially organized fibers by reformulating the changed fiber

boundary conditions or via application of Graf’s addition theorem. Then the field solution is a summation of responses

due to the exterior emitting source and to the equivalent ones. The former is obtained with the method dealing with

undamaged structures [3]. The latter is obtained via the array scanning method (ASM) [9] where a phased source

array is assumed so that quasi-periodic theories become applicable and the final solution results from integration over

the first Brillouin zone.

In this contribution, the equivalence theory is applied on the modeling of damaged multilayer laminates. Treating

the concerned damages as equivalent sources, the solution to the illumination of undamaged multilayer laminates by

exterior and equivalent sources is required and obtained with the help of scattering matrices [10], which describe

mutual scattering between two layers. Playing the key role in both modeling and imaging, the solution to the Green’s

function, i.e., the response to a line source in 2-D cases, is also explored following the same computational approach

as for equivalent sources.

Representing the field in the whole region by PWEs or CWEs (short for cylindrical-wave expansions), the above

solution is achieved through the retrieval of expansion coefficients, for which PWEs and CWEs are truncated and
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the truncation size should be properly set. A numerical strategy, which makes use of the knowledge that PWEs

and CWEs should yield the same field solution in the commonly supported region, is proposed, while the possible

different structures (in terms of material and of geometry) of layers are considered to yield the correspondingly

different truncation sizes.

The contribution is structured as follows. Notations and configurations are introduced in Section 2, the undamaged

structure being of first concern. The exterior illumination is studied in Section 3. The solution to the Green’s function

is presented in Section 4. With quantities obtained above, different types of damages are treated as equivalent sources

in Section 5 and how to reach the true solution is discussed as well. The truncation number of PWEs and CWEs is the

key parameter in the modeling. A numerical strategy is presented in Section 6 to adaptively select the optimal value.

The numerical analysis is considered in Section 7 and conclusions are proposed in Section 8. Appendices provide

complementary materials.

2. Configurations and formulation

Fig. 1. Sketch of the damaged laminate with defects of concern, L = 3.

The description of undamaged laminates goes first, and then the one of concerned damages. The structure of the

multilayer laminate is sketched in Fig. 1, where it is sandwiched by two half spaces at top and bottom, each layer of

the laminate being made by periodically inserting similarly-orientated fibers inside a planar slab. The composition of

different layers can differ w.r.t. fiber radius, slab thickness and materials. The fiber periods are to be the same here.

Assume L layers are stacked on one another. Labeling them with integers from 1 to L, the upper and lower half

spaces are indexed by 0 and L+ 1, respectively. Setting the origin of the global coordinate system at the center

of a fiber in the 1st layer, the local coordinate system for the l-th layer is defined by setting the origin at the fiber

center o(l,0) with global coordinates (o(l,0)x ,o(l,0)z ), tl+1 < o(l,0)z < tl , −d/2 < o(l,0)x ≤ d/2, l = 1, . . . ,L, the plane z = tl

denoting the lower boundary of the l-th layer and d the fiber period. Then, the center of fibers in the l-th layer has

local coordinates (xl ,zl) = (vd,0), v ∈ Z, based on which fibers in the l-th layer are labeled by integer couples (l,v).

Remark that the subscript of x and z indicates the coordinate system, i.e., “l” stands for the local coordinate system of

the l-th layer.
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All materials, including the one in the inclusions, are linear, isotropic and homogeneous. Fiber and slab mate-

rials are layer-dependent, characterized by relative permittivities ε l
j (complex value for lossy materials) and relative

permeabilities µ l
j, j = “ f ” for fiber and “s” for slab.

Consider now the damaged laminate. Indexes of damaged fibers compose the set D, i.e., the v-th fiber in the l-th

layer is damaged if (l,v) ∈ D. A tilde is put above the corresponding notations to denote the damaged status. One

respectively denotes the center and radius of the (l,v)-th fiber by o(l,v) and cl for the undamaged laminate, the local

coordinates of õ(l,v) 6= (vd,0) for displaced fibers and c̃(l,v) 6= cl for shrunk/expanded ones. A circular inclusion is

configured by its center ō(l,v) and radius c̄(l,v), with a bar above corresponding notations. Without loss of generality,

half spaces and inclusions are assumed filled by air and missing fibers are “fibers” sharing the same material with the

background slab.

With time-dependence exp(−iωt), i imaginary unit, ω angular frequency, the incident waves considered are either

time-harmonic plane waves of (x,z) plane of incidence or line sources orientated along the y axis, with either TM or

TE field polarization. This configuration leads to a two-dimensional scalar scattering problem, which means only the

y-component of electric field (for TM) or magnetic field (for TE) needs to be tackled.

3. Electromagnetic modeling of undamaged laminates

The modeling of damaged laminates is based on the analysis of the corresponding undamaged ones. For com-

pleteness, this Section revisits the modeling approach [10] for undamaged laminates illuminated by a planar wave

(considering that other types of sources might be analyzed by exploiting their PWEs [11, 12]).

Analyzing wave propagations within each layer through the combination of multipole method and field matching

on boundaries, scattering behaviors in different layers are linked by scattering matrices (rather than possibly ill-

conditioned transfer matrices [10]), which are computed according to a recursive scheme.

