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Stability Analysis of Systems with Delay-Dependant Coefficients: a
two-Parameter Approach

Chi Jin1, Keqin Gu2, Islam Boussaada1, Silviu-Iulian Niculescu3,

Abstract— Stability of systems with a single delay and delay-
dependent coefficients is studied along the line of the τ-
decomposition approach. Criteria for determining crossing
directions of imaginary characteristic roots with possibly mul-
tiplicity are presented, with which system stability for any
given delay value can be determined in a systematic way. In
contrast to the previous research on this type of systems, our
analysis is based on a novel two-parameter framework. With the
new geometric insight, stronger criteria concerning the crossing
direction of imaginary characteristic roots with possibly multi-
plicity can be obtained using simplified and intuitive arguments.
The stability analysis procedure is illustrated with an example
inspired by biological applications.

I. INTRODUCTION

Time-delay systems appear in a wide range of applica-
tions including population dynamics, network control and
biological systems, and have attracted significant attention
from the mathematical, control and biological community.
See the books [3], [5], [6] for summaries of the progress
made in this field.

A number of effective methods have been proposed for
linear delay systems with delay-free coefficients in [1], [2],
[13]. These methods are along the line of D-decomposition
[14], [15] and are based on the fact that the solutions of the
characteristic equation depend on the system parameters con-
tinuously. As a special case, the so-called τ-decomposition
method [16] regards the time delay as the parameter. The
general idea of this method is first to identify the critical
delay values for which the system admit imaginary roots.
Those critical delay values separate the delay interval into
several subintervals. By identifying the crossing direction
of these imaginary roots, one can determine the change of
the number of characteristic roots on the right half plane
as τ sweeps through each critical delay, and thus determine
system stability for any delay value.

However, in some practical applications the system coef-
ficients may depend on the delay. These models include the
stellar dynamos [11], the hematopoietic stem cell dynamics
[12], and the population models with age structure [9].
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The characteristic equation of this population model can be
written as

λ
2 +aλ + c+(b(τ)λ +d(τ))e−λτ = 0 (1)

where a = mJ +mA +aJs, b(τ) = (aA−aJ)se−mJτ ,
c = mAmJ +aJmAs, d(τ) = (aAmJ−aJmA)se−mJτ .

Beretta and Kuang studied a restricted class of such sys-
tems and proposed an effective method of stability analysis
based on the graph of functions [9]. Our previous work [17]
relaxed some restrictive assumptions in [9] and developed a
more complete method for stability analysis.

However, the method developed in [17] is still restrictive in
the sense that no higher-order derivatives have been obtained,
and numerical method may have to be used if the locus of
a characteristic root near the imaginary axis is tangent to
the imaginary axis as the delay varies. Another restriction is
that it cannot treat multiple imaginary roots. In this paper, we
develop a two-parameter approach. We first view the delay
parameter in coefficients and in the state as two independent
parameters, say r and q, respectively. Then stability is first
investigated on the r− q plane and the restraint r = q = τ

is subsequently imposed to determine the stability of the
original system. This method is more geometrical in nature,
and it is able to remove the restrictions of the method in [18].
Specifically, it can treat systems with multiple imaginary
characteristic roots, or locus of characteristic roots tangent
to the imaginary axis. When appropriate differentiability
conditions are satisfied, higher-order derivatives may also be
derived based on this formulation, thus allowing us to derive
crossing directions analytically in more general cases.

The following notation will be used in this paper. Let
sgn(·) denote the sign function. For any complex number
s, ℜ(s) notes the real part of s. We use Bδ (s) to denote a
closed ball with radius δ > 0 centred at some point s on the
complex plan.

II. PROBLEM STATEMENT

We consider systems with the following characteristic
equation:

D(λ ,τ) = P(λ ,τ)+Q(λ ,τ)e−λτ = 0, (2)

where P(λ ,τ) and Q(λ ,τ) are polynomials in λ and contin-
uous in τ . Function P(λ ,τ), Q(λ ,τ), D(λ ,τ) may be written
as Pτ(λ ), Qτ(λ ) and Dτ(λ ), respectively, to emphasize that
they are considered as functions of λ with τ as the parameter.
Introduce a function F as

F(ω,τ) = P( jω,τ)P(− jω,τ)−Q( jω,τ)Q(− jω,τ). (3)



Clearly if λ = jω is an imaginary characteristic root of
Dτ(λ ), we must have

F(ω,τ) = 0. (4)

We may also denote F(ω,τ) as Fτ(ω). The same F function
is also introduced in [9] and [17].

