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Abstract  

We propose to use steady state measurements and a teaching-learning-based optimization (TLBO) 

algorithm to get the complete set of material transport parameters of disordered semiconductors, 

taking undoped hydrogenated amorphous silicon as an example. First, the steady-state conductivity 

under illumination and the ambipolar diffusion length (Lamb) are measured for several temperatures and 

generation rates. The steady-state photocarrier grating (SSPG) technique is used for the evaluation of 

Lamb. Then, the TLBO algorithm is used for the obtainment of the material parameters that best satisfy 

the charge neutrality and the continuity equations. The use of this algorithm allowed us to get an 

excellent estimation of the valence band tail slope, as compared to the one obtained from 

measurements of the absorption coefficient by Fourier transform photocurrent spectroscopy and 

transmittance/reflectance. The dangling bonds and the conduction band tail parameters were also 

found to be in very good agreement with those measured from high frequency modulated photocurrent 

experiments (MPC). Numerical simulations show that the capture coefficients of the band tails and 

defects states can also be estimated, although with less precision than the DOS parameters. 

 

1. Introduction 

In the search of energy sources alternative to fossil fuels, photovoltaic devices based on 

disordered semiconductors are especially attractive due to their low cost and their direct band gap 

leading to a high absorption coefficient [1]. The most thoroughly studied disordered semiconductor is 

hydrogenated amorphous silicon (a-Si:H), which attracted considerable attention in the past and has 

currently many applications [2,3]. In a-Si:H, localized states are extremely important because they act as 

traps and recombination centers for the free carriers (i.e., those located in delocalized states). The 

localized states are energetically situated between the valence band edge (EV) and the conduction band 

edge (EC). It is usually assumed that the carrier mobility in localized states is null, and for that reason the 

energy region between the band edges is called the mobility gap [4]. The concept of a mobility gap was 

first introduced in Ref. [5], where the authors also propose band tails extending from the band edges 

towards the mobility gap, originated by the disorder of the structure. Nowadays, band tails are 
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recognized as a common characteristic of disordered semiconductors [3,6]. In addition to the tail states, 

coordination defects also introduce dangling bond (DB) states, located around midgap. Hydrogen is 

extremely important in a-Si:H, since these atoms saturate silicon DBs and remove defects from the gap, 

although a density of around 1016 cm-3 defects remain even in device-quality material. Powell and Deane 

[7] and Schumm [8] developed a chemical equilibrium model that describes the hydrogen-mediated 

creation of defects in a-Si:H, generically known as Defect Pool Model. According to this model, the 

density of deep states consists in the sum of three Gaussian functions, corresponding to negatively 

charged, neutral and positively charged defects. The density of states (DOS) distribution within the 

mobility gap of a-Si:H, and the values of the parameters that describe the DOS, are still a matter of 

debate. These values are needed as input parameters for all those simulation programs dealing with the 

modeling and optimization of devices incorporating a-Si:H layers [9,10].  

Several experimental methods have been developed to obtain the DOS within the mobility gap 

of amorphous semiconductors exhibiting photoconductivity. These methods can be classified into two 

broad categories: (i) methods where the experimental data are used directly to determine the DOS, 

based on an approximate reconstruction formula derived from a theoretical analysis of the experiment 

[11,12]; and (ii) methods where an initial DOS described by several parameters is proposed, obtaining 

the parameter values from a fit of the experimental data with a formula provided by the theoretical 

description of the experiment [6,13]. The main drawback of the methods belonging to the first category 

is that several approximations are needed to obtain an analytical formula for the DOS, which is usually 

valid over only a limited energy range. Moreover, accepted values for the carrier mobilities and for the 

capture coefficients are usually assumed. The main drawback of the second group of methods is that no 

less than twenty parameters are involved in the description of the DOS, generating concerns about the 

uniqueness of the fit. However, the continuous growth of the calculation power of computers and the 

constant evolution of optimization algorithms increase the capability of the second group of methods, 

especially when a single set of parameter values is used to fit the results of several measurements.  

In this work, we test the possibility of using the continuity and charge neutrality equations for 

the determination of the material parameters of undoped a-Si:H. The proposed methodology consists 

on first performing measurements of steady state conductivity under illumination and ambipolar 

diffusion length, for a wide range of temperatures (T) and generation rates (G), on thin film samples 

provided with coplanar ohmic contacts. From these measurements, the steady-state concentrations of 

free electrons and holes,        and       , are determined for each condition. Then, a simplified 

Teaching-Learning-Based Optimization (TLBO) algorithm [14,15] is used for finding the set of material 

parameters that best satisfy the continuity and charge neutrality equations for all temperatures and 

generation rates. The procedure could have been implemented by numerically solving the integrals 

describing the trapped charge and the recombination rates, but the computing time was minimized by 

using approximate analytic solutions for those integrals. Our approach is based on considering that 

transport, trapping and recombination of carriers take place via a multiple-trapping (MT) process. In this 

MT model free carriers move by continuous trapping and release into and from localized states. 