Fig. 2. Coefficients of plane-wave expansions in the l-th layer for upgoing and down-going waves.

As shown in Fig. 2, for the l-th layer, the fiber array divides the layer into three slices, region above the array, region

below it, and the array itself, denoted by Γl+, Γl− and Γl f , respectively. Due to the periodicity of the structure, the

Floquet theorem applies and the total field follows a pseudo-periodic distribution, i.e., V (r+dx̂) =V (r)eiα0d , where

V stands for the y-component of the E- or H-field depending upon the wave polarization, r denotes the observation

position, x̂ is the unit vector along the x axis, and α0 = k0
s sinθ inc, k0

s being the wavenumber of the upper half space

and θ inc being the incident angle of the plane wave measured counter-clockwise from the z axis.
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The pseudo-periodic property of V yields its representation in PWEs [13]. For the region of Γl+ and Γl−, the

expansion is with coefficients f l+
p , gl+

p and f l−
p , gl−

p , respectively. The subscript “p” denotes the expansion order and

“g”, “f” stand for field components propagating along the z-axis and the opposite direction, respectively. Thus, in the

local coordinate system,

V (r) = ∑
p∈Z

[
f l±
p e−iβ l

pzl +gl±
p eiβ l

pzl
]

eiαpxl , r ∈ Γ
l±, (1)

where αp = α0 + p2π/d, β l
p =

√
(kl

s)
2−α2

p .

Matching fields at the slab boundary z = tl , expansion coefficients at the two sides of this boundary are related as[
fl+

g(l−1)−

]
=

[
E 1

l E 2
l

E 3
l E 4

l

][
f(l−1)−

gl+

]
. (2)

where fl± = [ f l±
p ], gl± = [gl±

p ], and the definition of E u
l , u = 1,2,3,4, is given in Appendix A. Since fl+, g(l−1)−

stand for waves scattered by the boundary and f(l−1)−, gl+ for incident ones, the matrix composed by E u
l indicates

the scattering property of the slab boundary at z = tl . Such relation w.r.t. the fiber array is also obtained with the

multipole method [4].

Fig. 3. Field representation by cylindrical-wave expansions in the (l,v)-th fiber.

Expressing the total field in the vicinity of and inside the (l,v)-th fiber in cylindrical-wave expansions (CWEs),

V (r) = ∑
m∈Z

[
a(l,v)m ϕ

J
m

(
kl

s,r(l,v)
)
+b(l,v)m ϕ

H(1)

m

(
kl

s,r(l,v)
)]

, (3a)

V (r) = ∑
m∈Z

[
c(l,v)m ϕ

J
m

(
kl

j,r(l,v)
)
+q(l,v)m ϕ

H(1)

m

(
kl

j,r(l,v)
)]

, (3b)

where r(l,v) is the relative position of the observation point r w.r.t. the fiber center o(l,v), i.e., r(l,v) = r−o(l,v). Denoting

(r(l,v),θ(l,v)) as the polar coordinates of r(l,v), ϕZ
m(k

l
j,r(l,v)) = Zm(k j,r(l,v))exp(imθ(l,v)), where Z = J stands for the

Bessel function and Z = H(1) for the first-kind Hankel function. The coefficients of the CWEs are sketched in Fig. 3.

While the coefficient of c(l,v)m and a(l,v)m stands for the wave propagating towards the fiber center, b(l,v)m and q(l,v)m denote

the field scattered by the fiber and the inner source (e.g., the analytical line source inside the fiber for the scalar Green’s

function), respectively.

The total field outside fibers of each layer is a summation of fields scattered by the corresponding upper and lower

slab boundaries with PWE coefficients f l+
p and gl−

p and fields scattered by all fibers with CWE coefficients b(l,v)m . The

CWE representation of the latter is with the identity

∑
v∈Z

∑
m∈Z

b(l,0)m eiα0vd
ϕ

H(1)

m (kl
s,r(l,0)− vdx̂) = ∑

p∈Z

(
∑

m∈Z
Kl±

m,pb(l,0)m

)
ei(αpxl±β l

pzl), (4)
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where Kl±
m,p = 2(−i)m exp

(
±imθ l

p
)
/(dβ l

p), cosθ l
p = αp/kl

s, and the Floquet theorem has been applied with b(l,v)m =

b(l,0)m eiα0vd . Thus, the total field in the l-th layer is expressed as a PWE as

V (r) = ∑
p∈Z

eiαpxl

[
f l+
p e−iβ l

pzl +gl−
p eiβ l

pzl +

(
∑

m∈Z
Kl±

m,pb(l,0)m

)
e±iβ l

pzl

]
, (5)

the matrix form of which is

V (r) = Ξ
l−fl++Ξ

l+gl−+Ξ
l±Kl±b(l,0), (6)

where Ξl± = [ei(αpxl±β l
pzl)], Kl± = [Kl±

m,p]. Signs + and− are applicable in the region of zl ≥ 0 and zl < 0, respectively,

for Ξl± and Kl±. The relationship between b(l,0)m , f l+
p , gl−

p is exploited by analyzing the scattering behaviors of the

fiber array.

