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A Transparent Bilateral Control Scheme for a Local Teleoperation
System Using Proportional-Delayed Controllers

José Enrique Hernández-Dı́ez1 Silviu-Iulian Niculescu2 César-Fernando Méndez-Barrios1

Emilio Jorge González-Galván1 and Raúl Hernández-Molinar1

Abstract— This paper addresses the closed-loop stability
analysis problem of a bilateral local teleoperation system in
the presence of delays, with the purpose of maintaining a
kinematic correspondence between a master and a slave device.
The stability analysis is proposed as a general analysis in the
controller’s parameter-space under the assumption of two fixed
delays, considering one due to the signal and communication
processing and one defined as a design delay for the controller.
Furthermore, a method for measuring the fragility of the con-
trollers is also proposed. Finally, experimental results obtained
from an experimental platform consisting of two Phantom
Omni haptic devices and the Matlab-Simulink toolkit Phansim
illustrate the performance of the proposed approach and the
video of the experiments can be downloaded from the authors’
dedicated website1.

I. INTRODUCTION

The development of teleoperation systems have become
a very popular tool in multiple applications due to two
main benefits: safety and precision. In other words, the
safety of a human operator working in hostile environments
can be greatly enhanced by using a teleoperation system
[1], where the most important goal is to replace the direct
human manipulation (see, [2], for further details), and
perform in high precision operations [3] (and the references
therein). This work pertains to the development of local
teleoperation systems in which the main goals are to have a
high precision system able to work with motion and force
scaling. More precisely, in this paper we first focus in the
ideal case in which the system must have a perfect degree
of telepresence on the remote environment and a full sense
feedback to the operator [4], [5]. As mentioned in [6], [3] a
system having such a performance is nothing but a perfectly
transparent system. Therefore, in order to create an ideal,
efficient and confortable workspace, a teleoperation system
must be perfectly transparent. There are two conditions
required to achieve such a property: impedance matching
and kinematic correspondence and they will be explicitly
addressed in the sequel.

Some of the most widely used linear controllers in robotics
are the so called P-D (Proportional-Derivative) controllers.
Even though several techniques have been developed for a
better performance, there are still situations in which the
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noise produced by non-desired high frequency signals may
lead to unexpected behaviors in some experimental tests. As
suggested by Niculescu and Michiels [7] (see also [8]), in
the context of the stabilization of chains of integrators, we
may replace the derivative part of the controller by a delay
block, and thus the PD controller may be replaced by a
P−δ (Proportional-Delayed) controller. This paper explores
such an idea in the context of a transparent bilateral control
scheme including delays. In order to achieve a kinematic
correspondence between the master and the slave in the
delay case Liacu et al. [9] proposed a particular control
scheme where the controllers for both master and slave
are identical and of PD type. In this paper, we focus on
the use of P− δ controllers instead of PD controllers and
we are characterizing the stability regions in the controller
parameter-space.

The main contribution of the paper is the stability analysis
in the controller’s parameter-space. We propose a straight-
forward method to compute the stability analysis by using
D−Partition curves [10], the Boundary Crossing Theorem
[11] and the Implicit Function Theorem [12]. The main
goal consists in finding all the controller’s regions in the
controller’s parameter-space such that the closed-loop system
is asymptotically stable. The proposed approach requires
three steps:

1) Constructing the stability crossing boundaries in the
appropriate parameter-space;

2) Computing the crossing direction in which, by using an
appropriate choice of parameters, the roots move from
one region to another by crossing the same boundary;

3) The explicit localization of the stability regions in the
parameter-space.