We now state a set of standing assumptions that hold
throughout this paper.

Assumption I. For all τ ∈I , there exits n≥ 0 such that the
order of polynomial Pτ equals n. The following also holds
for τ ∈I :

lim
ω→∞

∣∣∣∣Qτ( jω)

Pτ( jω)

∣∣∣∣< 1. (5)

Assumption II. No (ω,τ) ∈ R+×I satisfies{
P( jω,τ) = 0,
Q( jω,τ) = 0,

simultaneously.
Assumption III. There are only a finite number of pairs
(ω,τ) in R+×I that simultaneously satisfy (4) as well as

∂ω F(ω,τ) = 0. (6)

Define TF as the set of the τ that appear in such pairs.
Assumption IV. For all τ ∈I , λ = 0 is not a characteristic
root of Dτ(λ ). Furthermore, let Tc be the set of all τ ∈I for
which Dτ(λ ) admits imaginary roots. Each element of Tc is
referred to as a critical delay. Any bounded delay interval
contains at most a finite number of critical delays.

Assumption I-IV should hold for general systems with
characteristic equations of the form (2) except for some
degenerated cases. See [17] for more detailed discussion of
this aspect as well as the implication of these assumptions.
In our previous work [9], we require P(λ ,τ) and Q(λ ,τ) to
be differentiable at any critical delay. It is also assume there
that if jω∗ is an imaginary root of Dτ∗(λ ), then F ′

τ∗(ω
∗) 6= 0.

These assumptions are no longer required in this work.
Our objective is to determine the delay intervals contained

in I for which system (2) is asymptotically stable. For
this purpose, We will also investigate how imaginary roots
migrate as τ increases and sweeps through the critical delay.

III. STABILITY ANALYSIS

The main idea for stability analysis here is along the line
of the τ-decomposition method. We arrange the elements of
Tc, namely all the critical delays, in an ascending order as

τ
l ≤ τ1 < τ2 < · · ·< τL ≤ τ

u.

Our assumptions guarantee that there exists c > 0 such that
any characteristic root of Dτ(λ ) with real part greater than
−c varies continuously with τ [17]. Consequently, as τ

sweeps through I , the number of characteristic roots on the
right half complex plane (R.H.P) is constant in any interval
that contains no critical delay.

There are two important aspects of the stability analysis:
i) Identifying the values of τ such that there is at least one

root of Dτ(λ ) on the imaginary axis, as well as the cor-
responding imaginary roots. ii) Determining how imaginary
roots migrate, namely whether these imaginary roots move
from the R.H.P to the left half complex plane (L.H.P), or vise
versa, or merely touches the imaginary axis and then returns
to the original side as τ increases through these values.

In this section, we will consider the first aspect and provide
a precise formulation of the root migration problem. Criteria
for computing the crossing direction of the imaginary roots
will be given in the next section.

A. Conditions for imaginary characteristic roots

Recall the set TF defined in Assumption III. We agree to
order the elements of TF ∪{τ l ,τu} in an ascending order

τ
(0) < τ

(1) < · · ·< τ
K . (7)

Then, we may partition I into K subintervals:

I (i) = [τ(i−1),τ(i)], i = 1,2, . . . ,K. (8)

It has been shown in [17] that the number of real roots of
F(ω,τ) in ω are constant for all τ in the interior of I (i),
and they are all simple. These roots are continuous functions
of τ in I (i) and denoted as ω

(i)
k (τ), k = 1,2, · · · ,m(i), and

m(i) is the number of real roots of Fτ(ω) for τ ∈I (i). We
refer to the graph of each ω

(i)
k (τ) as a frequency curve. We

further introduce a set ΩF(τ) that collects all different values
of the real roots of Fτ(ω). More precisely, we define:

ΩF(τ) =
⋃

k=1,2,··· ,m(i)

{ω(i)
k (τ)} if τ ∈I (i). (9)

Since ∂ω F(ω
(i)
k (τ),τ) 6= 0 for any τ in the interior of I (i),

we can denote:

sgn(i)k = sgn
(

∂ω F(ω
(i)
k (r),r)

)
,∀r ∈ (τ(i−1),τ(i)). (10)

Then sgn(i)k is just a constant number. For given i, k, define:

θ
(i)
k (τ) =∠P( jω(i)

k (τ),τ)−∠Q( jω(i)
k (τ),τ)

+ω
(i)
k (τ)τ +π. (11)

Here the quantity ∠P( jω(i)
k (τ),τ) measures the phase an-

gle of P( jω(i)
k (τ),τ) and is continuous on I (i). Similar

properties also apply to the quantity ∠Q( jω(i)
k (τ),τ). These

two quantities are well defined in view of Assumption II.
Consequently, each function θ

(i)
k (τ) is continuous on I (i)

and its range is not limited to any interval of 2π . The graph
of each θ

(i)
k (τ) is referred to as a phase curve.