With the field representation as CWEs in Eq. (3), the fiber boundary conditions yield the linear relations of CWE

coefficients,

b(l,v)m = Rl
ma(l,v)m +T l

mq(l,v)m , (7a)

c(l,v)m = T l,′
m a(l,v)m +Rl,′

m q(l,v)m , (7b)

where Rl
m, Rl,′

m , T l
m, T l,′

m are reflection or transmission coefficients defined in Appendix A. Remark that q(l,v)m equals 0

since no inner source exists. Together with the so-called Rayleigh identities [14],

a(l,0)m = ∑
n∈Z

Sl
m−nb(l,0)n + ∑

p∈Z

(
Jl+

m,pgl−+ Jl−
m,pfl+

)
, (8)

which is obtained with the Jacobi-Anger expansion [15] and application of the Graf’s addition theorem [15], the

expression of b(l,0)m as a function of f l+
p and gl−

p is written as

b(l,0) =
(

I−RlSl
)−1

Rl
(

Jl+gl−+Jl−fl+
)
, (9)

where I is the identity matrix, b(l,0) = [b(l,0)m ], Rl = diag
{

Rl
m
}

, Sl = [Sl
m−n], Jl± = [Jl±

m,p], Jl±
m,p = (i)m exp(∓imθ l

p) and

Sl
m−n is the lattice sum defined as

Sl
m = ∑

v∈Z\{0}
H(1)

m (kl
s |v|d)ei(α0ld−marg(v)), (10)

which enjoys a fast convergence about v for lossy slabs whereas the computation approaches in [16, 17] apply for

lossless cases.

The substitution of Eq. (9) into Eq. (6) leads to V as a function of PWE coefficients fl+ and gl−. Together with

Eq. (1), the scattering matrix of the fiber array is obtained and described as[
fl−

gl+

]
=

[
F 1

l F 2
l

F 3
l F 4

l

][
fl+

gl−

]
, (11)

where F 1
l = I+Ωl−RlJl−, F 2

l = Ωl−RlJl+, F 3
l = Ωl+RlJl−, F 4

l = I+Ωl+RlJl+, Ωl± = Kl± (I−RlSl
)−1. Then,

the scattering effects of the fiber array are equivalent to a slab boundary with the scattering matrix defined by F u
l ,

u = 1,2,3,4.
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Fig. 4. Equivalence of fiber arrays as planar boundaries with scattering matrices E u
l and F u

l , u = 1,2,3,4, defined by Eq. (2) and (11).

Representing the equivalent boundary by the slashed line, the sketch in Fig. 2 is reformulated as Fig. 4. Following

the recursive scheme in [10], scattering matrices linking PWE coefficients in any two slices are computed. Based on

the computed scattering matrices, the PWE and CWE coefficients can be solved for.

The scattering matrix linking the slice Γ0 and Γl± is defined by[
fl±

g0

]
=

[
A l±

0 Bl±
0

C l±
0 D l±

0

][
f0

gl±

]
, (12)

and the one linking Γl± and ΓL+1 by [
fL+1

gl±

]
=

[
A L+1

l± BL+1
l±

C L+1
l± DL+1

l±

][
fl±

gL+1

]
. (13)

Considering the coefficient vector f0 (PWE coefficients of the incident wave) is known and gL+1 = 0 due to no incident

field from the bottom, one has equations

gl± = C L+1
l± fl±, (14a)

fl± = A l±
0 f0 +Bl±

0 gl±, (14b)

which yield the solution of fl± and gl± as

fl± =
(

I−Bl±
0 C L+1

l±

)−1
A l±

0 f0, (15a)

gl± = C L+1
l± fl±. (15b)

When l = L+ 1, one has fL+1 = A L+1
0 f0 and g0 = C L+1

0 f0. CWE coefficients are computed by substituting fl± and

gl± into Eq. (8) and (9). With PWE and CWE coefficients, the full-field solution is achieved.

4. The Green’s function

The Green’s function, denoted by G(r,rs), is defined as the field solution at r when the line source locates at rs

and emits field H(1)
0 (kl

jrs)/(4i), j being “s” or “ f ” depending on the source location. Here, due to the role in the

modeling of damaged laminates in Section 5, only the case of the line source inside the fiber is considered. Remark

that the computation of G(r,rs) w.r.t. the single-layer laminate has been presented in the authors’ earlier works [7].



8 Zicheng Liu etal / Journal of Computational Physics (2019)

This Section gives the similar approach but with the combination of the scattering matrix to reach the solution of

G(r,rs) for the multilayer laminate.

Since G(r− vdx̂,rs− vdx̂) = G(r,rs), without losing the generality, the line source is assumed located inside the

(l,0)-th fiber. Section 3 concerns the exterior illumination on the undamaged structure. Thus, the presented modeling

approach in Section 3 cannot be applied directly since the source is inside the laminate and destroys the quasi-periodic

property of the field distribution.

Fig. 5. Phased line-source array, solid dot standing for the true source and hollow ones for fictitious sources.

The array scanning method (ASM) overcomes this difficulty by fabricating a phased source array, as shown in

Fig. 5. All sources share the same current except the one inside the (l,v)-th fiber is with phase exp(iα0vd), i.e., the

true source is with phase 1. With the phased array, the field distribution becomes quasi-periodic and scattering due to

the phased array can then be analyzed. Denote the field solution w.r.t. the source array by G(r,rs,α0,∞). Following

the identity
d

2π

∫
π/d

−π/d
eiα0vddα0 = δv,0, (16)

where δv,0 equals 1 when v = 0 and 0 otherwise, the impacts of fictitious sources are expected to be canceled after

integration over the first Brillouin zone, i.e., the true field solution is

G(r,rs) =
d

2π

∫
π/d

−π/d
G(r,rs,α0,∞)dα0. (17)

Numerical methods [18] are used to perform this integration, while the computation of the integrand is introduced

next.