However, the possibility of carrier hopping through localized states should also be considered, as 

suggested by some experimental results [4,16,17]. According to these works, hopping may become the 

dominant transport mechanism at low temperatures (low free carrier densities), especially in samples 

with a high defect density. The fundamental equations describing hopping conductivity are presented in 
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appendix A. In the present work, we perform steady-state photoconductivity measurements under a 

quite intense illumination. Taking into account that the photoconductivity of a-Si:H is about five orders 

of magnitude larger than dark conductivity (for room temperature and below), the large number of 

charge carriers excited by the light to the bands, where the extended states are located, certainly 

implies that the transport channel through extended states dominates over transport by hopping 

between localized states. Indeed, Merazga et al. [18] reproduce with a numerical simulation the 

photoconductivity measurements over a wide range of temperatures (25-500 K) for device-quality a-Si:H 

samples of different doping levels. In their numerical simulations, carriers’ transitions occur from 

localized states to extended states and vice versa (multiple-trapping process) and also from localized to 

localized states (hopping process).They conclude that, for undoped device-quality a-Si:H at a generation 

rates of 1020 cm-3s-1, the hopping mechanism is predominant only for temperatures below 110 K, being 

the multiple trapping mechanism the one that dominates for higher temperatures (see Fig. 7 in Ref. 

[18]). Similar results are obtained by Longeaud and Tobbeche in Ref. [19]. Based on these results we 

have neglected hopping in our equations, since our steady-state photoconductivity measurements are 

performed at similar generation rates and temperatures larger than 130 K. 

This paper is organized as follows. In section 2 we present some preliminary considerations 

about the DOS of a-Si:H and the basics of the method. In section 3 we test the proposed method 

through a numerical simulation for undoped a-Si:H. In section 4 we describe the experimental 

procedures that we apply to find the material parameters of an a-Si:H sample. In this case, the 

ambipolar diffusion length was measured with the steady state photocarrier grating (SSPG) technique 

[20]. In section 5 we present and discuss the results. We compare the value that we obtain for the slope 

of the valence band tail with the Urbach tail of the absorption coefficient measured from 

transmittance/reflectance and Fourier transform photocurrent spectroscopy [21]. We also compare the 

part of the DOS corresponding to the conduction band tail and the deep states with the results obtained 

from the high frequency modulated photocurrent (MPC) experiment [22]. Finally, the conclusions of the 

previous sections are summarized in section 6. Three appendices are added to present a compendium of 

basic definitions and elemental equations, and to detail some of the approximations used in this work. 

2. Basics of the method 

Figure 1 shows the density of states of undoped a-Si:H that we will use as a basis for our 

discussion. This DOS can be considered as typical for device-grade a-Si:H, according to the current 

knowledge of the material [4]. The conduction band tail (CBT) is usually taken as acceptor-like, while the 

valence band tail (VBT) is generally taken as donor-like. These localized monovalent states (i.e., that can 

only be singly occupied) are represented by exponential functions decreasing from the band edges into 

the gap, and are a consequence of the long range disorder of the amorphous atomic lattice. The 

parameters that describe the decrease of the exponential functions are the characteristic temperatures 

TC for the CBT and TV for the VBT. Conversely, the deep states are amphoteric or bivalent in nature, i.e., 

they can be doubly occupied by electrons or holes, and for a-Si:H they have got a positive correlation 

energy U greater than 0.1 eV [23]. Occupying a bivalent state with one electron requires an energy E, 

while occupying the same state with a second electron requires a greater energy E+U. These states are a 

consequence of coordination defects in the lattice, especially dangling bonds (DB) [4]. The functional 



4 
 

dependence with energy of these states when occupied with one electron is generally described by 

several Gaussian functions distributed along the mobility gap. Each Gaussian function is characterized by 

the integrated area    
 , the energetic position    

  and the standard deviation   . According to the 

previous description, the DOS in the mobility gap of a-Si:H as a function of the first electron energy is: 

           
    

           
    
      

   
 

     
 

       
  

 

   
 

  ,   (1) 

where the first term corresponds to the valence band tail NVBT(E), the second to the conduction band tail 

NCBT(E) and the third term NDB(E) is the summation over i Gaussian functions representing the deep 

states. kb is Boltzmann’s constant. 

 

Figure 1. The continuous line corresponds to the undoped a-Si:H density of states used in 

the numerical simulations, with the dangling bonds states plotted as if they were singly 

occupied. The dash line shows the DB density of states while they are doubly occupied.  