It is easy to see that jω∗ is an imaginary characteristic
root of Dτ∗(λ ), τ∗ ∈I if and only if there exist some i, k
such that

θ
(i)
k (τ) = 2lπ, l integer (12)

and ω∗ = ±ω
(i)
k (τ∗). Therefore one can obtain Tc, the set

of all critical delays by solving (12).



Regarding the population model (1), we set mA = 0.2,
mJ = 0.1, s = 1, aJ = 0.5, aA = 3 and analyse the system
for τ ∈I = [τ l ,τu] = [0,14]. We have:

P(λ ,τ) = λ
2 +aλ + c, Q(λ ,τ) = b(τ)λ +d(τ),

F(ω,τ) = (c−ω
2)2 + |aω|2−|b(τ)ω|2−d(τ)2

= ω
4 +ω

2(a2−b2(τ)−2c)+ c2−d2(τ). (13)

Using (13), (6) can be written as

∂ω F(ω,τ) = 4ω
3−2ω(a2−b2(τ)−2c).

Solving (4) together with (6) for (ω,τ) ∈ R×I we obtain
two solutions in τ , namely τ ≈ 6.108 and τ ≈ 11.695. By def-
inition τ(0) = 0, τ(1)≈ 6.108 and τ(2)≈ 11.695. Therefore I
can be decomposed into I (1) = [0,τ(1)], I (2) = [τ(1),τ(2)],
I (3) = [τ(2),τu]. From (13) we further obtain

ω
(1)
1 (τ) = 2−

1
2

√
b2(τ)+2c−a2 +∆

1
2 (τ),τ ∈I (1),

ω
(2)
1 (τ) = 2−

1
2

√
b2(τ)+2c−a2 +∆

1
2 (τ),τ ∈I (2),

ω
(2)
2 (τ) = 2−

1
2

√
b2(τ)+2c−a2−∆

1
2 (τ),τ ∈I (2),

where ∆(τ) = (b2(τ)+2c−a2)2−4(c2−d2(τ)). The graph
of ω

(1)
1 (τ), ω

(2)
1 (τ), ω

(2)
2 (τ) are plotted in the upper diagram

of Fig.1. We have function θ
(1)
1 (τ) defined in I (1) and

functions θ
(2)
1 (τ), θ

(2)
2 (τ) defined in I (2). The graph of

these functions are plotted in the lower diagram of Fig. 1.
We find the graph of θ

(1)
1 (τ) intersects the horizontal line

located at 0 at point D and the corresponding delay value
is τ1 ≈ 0.846. The graph of θ

(2)
2 (τ) intersects the horizontal

line located at 2π at point E and the corresponding delay is
τ2 = 11.566. By definition Tc = {τ1,τ2}.
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Fig. 1. The graph of function ω
(i)
k and θ

(i)
k associated with the population

model (1).

B. Counting unstable roots

Suppose jω∗ is an imaginary characteristic root of Dτ∗(λ )
with multiplicity µ ≥ 1 for some critical delay τ∗ ∈I . The
continuous dependence of the characteristic roots on τ means
that for any sufficiently small positive number δ , one can find
ε(δ )> 0 such that for any ∆τ with an absolute value smaller
than ε(δ ), Dτ∗+∆τ(λ ) has exactly µ roots within Bδ ( jω∗).
We will investigate how these imaginary roots migrate as τ

sweeps through a small neighbourhood of τ∗. To make this
problem precise, we define Nu(τ,Bδ ( jω∗)) as the number of
roots of Dτ(λ ) contained in Bδ ( jω∗)∩ R.H.P. Recall the set
Tc introduced in Assumption IV and the set ΩF(τ) defined
in (9). For each τ∗ ∈Tc and ω∗ ∈ΩF(τ

∗) define:

Inc(ω∗,τ∗) =
1
2

lim
ε→0+

(
Nu(

τ
∗+ ε,Bδ ( jω∗)