Due to the presence of the source array, q(l,v)m in Eq. (7) is non-zero. Since the wave radiated by the line source is

with expression H(1)
0 (kl

f rs)/(4i), rs =
∣∣∣rs−o(l,0)

∣∣∣, one has q(l,0)m = Jm(kl
f

∣∣∣rs−o(l,0)
∣∣∣)exp

(
−imarg

(
rs−o(l,0)

))
/4i

with the application of the Graf’s addition theorem. Thus, Eq. (11) is updated as[
fl−

gl+

]
=

[
F 1

l F 2
l

F 3
l F 4

l

][
fl+

gl−

]
+

[
Ωl−Tlq(l,0)

Ωl+Tlq(l,0)

]
, (18)

where q(l,0) = [q(l,0)m ], Tl = diag
{

T l
m
}

. Together with two equations, Eq. (14a) and (14b) (f0 = 0 since no exterior

source exists), the solution to fl± and gl± is obtained as

gl+ =
Θl+C L+1

l− Ψ
−1
l Ωl−+Ωl+

Ξl−Θl+C L+1
l− Ψ

−1
l Θl−Bl+

0

Tlq(l,0),

fl− =
Θl−Bl+

0 Ξ
−1
l Ωl++Ωl−

Ψl−Θl−Bl+
0 Ξ

−1
l Θl+C L+1

l−
Tlq(l,0),

fl+ = Bl+
0 gl+,

gl− =CL+1
l− fl−,

(19)
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where Θl± = I+Ωl±RlJ±, Ξl = I−Ωl+RlJl−Bl+
0 , Ψl = I−Ωl−RlJl+C L+1

l− .

With the solution to fl± and gl±, as shown in Fig. 4, the laminate can be treated as two parts, layers below and

above the l-th layer. The field solution for the former part is achieved by treating the field component with PWE

coefficients f l−
p as the incident wave and following the computational approach in Section 3. The field solution for

the later part is similarly obtained with PWE coefficients gl+
p .

5. Damages modeled as equivalent sources

Through the analysis of the scattering behaviors, the authors found that the field disturbance due to damages, which

as already indicated include missing, displaced, expanded, and shrunk fibers and circular inclusions, is equivalent to

setting line sources inside the initially organized fibers, on condition that the CWE coefficients of the emitted fields

satisfy specific relations. A brief introduction of equivalence theory in [8] is given here for completeness.

Fig. 6. CWE coefficients inside the fiber with an circular inclusion.

For a circular inclusion, express fields around the inclusion with CWE coefficients shown in Fig. 6. The applica-

tion of the Graf’s addition theorem [7] leads to

q(l,v)m = ∑
n∈Z

ϕ
J
n−m(k

l
f , o(l,v)− ō(l,v))b̄(l,v)n , (20a)

ā(l,v)m = ∑
n∈Z

ϕ
J
n−m(k

l
f , ō(l,v)−o(l,v))c(l,v)n . (20b)

Considering the linear relations of CWE coefficients in Eq. (7) and the following one from the boundary condition of

the inclusion,

b̄(l,v)m = R̄(l,v)
m ā(l,v)m , (21)

where R̄(l,v)
m is similarly defined as R(l,v)

m , q(l,v)m can be expressed as a function of a(l,v)m ,

q(l,v) =Π(l,v)a(l,v), (22)

where a(l,v) = [a(l,v)m ], Π(l,v) =
[
I−Φ(l,v)Rl,′

]−1
Φ(l,v)Tl,′, Rl,′ = diag

{
Rl,′

m

}
, Tl,′ = diag

{
T l,′

m

}
, Φ(l,v) = [Φ

(l,v)
m,n ], and

Φ
(l,v)
m,n = ∑

u∈Z
R̄(l,v)

u ϕ
J
u−m(k

l
f ,o

(l,v)− ō(l,v))ϕJ
n−u(k

l
f , ō

(l,v)−o(l,v)). (23)

From the above analysis, one can conclude that a circular inclusion can be equivalently modeled as a line source at

the fiber center on condition that its CWE coefficient q(l,v)m satisfies Eq. (22).
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Like equivalences are valid for the other concerned damages. For the displaced fiber, following an analysis similar

with the one for the circular inclusion, the relation in Eq. (22) is obtained but with a different definition of Π(l,v),

Π(l,v) = (Tl)−1
(

ϕ
(l,v)
1 Rl

ϕ
(l,v)
2 −Rl

)
, (24)

where ϕ
(l,v)
1 = [ϕJ

n−m(k
l
s,o(l,v)− õ(l,v)], ϕ

(l,v)
2 = [ϕJ

n−m(k
l
s, õ(l,v)−o(l,v))], õ(l,v) being the center of the displaced fiber.