In the procedure above, the first step defines a partition of
the parameter-space defined by the controller’s parameters
in several regions, each region having a constant number
of unstable roots for all the controller’s gains inside the
boundaries of the region. Such a method is nothing else than
the D−Decomposition method introduced by Neimark in
1949 ([10]) and largely discussed in the literature (see, for
instance, [13]). Throughout this paper, a stability crossing
boundary (curve) is interpreted as the set of parameters for
which the characteristic equation of the closed-loop system
has at least one root on the imaginary axis. Next, in step
two, an argument based on the implicit function theorem is
used to detect if a region contains more or less unstable



roots compared to its neighboring regions. Finally, the third
step allows detecting the regions in which the controllers
guarantee the stability of the system in closed-loop.

Furthermore, in order to quantify the maximum allowable
parameter deviation in the controller’s gains of the system
to ensure closed-loop stability, a geometrical method for
measuring fragility is proposed. This method consists
in computing the minimum distance from a point in
the controller’s parameter-space to the stability crossing
boundaries (curves).

The experimental results presented in this work were
obtained by using two Phantom Omni haptic devices, as the
one depicted in Fig. 6, together with a test bench developed
on the Phansim toolkit (for further details, the reader is
referred to [14]) for Matlab-Simulink. The videos of some
of the experiments performed in this frame can be founded
at the authors dedicated website.

II. PRELIMINARY RESULTS

It is well known that the dynamics of a haptic device as
the one shown in Fig. 6 can be modeled by considering a
Lagrangian formulation [3], as follows:

M (θ) θ̈ +C
(
θ , θ̇

)
θ̇ +B = Fλ , (1)

where M is the inertia matrix, C is the Coriolis matrix, B
is a vector associated to the effect of gravity, Fλ is the
torque input vector and θ is the angular position vector. The
derived model is clearly non-linear. Now, inspired by the
contributions of [3], [9], a few assumptions can be taken into
account in order to describe the dynamics of the system as a
decoupled time-invariant linear model. This is formed by the
three mechanical admittances of each joint in the following
form:

P(s) :=
Θ(s)
Λ(s)

=
1

s(ms+b)
, (2)

where each mechanical admittance P(s) is described by
the transfer function from each torque input Λ(s) to its
respectively angular position Θ(s) and depicts the behavior
of each mechanical joint.

In our case, the main goal of the proposed control
scheme is to achieve a kinematic correspondence between
the master and slave device. As illustrated in Fig. 1, the
main idea is to maintain a perfect bilateral position tracking
under the interaction of the exogenous forces of the human
and the remote environment on the master and the slave
device, respectively. The ideal result is to have a complete
perception of the remote environment to the human operator
and a complete telepresence of the human operator on the
remote environment (see, for instance, [6], [15]).

The bilateral control scheme proposed in this paper is
shown in Fig. 2, where τp is considered as the delay due
to signal processing, Λh and Λe are the exogenous torques
related to the human operator and the remote environment,
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Fig. 1. Bilateral Control Scheme (Conceptual).

respectively, PM and PS are the mechanical admittances of
the master and the slave device, respectively; furthermore,
a similar notation is used for the controllers CM and CS and
the angular positions ΘM and ΘS. This scheme is a variation
of the one presented in [9] for haptic-virtual systems,
however here, we have considered the time delays due to
signal processing and, instead of using a P-D controller, a
P-δ controller is proposed and discussed in detail later.
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Fig. 2. Bilateral Control Scheme.

From Fig. 2, the equations describing the system response
can be written as follows:[
1+PM(s)CM(s)e−τps −PM(s)CM(s)e−τps

−PS(s)CS(s)e−τps 1+PS(s)CS(s)e−τps

][
ΘM(s)
ΘS(s)

]
=

[
PM(s)Λh
−PS(s)Λe

]
.