)
−Nu(

τ
∗− ε,Bδ ( jω∗)

))
, if τ

∗ 6= τ
l , (14)

Inc(ω∗,τ∗) = lim
ε→0+

Nu(
τ
∗+ ε,Bδ ( jω∗)

)
−Nu(

τ
∗,Bδ ( jω∗)

)
, if τ

∗ = τ
l , (15)

Inc(τ∗) = ∑
ω∗∈ΩF (τ∗)

2Inc(ω∗,τ∗). (16)

As τ sweeps increasingly through a critical delay value τ∗,
the quantity Inc(ω∗,τ∗) counts how many roots migrate
toward R.H.P through the point jω∗ and the quantity Inc(τ∗)
is just equal to the change of unstable characteristic roots.
The coefficient 2 in (16) is due to the symmetry of imaginary
roots about the real axis. If λ = jω∗ is a simple character-
istic root, then Inc(ω∗,τ∗) = 1 means this root crosses the
imaginary axis towards R.H.P. It moves towards L.H.P if
Inc(ω∗,τ∗) = −1. Otherwise this root merely touches the
imaginary axis but does not cross it.

We will refer to the characteristic roots on R.H.P as the
unstable roots. We shall determine the number of unstable
roots for any given τ ∈ I denoted as Nu(τ). It is easy to
see the following relation holds for τ ∈I −Tc:

Nu(τ) = Nu(τ l)+
L(τ)

∑
k=1

Inc(τk), (17)

where L(τ) is the index of the largest critical delay that is
smaller than τ , or equivalently τL(τ) < τ .

IV. CROSSING CONDITIONS

In this section we will provide formula to compute the
quantity Inc(ω∗,τ∗) introduced in the last section. For this
purpose, we will first present a novel two-parameter per-
spective of systems with delay-dependent coefficients to gain
some geometric insight.

A. A two-parameter perspective

Consider the characteristic equation

D̃(λ ,r,q) = P(λ ,r)+Q(λ ,r)e−λq = 0, (18)



where q,r ∈ I are two independent parameters. Then
equation (2) becomes equivalent to (18) if we impose the
restriction q = r = τ . We denote

D̃rq(λ ) = D̃(λ ,r,q)

For any r ∈I (i) that satisfies ω
(i)
k (r) 6= 0, define

τ
(i)
k (r) =

∠Q( jω(i)
k (τ),τ)−∠P( jω(i)

k (τ),τ)−π

ω
(i)
k (r)

. (19)

In (18) let Parameter r ∈I be fixed. It is easy to see that
a necessary and sufficient condition for jω∗, ω∗ > 0 to be a
characteristic root of D̃rq∗(λ ) is that the following equations

ω
∗ = ω

(i)
k (r), (20)

q∗ = τ
(i)
k (r)+2lπ/ω

(i)
k (r), l integer, (21)

hold together for some i,k.
Consider the square region I ×I on the r−q parameter

plane. Our analysis so far has shown that as the parameter
point (r,q) moves in this region, (18) admits some imaginary
roots if and only if (r,q) lies on one of the critical delay
curves. Therefore the critical delay curves split the parameter
domain on the r−q plane into closed sub-regions and within
the interior of each sub-region the number of unstable roots
is invariant.
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Fig. 2. The critical delay curves of the population model (1)

In Fig.2 the blue and red curves are the critical delay
curves of the population model (1). The blue ones correspond
to the graphs of a family of functions τ

(i)
k (τ)+2lπ/ω

(i)
k (τ)

parameterized by integer l and i = 1,2, k = 1. The red
curves corresponds to the graphs of a family of functions
τ
(2)
2 (τ)+ 2lπ/ω

(2)
2 (τ) parameterized by the integer l. Now

consider two points A and B, which forms a vertical line
segment. A, B are in two different but adjacent parameter
regions denoted by RA, RB respectively. Let the parameter
(r,q) start moving from A vertically towards B, or in other
words we fix r and increase q continuously. When the point
reaches a boundary curve at Point C some imaginary roots
appear. By monitoring whether this imaginary root move
towards R.H.P or L.H.P as τ further increases one can

determine how the the number of unstable roots changes
as the parameter crosses the boundary curve and enters
RB from RA. The next result from [18] shows that the
moving direction of the imaginary roots are captured by the
differential information of Function F with the parameter
(r,q) fixed at the crossing point.