For the missing, expanded, shrunk fiber, one gets the corresponding definition of Π(l,v) by reformulating the linear

relation of Eq. (7a). Since no fields are scattered by the missing fiber, b(l,v)m = 0. Then Eq. (7a) yields

q(l,v)m =−Rl
m

T l
m

a(l,v)m . (25)

For the expanded and shrunk fiber, the CWE coefficients are related by

b(l,v)m = R̃(l,v)
m a(l,v)m , (26)

where R̃(l,v)
m is similarly defined with Rl

m but with a different fiber radius. The rewritten form of Eq. (26),

b(l,v)m = Rl
ma(l,v)m +T l

m

[
1

T l
m

(
R̃(l,v)

m −Rl
m

)]
a(l,v)m , (27)

leads to

q(l,v)m =

[
1

T l
m

(
R̃(l,v)

m −Rl
m

)]
a(l,v)m . (28)

Thus, Π(l,v) is defined as diag
{
−Rl

m/T l
m
}

for the missing fiber and diag
{(

R̃(l,v)
m −Rl

m

)
/T l

m

}
for the expanded and

shrunk fiber. The coefficient of q(l,v)m (or a(l,v)m ) needs to be solved to determine the equivalent source and get the field

solution.

According to the scattering linearity about multiple sources, the field solution is decomposed as

V (r) =V inc(r)+ ∑
(l,v)∈D

∑
n∈Z

q(l,v)n Gn(r,o(l,v)). (29)

where V inc is the field solution w.r.t. the exterior source and Gn(r,o(l,v)) as the field response due to the cylindrical

wave ϕH(1)
n (kl

j,r(l,v)), i.e., the field solution by setting q(l,v)m = δm,n in Section 4. The second summed term in Eq. (29)

is based on the CWE representation of the field scattered by the equivalent source ∑n∈Z q(l,v)n ϕH(1)
n (kl

f ,r(l,v)).

The associated CWE coefficients of Eq. (29) have the similar relation,

a(l,v)m = a(l,v)m,inc + ∑
(l,v)∈D

∑
n∈Z

q(l,v)n a(l,v)m,n . (30)

The solution to a(l,v)m,inc and a(l,v)m,n is obtained during the computation of V inc and Gn(r,o(l,v)). The combination of

Eq. (22) and Eq. (30) yields the solution of q(l,v)m as

qD =
(

I−Π
D

Λ
D
)−1

Π
DaDinc, (31)

where the vector qD = [q(l,v)m ], aDinc = [a(l,v)m,inc] and matrix ΛD = diag
{

Λ(l,v)
}

, Λ(l,v) = [a(l,v)m,n ], ΠD = diag
{

Π(l,v)
}

,

(l,v) ∈ D. Finally, with the solution of q(l,v)m , the field solution is obtained by following Eq. (29).
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Remark that, since only the coefficients of damaged fibers are concerned in Eq. (31) and the number of damaged

fibers is usually small, the size of matrices in (31) is not large and the computational cost for the involved matrix

inversion is low. Moreover, since V inc, Gn, aDinc, ΛD are only related with the structure of the undamaged laminate and

the incident wave, which are usually known, these quantities can be computed in advance and stored.

6. Truncation of expansions

Table 1. Numerical strategy to truncate PWE and CWE.

1. Initialize the set of layer indexes L= {1,2, . . . ,L}, Ml = Mmax
l , l ∈ L, P = 0, threshold τ , and position of the

observation points (x′l ,z
′
l), x′l = x0

l , z′l = (z0
l + tl)/2.

2. Compute field values at (x′l ,z
′
l), l ∈ L, by CWE and PWE and denote the field solution by V l

c and V l
p.

3. If max{
∣∣V l

p−V l
c
∣∣ , l ∈ L}< τ , go to step 4; otherwise, update Pl = Pl +1 and go to step 2.

4. Update Ml = Ml−1 for l ∈ L and compute corresponding V l
p and V l

c .

5. If
∣∣V l

p−V l
c
∣∣≥ τ , l ∈ L, update Ml = Ml +1 and L= L\{l} . If L is empty, stop; otherwise, go to step 4.

PWEs and CWEs are infinite series and approximated by truncations ∑
P
p=−P and ∑

M
p=−M in the computation.

There is a trade-off in the selection of the truncation number P and M. Larger P and M lead to a higher computational

cost (especially considering hundreds even thousands of computation of the integrand for numerical integrations, e.g.

in Eq. (17)), while the modeling accuracy cannot be guaranteed with small values of P and M. Moreover, too large M

may lead to ill-conditioned matrices, which are inverted during the computation of scattering matrices.

In the authors’ previous work [7], P and M for the single-layer laminate are estimated by a numerical strategy

which benefits from the knowledge that field values computed by PWE and CWE in the vicinity of fibers are the same.

For multilayer structures, since the geometry and composing material might differ, optimal P and M might be changed

accordingly from one layer to another. Thus, the numerical strategy is adjusted to fit the modeling of multilayer

laminates. It is summarized in Table 1. Step 2 and 3 are to select P, the value for different layers being chosen to be

the same to facilitate mode matching on slab boundaries. Step 4 and 5 aim at reducing Ml , which denotes the truncation

number of CWE for the l layer, from its maximum value, which is set as Mmax
l = Int

(
ℜ

(
4.05×

(
kl

scl
)1/3

+ kl
scl

))
+7

[19], 7 being a security number. Parameter τ , which determines the modeling accuracy, is a small positive constant.