In this paper, we consider the case in which P(s) :=
PM(s) =PS(s) and we fully characterize the system by setting
C(s) :=CM(s) =CS(s). Then, taking into account the above
considerations, the characteristic equation of the closed-loop
system can be rewritten as follows:

2P(s)C(s)e−τps +1 = 0. (3)

III. MAIN RESULTS - STABILITY ANALYSIS

As mentioned in the Introduction, one of the main goals
in this paper is to find a solution for the kinematic cor-
respondence problem presented above by using the P-δ
(Proportional-Delayed) controller of the form:

C(s) = Kp +Kδ e−τs, (4)

where Kp and Kδ are scalar gains and τ is a fixed and known
parameter. In the sequel, without any loss of generality, we
can say that the analysis presented in this paper can be used
in any of the decoupled time-invariant systems of each joint
(2). The characteristic function ∆ : C 7→C, of the system (3)
can be rewritten as:

∆(s) := ms2 +bs+2e−τps(Kp +Kδ e−τs), (5)



which has the structure of a quasi-polynomial, where m and
b are parameters covering all the cases defined by (2).

A. D-partition Curves

It is well known that a continuous variation of the
parameters of a quasi-polynomial in which there is no
change of degree implies a continuous variation of the
roots of the quasi-polynomial in the complex plane (see,
for instance [16], [13]). Let T denote the set of all
K = [Kp,Kδ ]

T ∈ R2 forming the Kp −Kδ parameter-space
such that (5) has at least one root on the imaginary axis.
Also let Ω denote the frequency set of all real numbers ω

also called crossing frequency set. Any K ∈T is known as
a crossing point and each subset of T , which is continuous
in R2, is known as a D−partition curve or a stability
crossing curve.

Remark 1: If ω is a real number, K ∈R2 and τ is a fixed
value such that τ ∈R+ then ∆(−iω) = ∆(iω). Therefore, in
order to find all the stability crossing curves, we only need
to consider positive ω .

Bearing in mind the discussion above, the following result
describes the set of all crossing points:

Proposition 1: Let τp, τ ∈ R+ and Ω :=∪
i

Ωi, where

Ωi := {ω ∈ R+∪{0}|ω ∈ (πi
τ
, π(i+1)

τ
);∀i ∈ Z+∪{0}}. (6)

Then, ω ∈Ω is a crossing frequency if and only if K(ω) =
[Kp(ω),Kδ (ω)]T given by:

Kp(ω)=
mω2(cos(τpω)−cos((2τ+τp)ω))+bω(sin(τpω)−sin((2τ+τp)ω))

4sin2(τω)
,(7)

Kδ(ω)=
−mω2 sin(τpω)+bω cos(τpω)

2sinτω
, (8)

defines a crossing point K(ω) ∈T .
Proof: Consider the characteristic function (5), then, it

is clear that all the crossing points K ∈ T are given by the
pairs K ∈R2 solving (5) for s= iω . It is easy to see that such
solutions can be obtained by the solution of the following
system of equations:

ℜ(∆(iω)) = 0, ℑ(∆(iω)) = 0.

This system of equations is solved for Kp and Kδ straight-
forwardly by using simple algebraic manipulations. The
solution of the system is presented in equations (7) and (8),
respectively. Furthermore, from equations (7) and (8), it is
easy to see that Kω(ω) is a real solution if and only if ω 6= n π

τ

for n ∈ Z+∪{0}.

Remark 2: There exists some particular case in which a
solution Kω(ω) is not well defined for ω = 0. In this case,
the stability crossing curve related to s = 0 can be found
through (5) as:

∆(0) = 2Kp +2Kδ = 0, (9)

or the points on the line:

Kδ =−Kp. (10)

Given all the crossing points K and the crossing-frequency
set Ω, we can define each stability crossing curve through
its continuity, as follows:

To := {K ∈ R2|Kδ =−Kp}, (11)

Ti := {Kω(ω) ∈ R2;∀ω ∈Ωi}, (12)

for i ∈ Z+∪{0}. It is evident that

T =∪
i

Ti∪To. (13)
Given all the stability crossing curves in the Kp − Kδ

parameter-space and considering the boundary crossing
theorem (for further details, see, for instance [11]). It is
clear that the Kp−Kδ parameter-space is partitioned by the
stability crossing curves in stable and unstable regions and
in which the characteristic equation (5) has a finite number
of unstable roots.