Lemma 1: Let r in (18) be fixed. Suppose λ = jω∗ is
an unrepeated root of (18) for q = q∗. Then for (λ ,q) in a
neighbourhood of ( jω∗,q∗), (18) defines λ as a differentiable
function of q denoted by λ (q). The following holds:

sgn
(

ℜ

(
dλ (q∗)

dq

))
= sgn

(
∂ω F(ω∗,r)

)
. (22)

The original system (2) is just equivalent to (18) with
restriction r = q = τ . Therefore as the delay value in (2)
sweeps through I , on the r− q plane the parameter point
(r,q) moves along the 45 degree dashed green line in Fig. 2
and thus enters or leaves different stability regions of the
r− q plane. The dashed green line intersects the critical
delay curves at Point D and E, therefore that at these
points imaginary roots appear. This conclusion is consistent
with our previous analysis based on (12). Then the crossing
direction of these imaginary roots may be determined by
applying Lemma 1 and taking into account whether the 45
degree line crosses the critical delay curves from below
or from above. In the next section, we will exploit this
geometric idea to carry out the stability analysis.

B. Crossing conditions for the original system

In this section we study the crossing direction of the
imaginary roots of (2) by considering (18) with the restriction
r = q = τ . We need some notation for the formulation of the
main theorem.

To any number r ∈ (τ(i−1),τ(i)] we assign a fixed number
r− ∈ (τ(i−1),r) requiring that Dτ(λ ) admits no imaginary
root for τ ∈ [r−,r). We also assign a a fixed numbers r+ ∈
(r,τ(i)) to any r ∈ [τ(i−1),τ(i)) requiring that Dτ(λ ) admits
no imaginary root for τ ∈ (r,r+].

Suppose τ∗ ∈ [τ(i−1),τ(i)). Let λ = jω∗, ω∗ > 0 be a
characteristic root of Dτ∗(λ ). If τ∗ = τ(i−1), set i′ = i− 1,
otherwise set i′ = i. Introduce a set K+(τ

∗) which collects
each k that satisfies the following two conditions simultane-
ously:

θ
(i)
k (τ∗) = 2lπ, l integer, (23)

lim
τ→τ∗+

sgn
(
θ
(i)
k (τ)−θ

(i)
k (τ∗)

)
=−1. (24)

Similarly, if τ∗ 6= τ l define K−(τ∗) as the set of each k′ that
satisfies the following two conditions:

θ
(i′)
k′ (τ∗) = 2lπ, l integer, (25)

lim
τ→τ∗−

sgn
(
θ
(i′)
k′ (τ)−θ

(i′)
k′ (τ∗)

)
=−1. (26)

We note that (24) is just equivalent to

lim
r→τ∗+

sgn
(
r− τ

(i)
k (r)−θ

(i)
k (τ∗)/ω

(i)
k (r)

)
=−1



and (26) is equivalent to

lim
r→τ∗−

sgn
(
r− τ

(i′)
k′ (r)−θ

(i′)
k′ (τ∗)/ω

(i′)
k′ (r)

)
=−1

Therefore K+(τ
∗) is just the set that collects all index k such

that on the r− q plane some branches of the critical delay
curves of the form τ

(i)
k (r)+θ

(i)
k (τ∗)/ω

(i)
k (r) that approaches

the 45 degree line q = r from below as r→ τ∗+ and reaches
the point (τ∗,τ∗) at r = τ∗. We have the same interpretation
for the set K−(τ∗) except that we should replace ’r→ τ∗+’
with ’r→ τ∗−’ and i with i′.

We further decompose each set K+(τ
∗) or K−(τ∗) into

subsets by the frequency of different imaginary eigenvalues.
Define

K+(ω
∗,τ∗) = {k ∈K+(τ

∗)|ω(i)
k (τ∗) = ω

∗},

K−(ω
∗,τ∗) = {k ∈K−(τ

∗)|ω(i′)
k (τ∗) = ω

∗}.

Return to the population model (1), consider Point
D = (τ1,τ1) in the second plot of Fig.1. Since at this point
ΩF contains only one element, namely ω

(1)
1 (τ1) and at

Point D the curve of θ
(1)
1 (τ) has a tangent with positive

slope, we deduce that K−(τ1) = K−(ω
(1)
1 (τ1),τ1) = {1}

and K+(τ1) = K+(ω
(1)
1 (τ1),τ1) = {φ}.