Remark that τ cannot be too small in order to avoid too large P and M. Values from 10−4 to 10−3 seem to be robust

and generate accurate enough field solution.

7. Numerical results

Truncation numbers P and M are first discussed with a 2-layer undamaged laminate. The material of the slab

is with relative permittivity ε1
s ,ε

2
s = 3.6+ i0.072 and the fiber materials are with ε1

f = 6, ℜ(ε2
f ) = 12, conductivity

σ2
f = 330 S/m. The fiber period is d = 0.1mm and the thickness of each slab is d. Fibers are placed in the middle of

each layer (i.e., z(l,0) = (tl + tl+1)/2) and no shift appears between the fiber arrays (i.e., x(1,0) = x(2,0)). The laminate

is illuminated by a plane wave E inc = e−iα0(z−d/2), α0 = k0
s sinθ inc, θ inc = π/6, with the TE polarization. Setting
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Fig. 7. Line graphs of CWE coefficients bm, M = 12, two-layer laminate with the plane-wave illumination, θ inc = π/6, λ inc = d.

τ = 10−3 in Table 1, the truncation scheme yields the selection value for P as 4, M1 = 8 and M2 = 12. The value

of M2 being larger than the one of M1 can be explained by observing the line graphs of CWE coefficients b(l,0)m (the

coefficients of other fibers follow the Floquet theorem) in Fig. 7. While the absolute value of b(l,0)m decreases with |m|,

since the radius of fibers in the second layer (c2 = 0.4d) is larger than that in the first layer (c1 = 0.1d), the decreasing

rate of |b(1,0)m | is faster than |b(2,0)m |, which means that the field solution around the fibers in the first layer converges

faster with M.

Validation of the proposed computational approach is performed with a 3-layer laminate sandwiched by air. Let

the fiber period d = 0.1mm, radius cl = (l + 1)d/10, l = 1,2,3, and the origin of the local coordinates systems

(x(l,0),z(l,0)) as z(l,0) = (tl + tl+1)/2, tl = 3d/2− ld. Fiber arrays in 2nd and 3rd layers are shifted with x(2,0) = 0.1d,

x(3,0) = −0.1d. Fiber materials are with ε1
f ,ε

3
f = 6, ℜ(ε2

f ) = 12, conductivity σ2
f = 330 S/m, while the slabs are

slightly lossy (loss tangents of 0.02) with ε1
s ,ε

3
s = 2.8+ i0.056, ε2

s = 3.6+ i0.072. Permeabilities µ l
j = 1, j = s, f .

The parameter τ in Table 1 is set as 10−4 to ensure the validation accuracy and the truncation number selected by the

truncation scheme is P = 5, M1 = 10, M2 = 11, M3 = 13, Ml the optimal M for the l-th layer.

Fig. 8. Geometry of COMSOL module, 43 fibers in each layer of the laminate, fiber radius c1 = 0.2d, c1 = 0.3d, c1 = 0.4d.

The solution to the Green’s function is validated by comparisons with COMSOL, which is based on a finite

element method, Fig. 8 shows the geometry of the COMSOL module which one uses, where 43 fibers are embedded

in each layer. Perfect matching layers (PMLs) are used to simulate open boundaries. PMLs above and below the
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laminate are chosen thicker than the others considering possibly strong reflections or transmissions.
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Fig. 9. Amplitude of sampled total fields vs number of fibers in COMSOL, rs = (0,0), λ inc = d, z = d, TM polarization.

Set the line source at o(1,0) and run COMSOL with default mesh settings [20] (physics-controlled mesh with

“Extremely fine” element size). Since scattered fields are often collected above the laminate, fields are sampled along

the line −5d ≤ x ≤ 5d, z = d, which is close to the laminate boundary so that evanescent components are counted

in the validation. The number of fibers, 43, is decided by observing the convergence of the field solution. As shown

in Fig. 9, with 41 fibers, adding one more fiber at each end of the laminate, the total-field solution generated by

COMSOL has almost no differences. In contrast, with 15 fibers, since the the fibers at the end of the laminate locate

close to the emitting source and the sampling region, their scattering effects cannot be neglected and, as a consequence,

significant differences are observed at tails when putting more fibers. The field solution with TE polarization has a

similar convergence.
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Fig. 10. Validation of the computation of the Green’s function by comparisons with COMSOL, rs = (0,0), λ inc = d, z = d, “COMSOL D”
denoting COMSOL solution with the default mesh settings and “COMSOL M” with manual settings.

The solution to the Green’s function computed by the presented approach is validated. As observed from Fig. 10,



14 Zicheng Liu etal / Journal of Computational Physics (2019)

with default mesh settings, although the field solution of the proposed approach fits COMSOL well with TM polar-

ization, differences appear with TE polarization. The “maximum element growth rate”, the parameter in COMSOL

determining the maximum rate at which the element size can grow [20], is then reduced from the defaulted 1.1 to

1.01 to have a finer mesh to more accurately represent the geometry. The field solution associated with this manual

setting is denoted by “COMSOL M” in Fig. 10 and, as observed, fits well with the proposed approach. The reciprocity

theorem is tested as well to check the modeling accuracy. Exchanging the position of source and observation points,

the relative error τ = |G(r,rs)−G(rs,r)|/ |G(r,rs)|, is less than 1.5×10−8.