B. Crossing Directions

Proposition 2: A simple root, or a pair of simple roots of
function (5), moves from the left half complex plane (LHP)
to the right half complex plane (RHP) as K crosses a stability
crossing curve with ω = 0 or ω 6= 0, respectively, in the
increasing direction of Kχ for χ ∈ {p,δ} if:

Cχ = mωS(ηχ ,ω)− b
2

C(ηχ ,ω)+ τpKpF(τ,ω,ηχ) (14)

+(τp + τ)Kδ F(τp + τ,ω,ηχ)> 0,

where:

F(y,ω,ηχ) = cos(yω)C(ηχ ,ω)+ sin(yω)S(ηχ ,ω), (15)

C(ηχ ,ω) = cos((τp +ηχ τ)ω), S(ηχ ,ω) = sin((τp +ηχ τ)ω),
(16)

and where the indicative function ηχ is defined as:

ηχ =

{
0 i f χ = p,
1 i f χ = δ .

(17)

Furthermore, the crossing is from the RHP to the LHP if the
inequality (14) is reversed.

Proof: The proof follows straightforwardly from the
fact that the derivative of the implicit function s(Kx) along
Kx is given by

ds
dKx

=−
∂∆

∂Kx
∂∆

∂ s

.

Thus, the real part of the previous derivative evaluated on a
stability crossing point for x = p and x = δ is computed as:

ℜ

{
ds

dKp

}
, ℜ

{
ds

dKδ

}
,

respectively. The sign of both equations can be described by
the inequality (14) which is arranged in a practical structure
by the indicative function ηx previously defined.



In order to derive an algorithm to characterize the stability
regions by a number of unstable roots (invariant in each
region), let’s assume that we have `−regions R1, R2, . . . ,R`,
with ` ≥ 2. Without any loss of generality, assume that R1
and R2 are the first two neighboring regions (relabeled if
necessary) of interest (for instance, closest to the origin),
and let K

( j)
be a point on the boundary of regions R j and

R j+1. We have the following algorithm:

Algorithm 1 Stability Regions Characterization
Let N j denote the number of roots of (5) in the RHP for
R j. Set the initial values as j := 0, K

(0)
:= [0,0]T and N0 :=

1+ 1−sgn(mb)
2 .

Step 1) Let Cχ be a direction (pointing in the increasing
direction) passing through K

( j)
;

Step 2) If K
( j)

/∈ T0, by means of Proposition 2 com-
pute N j+1 = N j +2sgn Cχ , otherwise N j+1 = N j +
sgn Cχ ;

Step 3) Set j := j+1;
Step 4) If j < ` go to step 1. Otherwise continue to step

5;
Step 5) End.

Remark 3: Observe that, for [Kp, Kδ ]
T = K

(0)
, (5) is a

second-degree polynomial having a root on the origin, and
consequently the second root can be determined by simple
inspection.

The above iterative process characterize directly the quali-
tative behavior of the system response as the controller gains
traverse the Kp−Kδ parameter-space.

C. Fragility

Consider now the fragility problem, which is the problem
of computing the maximum controller parameters’ deviation
without loosing the closed-loop stability given by some
known values K∗ = (K∗p,K

∗
δ
)T , such that the roots of the

equation:
∆
(
s;K∗p,K

∗
δ

)
= 0, (18)

are located in C− (that is the closed-loop system is asymp-
totically stable). This is analogous to find the maximum
parameter deviation d ∈ R+ such that the roots of (18) stay
located in C− for all controllers K satisfying:√

(Kp−K∗p)2 +(Kδ −K∗
δ
)2 < d. (19)

First, let us introduce some notations: for a fixed K∗ :=
(K∗p,K

∗
δ
)T ∈R2 and K(ω)= (Kp(ω),Kδ (ω))T (taken directly

from Proposition 1), introduce the function ξ :R+→R+, as:

ξ (ω) :=
√

(Kp(ω)−K∗p)2 +(Kδ (ω)−K∗
δ
)2. (20)

We have the following:
Proposition 3: Let K∗ = (K∗p,K

∗
δ
)T be a stabilizing con-

troller then, the maximum parameter deviation : “d” of K∗

without loosing the property of stability can be computed
by:

d = min{d`,do} , (21)

where d` and do are given by:

d` = min
ω∈Ω f

{ξ (ω)}, do =
1√
2
(K∗p +K∗

δ
), (22)

where Ω f denote the set of all roots of f (ω) defined as:

f (ω) :=
〈
(K(ω)−K∗),

dK(ω)

dω

〉
, (23)

and 〈·, ·〉 refers to the inner product.
Proof: Taking into account the fact that K∗ belongs

to a stability region delimited by the stability crossing
curves, it is clear that the system will loose its stability
if the controller K∗ has a parameter deviation such that it
crosses for at least one of its boundaries. Therefore, the
objective is to compute the minimal distances between
K∗ and the different boundaries of the stability region. In
order to compute the minimal distance between a point K∗

and the stability crossing curves with ω 6= 0, we need to
identify the points K(ω) in which the tangent vectors to
the curve are orthogonal to K(ω)−K∗ which are the roots
of equation (23) and where the minimum distance d` to a
stability crossing curve with ω 6= 0 is given by (22).

On the other hand, notice that the borders of the stability
crossing curve related to ω = 0 are described by equation
(10). Now substituting in (20), it leads to:

ξ (0) =
√

2K2
p +2(K∗

δ
−K∗p)Kp +(K∗2

δ
+K∗2p ), (24)

which is the distance between the point K∗ and the stability
crossing curve related to ω = 0, the point K in which ξ (0)
is globally minimal is given by the solution of the following
equation:

dξ 2(0)
dKp

= 4Kp +2(K∗
δ
−K∗p) = 0, (25)

then, this minimal value is do and can be obtained by
substituting the solution in equation (24) which is the right
part of (22). Finally, the minimal distance d can be computed
by using (21).

IV. ILLUSTRATIVE AND EXPERIMENTAL RESULTS

For our experimental setup the delay is estimated to
be τp = 0.001 seconds. The parameters of the system are
identified by using a methodology based on a least squares
algorithm and are shown in table I. In all following examples,
we propose a fixed delay value τd = 0.1 seconds in the design
of the P-δ controller.

TABLE I
PARAMETERS OF THE SYSTEM.

Joint m b
1 0.0131 0.0941
2 0.0307 0.1719
3 4.28×10−5 0.1066



A. Stability Analysis

In order to describe the process of finding the stability
regions, the system formed by the joint one is considered
as an illustrative example. Figure 3 and table II shows the
process of finding the stability regions as established in the
Algorithm 1, where N denotes the number of unstable roots
in the RHP for any K on each region or in the origin.

Fig. 3. Crossing Directions Analysis for the Joint One

TABLE II
CROSSING DIRECTIONS.

Point Kp Kδ ω ηχ Cχ Sign
A 0 0 0 0 −0.0471 −
B 47.9954 −0.1070 85.5119 0 0.0282 +
C 80.0735 3.7006 110.6978 1 −0.9807 −
D 126.0201 −14.9816 131.9937 0 −0.9285 −

Fig. 4. Stability Regions for the Joint Three

B. Fragility

In this example, we measure the fragility of three different
stabilizing controllers K∗1 , K∗2 and K∗3 for the joint two. The
results are derived by using Proposition 3 and are shown in
Tab. III. In order to illustrate this results, Fig. 5 shows three
circles centered at K∗1 , K∗2 and K∗3 with radius d for each
different analysis.

Fig. 5. Fragility Results for the Joint Two

TABLE III
FRAGILITY RESULTS.