Theorem 1: Suppose τ∗ ∈ [τ(i−1),r(i))− {τ l} and λ =
jω∗, ω∗ > 0 is a characteristic root of Dτ∗(λ ). Let i′ = i−1
if τ∗ = τ(i−1), otherwise let i′ = i. The following holds

Inc(ω∗,τ∗) = ∑
k∈K+(ω∗,τ∗)

sgn(i)k − ∑
k∈K−(ω∗,τ∗)

sgn(i
′)

k , (27)

where the quantity sgn(i)k is defined in (10).

Due to the limited space, here we only sketch the proof
of Theorem 1, which is based on the geometric construction
illustrated in Fig.3. On the r−q parameter plane, we define
four points whose coordinates are given as follows

A = (τ∗− ε1,τ
∗− ε1), B = (τ∗− ε1,τ

∗− ε0),

C = (τ∗+ ε1,τ
∗− ε0), D = (τ∗+ ε1,τ

∗+ ε1),

where ε1, ε0 are two small positive numbers with ε0 > ε1 and
are chosen in such a way that the following two conditions
hold:

(i) Segment AB intersects the graphs of τ
(i′)
k (τ) +

θ
(i′)
k (τ∗)/ω

(i′)
k (τ) if and only if k ∈ K−(τ∗). (ii) Segment

CD intersects the graphs of τ
(i)
k (τ)+θ

(i)
k (τ∗)/ω

(i)
k (τ) if and

only if k ∈K+(τ
∗).

Denote the intersections between Segment AB and the
the graphs of τ

(i′)
k (τ) + θ

(i′)
k (τ∗)/ω

(i′)
k (τ), k ∈ K−(ω∗,τ∗)

as P1,P2, · · ·PK−. Denote as well the intersections between
Segment CD and the the graphs of τ

(i)
k (τ)+θ

(i)
k (τ∗)/ω

(i′)
k (τ),

k ∈K+(ω
∗,τ∗) as Q1,Q2, · · ·QK+.

Let Bδ ( jω∗) be a ball on the complex plane centred at
jω∗ with radius δ . Let µ∗ be the multiplicity of the charac-
teristic root jω∗ of Dτ∗(λ ). For any sufficiently small δ , we
can make ε0, ε1 sufficiently small and thus ensure there are

exactly µ∗ characteristic roots of Drq(λ ) in Bδ ( jω∗) as (r,q)
moves along the path ABCD. Consequently we can deduce
that as (r,q) moves alone the path ABCD, a unique imaginary
characteristic root appears inside Bδ ( jω∗) if and only if
(r,q) passes through P1,P2, · · · ,PK− and Q1,Q2, · · · ,QK+. By
applying Lemma 1 at each of these points to determine the
crossing directions, (27) can be concluded.

Fig. 3. Illustration for the proof of Theorem 1. The blue curves represents
the critical delay curves, namely the graph of τ

(i)
k (r)+θ

(i)
k (τ∗)/ω

(i)
k (r) for

some appropriate indices i, k.

Corollary 1: Suppose τ∗ ∈ [τ(i−1),r(i))−{τ l} is a critical
delay. Let i′ = i− 1 if τ∗ = τ(i−1), otherwise let i′ = i. The
following holds

Inc(τ∗) = ∑
k∈K+(τ∗)

2 sgn(i)k − ∑
k∈K−(τ∗)

2 sgn(i
′)

k (28)

This corollary is a direct consequence of Theorem 1 and
(16). The following results can be derived from Theorem 1.
We omit the proof.

Proposition 1: Suppose τ∗ ∈ [τ(i−1),τ(i))−{τ l}, and λ =

jω(i)
k (τ∗) is an unrepeated characteristic root of Dτ∗(λ ).

Denote ω∗ = ω
(i)
k (τ∗). For τ in a neighbourhood of τ∗ this

root is a function of τ written as λ (τ). If τ∗ = τ(i−1), set
i′ = i−1, otherwise let i′ = i. Let k′ be the index that satisfies
(25). We have the following criterion concerning the crossing
direction of the imaginary root λ (τ∗):

lim
ε→0+

sgn
(
ℜ(λ (τ))

)∣∣τ=τ∗+ε

τ=τ∗−ε
= 2Inc(ω∗,τ∗), (29)

Inc(ω∗,τ∗) =
1
2

sgn(i)k ×
(

sgn
(
θ
(i)
k (τ∗+)−θ

(i)
k (τ∗)

)
−sgn

(
θ
(i′)
k′ (τ∗−)−θ

(i′)
k′ (τ∗)

))
. (30)

In the last proposition, if τ∗ 6= τ(i−1), we must have i = i′

and k = k′, then (30) clearly shows that the crossing direction
of the imaginary root jω∗ associated with the frequency
function ω

(i)
k (τ) is determined by the monotonicity of the

phase function θ
(i)
k (τ) at τ∗ as well as the quantity sgn(i)k .