0.1

0.2

(a) TM

0.1

0.2

(b) TE

Fig. 11. Amplitude of total (a) electric field and (b) magnetic field with a line-source illumination, rs = (0,d), λ inc = d, white lines indicating
the laminate structure.

Now, assume all the kinds of mentioned damages exist in the laminate. Specifically, the (1,−3)-th and (3,3)-

th fibers are missing, õ(2,−1)− o(2,−1) = (0.1d,0.1d) for the displaced fiber, c̃(2,0) = 0.7c2 for the shrunk fiber and

ō(1,2)− o(1,2) = (0.1c1,0.1c1), c̄(1,2) = 0.7c1 for the circular inclusion. A line source at rs = (0,d) illuminates this

damaged laminate with the wave H(1)
0 (k0

s rs)/(4i) , rs = |r− rs|, wavelength λ inc = d. In TM and TE polarizations, the

distributions of total-field amplitudes are shown in Fig. 11, where the amplitude is limited at 0.3 for easier appraisal.

In the TM case, most of the energy is reflected into the upper half space and little penetrates into the laminate, while

more energy propagates inside in the TE case.

To validate the computational approach for modeling defects, 500 values are respectively sampled along the line

z = 0, −5d ≤ x≤ 5d and the line z =−d, −5d ≤ x≤ 5d. The comparisons with results from COMSOL are shown in

Fig. 12. Two solutions again are generated by COMSOL with default mesh settings and manual settings (maximum

element growth rate changed as 1.01), respectively. Slight differences appear among the three solutions. However,

the fields computed by the proposed approach is between the two COMSOL solutions for most points, despite strong

fluctuations due to the size of component, i.e., slab thickness and fiber radius, close to the wavelength.

When the wavelength is much larger than the component size, the field inside the fiber should only be slightly

impacted by the damages and the Born approximation can be used as described in Appendix B. With the same

composite but setting λ inc = 100d and assuming only missing fibers exist, the comparison of computed anomalous

field is shown in Fig. 13. The peak value appears at the position corresponding to the (3,3)-th missing fiber due to its

larger radius (c3 = 0.4d while c1 = 0.2d).

The modeling efficiency is indicated by Table 2, which presents the computational time of reaching line graphs
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Fig. 12. Validation of modeling the damaged laminate through comparisons with COMSOL, rs = (0,d), λ inc = d, “COMSOL D” denoting
COMSOL solution with the default mesh settings and “COMSOL M” with manual settings.
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Fig. 13. Anomalous field computed by the proposed approach and the Born approximation, the (1,−3)-th and (3,3)-th fibers are missing,
rs = (0,d), λ inc = 100d, TM, z = 1.5d.

in Fig. 10(a), 10(b), 12(a) and 12(b) on a laptop (dual cores, clock speeds 2.6 GHz, memory 16 GB). The solution

of the Green’s function in Fig. 10(a) and 10(b) costs less than 16 seconds with the proposed approach. However,

as mentioned in Section 5, the computational time for the Green’s function can be saved, since it is not related with

defects and thus can be computed in advance and stored. Computing the quantities of V inc, Gn, aDinc, ΛD in advance, the
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Table 2. Comparison of computation time (in seconds)
Fig. 10(a) Fig. 10(b) Fig. 12(a) Fig. 12(b)

COMSOL D 20 18 16 18
COMSOL M 53 130 86 96

Proposed 11 15 0.26 0.23

efficiency for modeling the concerned damaged laminates is high and the computation of line graph by the proposed

approach in Fig.12(a) and 12(b) costs 0.26s and 0.23s, respectively. In contrast, COMSOL needs much more time to

reach approximated solutions.
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Fig. 14. Maps of anomalous field with the (l,2)-th and (l,2)-th fibers missing, l = 1,2,3,4, line source at (0,d), λ inc = d, TM.

Challenges in imaging are numerous. Generally, sources and receivers can only be put above the laminate in the

testing system to collect the information. Yet, for the damages inside deep layers, their impacts on the scattered field

might be reduced significantly due to losses and, therefore, these damages should not be easily identified. Investiga-

tions here are led on a 4-layer laminate by moving the missing fibers from layer to layer. Each layer of the laminate

enjoys the same structure and composition. Maps of anomalous field are found in Fig. 14, where only amplitudes

smaller than 0.02 are displayed for better appraisal. With graphite fibers and epoxy slabs, due to lossy fibers, the
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amplitude of the anomalous field in the upper half space significantly reduces as the missing fibers move deeper and

deeper. When the missing fibers show up at the bottom layer, one has almost no hint of damages when above the

laminate. However, changing the fiber material to lossless glass, as shown in the left figures of Fig. 14, the field

decays much slower in the propagation. As a result, the impacts of damages can be observed above the laminate even

if the missing fibers are located in the bottom layer.