K Kp Kδ ω ξ (ω) d` do d
K∗1 9.2 −3 ±34.7359 27.5812 4.9366 4.3841 4.3841
K∗2 37.6 10 ±30.15 8.2095 9.7071 33.6583 9.7071
K∗3 60 0.2 ±65.7019 193.8010 4.8357 42.5678 4.8357

C. Experimental Results

In order to illustrate how the proposed controller works,
we consider the experimental setup consisting in two Phan-
tom Omni haptic devices as the one depicted in Fig.6 (in
a master/slave configuration), implemented by means of the
Matlab-Simulink toolkit Phansim. It is also worth mentioning
that the angular positions were normalized with respect to
the mechanical stops of each joint. Now, using the stability
analysis described above, we chose the controller’s gains
as K = [20,2]T , K = [20,1]T and K = [10,2]T for the joint
one, two and three, respectively. Furthermore, we propose an
experimental test perceiving a plastic sphere as it is shown in
figure 6. This consists in manipulating the master device in
order to “feel” the plastic sphere in a remote environment,
where the slave device is located (it is worth to mention,
that it is not necessary that the master and slave are located
“close” to each-other. However, for illustrative purposes only
we have chosen the proposed physical configuration for the
visualization of the experiment). The experimental results
are illustrated in figures 7(a), 7(b) and 8. Furthermore, Fig.
8 shows how the control scheme implemented drives the
trajectory of the master device which is also guided by the
human operator, following the path created by the human
operator but restricted by the plastic sphere located in the
remote environment, this creates the “feel” sensed by the
human operator.

V. CONCLUDING REMARKS

The bilateral control scheme using the P-δ controller
presented in this paper shows a good performance in terms of
enabling a kinematic correspondence between the master and
slave device. Furthermore, the closed-loop stability analysis
method can be applied in a straightforward way. Therefore,
this method can be easily implemented for practical appli-
cations. Finally, we aim to have experimental results show-
ing a performance comparative between PID (Proportional-



Fig. 6. Experimental setup.
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Integral-Derivative) like controllers and the proposed P− δ

controller for the final version of this paper.

ACKNOWLEDGMENT

This work is supported in part by DIGITEO-France and
by the research grant PRODEP DSA/103.5/15/7488.

REFERENCES

[1] S. Skaar and C. F. Ruoff, “Teleoperation and robotics in space,” in
American Institute of Aeronautics and Astronautics, 1994.

[2] K. Kim, J. Park, H. Lee, and S. K., “Teleoperated cleaning robots for
use in a highly radioactive environment of the dfdf,” in Proc. SICE-
ICASE International Joint Conference, 2006.

[3] M. Tavakoli, R. V. Patel, M. Moallem, and A. Aziminejad, Haptics for
Teleoperated Surgical Robotic Systems. World Scientific Publishing
Company, 2003.

−60 −40 −20 0 20 40 60 80
−60

−40

−20

0

20

−80

−60

−40

−20

0

20

40

Y (mm)

 

X (mm)

 

Z
(m

m
)

Master
Slave

Fig. 8. Trajectory of the system under the perception of a sphere

[4] N. Tanner and G. Niemeyer, “Improving perception in time delayed
telerobotics,” International Journal of Robotics Research, 2005.

[5] L. Jones and I. Hunter, “Human operator perception of mechanical
variables and their effects on tracking performance,” ASME Advances
in Robotics, 1992.

[6] K. Hashtrudi-Zaad and S. E. Salcudean, “Transparency in time-delayed
systems and the effect of local force feedback for transparent teleoper-
ation,” IEEE Transactions on Robotics ans Automation, vol. 18, no. 1,
pp. 31–38, 2002.

[7] S.-I. Niculescu and W. Michiels, “Stabilizing a chain of integrators
using multiple delays,” IEEE Trans. Aut. Control, vol. 49, no. 5, pp.
802–807, 2004.
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