On the other hand, if in the last proposition τ∗ = τ(i−1), it
is easy to see θ

(i)
k (τ∗) = θ

(i′)
k′ (τ∗)+2lπ , for some integer l.



Therefore one can concatenate θ
(i)
k (τ) with θ

(i′)
k′ (τ)+2lπ at

τ∗ to form one continuous phase function, say θ(τ). Then
from (30) we can deduce the same correlation between the
crossing direction of the imaginary characteristic root jω∗

and the monotonicity of θ(τ) at τ∗ as in the case of i = i′.
Proposition 2: Suppose τ∗ ∈ [τ(i−1),τ(i)) and jω(i)

k (τ∗) =
jω∗ is an unrepeated imaginary characteristic root of Dτ∗(λ ).
In a neighborhood of ( jω∗,τ∗), the characteristic equation
(2) implicitly determines λ as a function of τ denoted as
λ (τ). It follows that

lim
τ→τ∗+

sgn(ℜ(λ (τ))) = sgn
(
θ
(i)
k (τ∗+)−θ

(i)
k (τ∗)

)
sgn(i)k . (31)

Assume that there exists a positive integer nd such that
( d

dτ
)nd P( jω,τ) and ( d

dτ
)nd Q( jω,τ) exist at ( jω∗,τ∗). Fur-

thermore, assume that nd satisfies ( d
dτ
)lθ

(i)
k (τ∗) = 0, for

1≤ l < nd and ( d
dτ
)nd θ

(i)
k (τ∗) 6= 0. Then the following holds:

sgn

((
d

dτ

)l

ℜ(λ (τ∗))

)
= sgn

((
d

dτ

)l

θ
(i)
k (τ∗)

)
×sgn(i)k , (32)

for 1≤ l ≤ nd .

It is worth mentioning that Proposition 2 is reduced to the
first-order root-crossing criteria given in [17] when l = 1 in
(32).

C. Stability of the population model

In the previous analysis of the population model (1) we
have already decomposed I into I (i), i = 1,2,3 and we
know τ(0) = 0, τ(1) ≈ 6.108, r(2) ≈ 11.695, and τ(3) = τu =
14. We also have Tc = {τ1,τ2} and τ1 ≈ 0.845, τ2 ≈ 11.566.
It is easy to check Nu(0) = 0. We pick arbitrarily a number
in (τ(1),τ1) as τ1−. and a number in (τ1,τ

(2)). From the
lower diagram of Fig. 1 it is easy to see sgn(θ (1)

1 (τ1−)−
θ
(1)
1 (τ1)) = −1 and sgn(θ (1)

1 (τ1+)− θ
(1)
1 (τ1)) = 1. Simple

computation shows sgn(1)1 = 1. It thus follows from (30) that
Inc(τ1) = 2Inc( jω(1)

1 (τ∗1 ),τ1) = 2. In other words, the pair
of characteristic roots ± jω(1)

1 (τ1) crosses the imagine axis
towards R.H.P as τ increases beyond τ1. We can make the
same conclusion about the crossing direction of this pair
of imaginary root by invoking Proposition 2 and noticing
d

dτ
θ
(1)
1 (τ1) > 0. We now consider the critical delay τ2. We

pick arbitrarily two numbers τ2− ∈ (τ(1),τ2) and τ2+ ∈
(τ2,τ

(2)). From the lower diagram of Fig. 1 it is easy to see
sgn(θ (2)

2 (τ2−)−θ
(2)
2 (τ2)) =−1, sgn(θ (2)

2 (τ2+)−θ
(2)
2 (τ2)) =

1. We can verify sgn(2)2 = −1. Applying (30) we deduce
Inc(τ2) = 2Inc( jω(2)

2 (τ2),τ2) = −2. Therefore the pair of
roots ± jω(2)

2 (τ2) cross the imaginary axis towards L.H.P
as τ increases and sweeps through τ2. It is easy to verify
d

dτ
θ
(2)
2 (τ2) > 0, then Proposition 2 yields the same result.