8. Conclusion

The modeling of damaged periodic fibered laminates and the solution to the associated Green’s function are the

topics of concern herein. Modeling the undamaged laminates by computing the scattering matrices with a recursive

scheme, the solution to the Green’s function is obtained with the array scanning method, where the hypothesized

phased array is first analyzed with the quasi-periodic theory and the final solution follows from integration over the

first Brillouin zone. The field disturbance by missing, displaced, shrunk, and expanded fibers and circular inclusions

is modeled as equivalent sources. According to the scattering linearity, the field solution to the damaged laminate

is a summation of responses due to the exterior illuminating source and equivalent ones. The proposed modeling

approach is validated by comparing results from COMSOL or the Born approximation.

Circular damages associated with fibers are those concerned in this contribution. For damages within a slab but

outside fibers, the equivalence theory is to applied and solving the corresponding Green’s function is the first step. For

defects with arbitrary shapes, a method of moments within a proper field integral formulation can apply. The direct

modeling of twisted (instead of straight) fibers, which are randomly distributed in the background slab, is another

strong challenge ahead of the authors.

Behaviors of photonic crystals may be analyzed with the equivalence theory due to similar structures. For instance,

the so-called defect mode may be observed by selecting frequencies for a singular matrix in Eq. (31) [21].

Appendix A. Some variable definitions

In (2), E u
l , u = 1,2,3,4, are defined as the diagonal matrix of E u,p

l and

E 1
l,p =

2wl−1
p eiαp(xl−xl−1)ei[β l

p(tl−1−zl)−β l−1
p (tl−1−zl−1)]

wl−1
p +wl

p

E 2
l,p =

−(wl−1
p −wl

p)e
i2β l

p(tl−1−zl)

wl−1
p +wl

p

E 3
l,p =

(wl−1
p −wl

p)e
−i2β l−1

p (tl−1−zl−1)

wl−1
p +wl

p

E 4
l,p =

2wl
pe−iαp(xl−xl−1)ei[β l

p(tl−1−zl)−β l−1
p (tl−1−zl−1)]

wl−1
p +wl

p

where wl
p = β l

p/(µ0µ l
s) for TM and wl

p = β l
p/(ε0ε l

s) for TE, µ0, ε0 the permeability and permittivity of air.
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Rl
m, T l

m, Rl,′
m , T l,′

m in (7a) and (7b) are defined as

Rl
m =

η l
sJm(kl

scl)J̇m(kl
jcl)−η l

f J̇m(kl
scl)Jm(kl

jcl)

η l
f Jm(kl

jcl)Ḣ(1)
m (kl

scl)−η l
s J̇m(kl

jcl)H
(1)
m (kl

scl)
,

T l
m =

2iη l
s

πclkl
j

1

η l
f Jm(kl

jcl)Ḣ
(1)
m (kl

scl)−η l
s J̇m(kl

jcl)H
(1)
m (kl

scl)
,

Rl,′
m =

η l
sH(1)

m (kl
scl)Ḣ

(1)
m (kl

jcl)−η l
f Ḣ(1)

m (kl
scl)H

(1)
m (kl

jcl)

η l
f Jm(kl

jcl)Ḣ
(1)
m (kl

scl)−η l
s J̇m(kl

jcl)H
(1)
m (kl

scl)
,

T l,′
m =

2iη l
f

πclkl
s

1

η l
f Jm(kl

jcl)Ḣ
(1)
m (kl

scl)−η l
s J̇m(kl

jcl)H
(1)
m (kl

scl)
.

for TM, where η l
s and η l

f are characteristic impedances of the slab and sound fiber within the l-th layer, dots above

letters standing for the differential operator. Exchanging positions of η l
f and η l

s generates the TE formulas.

Appendix B. Application of the Born approximation

With missing fibers, the field disturbance can be valued by the Fredholm integral equation [22]

Ṽ (r)−V (r) = ∑
(l,v)∈D

∫
D(l,v)

G(r,r′s)
[
(kl

j)
2− (kl

s)
2
]

Ṽ (r′s)dr′s, (B.1)

where D(l,v) is the cross-section of the (l,v)-th fiber, V is the field solution for the sound laminate and Ṽ for the

damaged one. With large wavelengths, Ṽ (r′s)≈V (r′s), thus

Ṽ (r)−V (r)≈ ∑
(l,v)∈D

∫
D(l,v)

G(r,r′s)
[
(kl

j)
2− (kl

s)
2
]

V (r′s)dr′s. (B.2)

Denote g0
p as the PWE coefficients for G when the observation point is above the laminate and C(l,v)

m as the CWE

coefficients for V (r′s). Substituting the expression of G and V into the integrand, Eq. (B.2) is rewritten as

Ṽ (r)−V (r) =
d
4i

∫
π/d

−π/d
∑

(l,v)∈D
∑

m∈Z
Φ

(l,v)
m (α0)C(l,v)

m dα0, (B.3)

where Φ
(l,v)
m is the m-th column of Φ(l,v),

Φ(l,v) = Γ(l,v)D l+
0

Θl+C L+1
l− Ψ

−1
l Ωl−+Ωl+

Ξl−Θl+C L+1,
l− Ψ

−1
l Θl−Bl+

0

TlJ (B.4)

where Γ(l,v) =
[
ei(αp(x−vd)+β 0

p (z−t1))
]

and J = diag
{

kl
f clJm+1(kl

f cl)Jm(kl
scl)− kl

sclJm(kl
f cl)Jm+1(kl

scl)
}

. The integra-

tion in (B.3) is computed by numerical methods.
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