Consequently, we conclude that the system is asymptotically
stable for τ ∈ [0,τ1)∪ (τ2,14] and has two unstable charac-
teristic roots for τ ∈ (τ1,τ2).

V. CONCLUSION

In this paper stability of time-delay systems with delay-
dependent coefficients is studied. A systematic method is
proposed to determine the number of unstable characteris-
tic roots for a given delay interval of interest. The delay
interval is decomposed into subintervals such that within
each subinterval a fixed number of frequency functions and
phase functions are well defined. Using these functions we
present various criteria concerning the crossing direction
of the imaginary characteristic roots. It is shown that the
crossing direction of these roots is closely related to the
monotonicity of the phase functions at the critical delays.
In comparison with the previous related work, our analysis
is based on relaxed assumptions and yields more general
results applicable also to multiple imaginary roots. The two-
parameter perspective provides geometric insight into our
problem and allows for more intuitive interpretation of the
results.

REFERENCES

[1] K. L. Cooke and P. van den Driessche, “On zeroes of some transcen-
dental equations,” Funkcialaj Ekvacioj, vol. 29, pp. 77–90, 1986.

[2] F. G. Boese, “Stability with respect to the delay: On a paper by K.L.
Cooke and P. van den Driessche,” J. Math. Anal. Appl, vol. 228, pp.
293–321, 1998.

[3] Gu, K., Kharitonov, V. L., &Chen, J. (2003). Stability of time-delay
systems.

[4] Gu, K. (2012). A review of some subtleties of practical relevance for
time-delay systems of neutral type. ISRN Applied Mathematics, Vol
2012, Article ID 725783, 46 pages, doi: 10.5402/2012/725783.

[5] Michiels, W., & Niculescu, S. I. (2014). Stability, Control, and Com-
putation for Time-Delay Systems: An Eigenvalue-Based Approach (Vol.
27). Siam.

[6] S. I. Niculescu : Delay effects on stability. A robust control approach,
Springer: Heidelberg, Series: LNCIS, vol. 269, 2001.

[7] P. Fu, J. Chen, S. I. Niculescu. ”High-order analysis of critical stability
properties of linear time-delay systems.” In American Control Confer-
ence, 2007. ACC’07, pp. 4921-4926.

[8] Chen, J., Gu, G., Carl N. Nett, A new method for computing delay
margins for stability of linear delay systems, Systems & Control Letters,
Volume 26, Issue 2, 22 September 1995, Pages 107-117.

[9] Beretta, E., Kuang, Y. (2002). Geometric stability switch criteria in
delay differential systems with delay dependent parameters. SIAM
Journal on Mathematical Analysis, 33(5), 1144-1165.

[10] R. M. Nisbet, W. S. C. Gurney, J. A. J. Metz, Stage structure models
applied in evolutionary ecology, Biomathematics, 18 (1989), pp. 428-
449.

[11] Wilmot-Smith, A. L., et al. ”A time delay model for solar and stellar
dynamos.” The Astrophysical Journal 652.1 (2006): 696.

[12] F. Crauste, ”Global Asymptotic Stability and Hopf Bifurcation for a
Blood Cell Production Model.” on-line document (2005).

[13] K. Walton and J. E. Marshall, “Direct method for TDS stability
analysis,” IEE Proc. vol. 134, part D, pp. 101-107, 1987.

[14] E. N. Gryazina, B. T. Polyak, and A. A. Tremba, “D-decomposition
technique state-of-the-art,” Automation and Remote Control, vol. 69, no.
12, pp. 1991–2026, 2008.

[15] L. E. El’Sgol’ts and S. B. Norkin, Introduction to the Theory and Ap-
plication of Differential Equations with Deviating Arguments, Translated
by J. L. Casti, Academic Press, New York, 1973.

[16] M. S. Lee and C. S. Hsu, “On the τ-decomposition method of stability
analysis for retarded dynamical systems,” SIAM J. Control, 7:249, 259,
1969.

[17] K. Gu, C. Jin, I. Boussaada and S. I. Niculescu, ”Towards more general
stability analysis of systems with delay-dependent coefficients,” 2016
IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV,
2016, pp. 3161-3166.

[18] K.L. Cooke, Pauline Van Den Driessche. ”On zeroes of some tran-
scendental equations.” Funkcialaj Ekvacioj 29.1 (1986): 77-90.