A localized monovalent acceptor state is neutral when occupied with a hole, and in this case can 

trap an electron (but not another hole). When occupied with an electron it is negatively charged and can 

trap a hole. As a consequence, an acceptor state is usually designated with the 0/- symbol, which 

represents its possible charge states. On the other hand, a monovalent donor state is positively charged 

when filled with a hole and has no charge when occupied with an electron (therefore, it is represented 

with the +/0 symbol). As a consequence of the electrostatic interaction between the trap and the free 

carriers, for acceptor states the hole capture coefficient (cp) should be larger than the electron capture 

coefficient (cn). On the other hand, for donor states the opposite inequality should hold (cn > cp) [24]. 
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A bivalent state has three different charge possibilities (+/0/-): it is positive when occupied with 

two holes, neutral when occupied with one hole and one electron, and negative when filled with two 

electrons. Consequently, these states have four capture coefficients: the positive ones have a unique 

electronic capture coefficient (  
 ) because they cannot trap holes; the neutral states have an electron 

(  
 ) and a hole (  

 ) capture coefficient; and the negative ones have a unique hole capture coefficient 

(  
 ) because they cannot trap electrons. According to the Coulombian interaction between the 

amphoteric state and the free carriers, the following inequalities must be verified:   
    

    
    

  [24]. 

The steady-state occupation functions of monovalent and amphoteric states are presented in appendix 

A.  

For an amorphous semiconductor in steady state at a given absolute temperature T and under a 

certain uniform generation rate G, the system of equations composed by charge neutrality and 

continuity equations is verified. The charge neutrality equation can be written as 

        ,       (2) 

where    is the total positive charge and    the total negative charge. Each of them is the sum of three 

terms, 

                               .    (3) 

p, pVBT and pDB are the concentrations of free holes, trapped holes in the valence band tail and trapped 

holes in the dangling bonds, respectively. Similarly, n, nCBT and nDB represent the free electron 

concentration, those trapped in the conduction band tail and those trapped in the dangling bonds, 

respectively. The steady-state continuity equation is 

      ,       (4) 

where R is the recombination rate and can be written 

           
     
                    .    (5) 

NC and NV correspond to the effective DOS in the conduction and valence band, respectively, and their 

general definitions are presented in equations (A3) and (A4). RCBT, RVBT and RDB involve the 

recombination terms though the conduction band tail, the valence band tail, and the deep states, 

respectively. Similarly to pVBT, pDB, nCBT and nDB, these parameters correspond to an integral between EV 

and EC, where the integrand is proportional to the region of the DOS mentioned in the superindex. Their 

precise definitions are presented in appendix B.  

The shape of the delocalized DOS, as well as the temperature, defines the value of the effective 

DOS at the bands. In a-Si:H the energy distance between the Fermi level and the mobility edges is never 

less than 0.15 eV [4], therefore the ones in the denominator of equations (A3) and (A4) can be 

discarded. If we also assume a square root energy dependence of the conduction and valence bands, as 

in crystalline silicon (see figure 1), we obtain the following expression for the effective delocalized DOS 

[25, 26]: 
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For undoped a-Si:H (and also for n-type doped) nn >> pp, where n and p are the free electron 

and hole mobility, respectively. In this case, it can be shown from equations (A5) and (A7) (and for 

typical values of the parameters involved) that the following expressions allow obtaining the steady-

state free carrier concentrations within 1% error:  

  
 

  
 
 

 
 

      
 

     
  ,       (7) 

  
      

  

                  
  

 ,      (8) 

where q is the absolute value of the electron charge,  the steady state conductivity under illumination 

and Lamb the ambipolar diffusion length. These equations assume that, in equation (A7), the thermal 

equilibrium concentrations of free carriers are much lower than the concentrations of photogenerated 

carriers, i.e., they are valid while the temperature is not extremely high nor the generation rate is 

extremely low. As a consequence of equations (7) and (8), the pair of equations (2) and (4) are functions 

of two parameters that can be measured directly, (T,G) and Lamb(T,G), and the rest of the material 

parameters: the free carrier mobilities, the capture coefficients and the parameters associated to the 

DOS shape.  

Initially, we have m pairs of  and Lamb values for given T and G values. In order to test how well 

a randomly chosen set of parameters satisfies simultaneously equations (2) and (4), we define the 

following norm function: 

      
  

    
 

  
    

  
 

  
     

  
 
 
  

    .     (9) 

Equation (9) is the sum of the squared relative errors between the two terms that constitute equations 

(2) and (4), for every pair of measured values (T,G) and Lamb(T,G). In the second term between the 

square brackets of equation (9) we divide only by G because it does not depend on the choice of the 

material parameters. With the correct material parameters, N should theoretically be zero. As a 

consequence of experimental errors N will never be strictly zero, but we assume that it will be smaller as 

the material parameters get closer to the correct ones.  

In order to implement the TLBO algorithm, we define as in Ref. [14] a vector X whose 

components correspond to the material parameters we want to find. We generate a population of 

vectors Xk, with values chosen randomly within a range of allowed values previously defined for each 

parameter. Then, we use the norm function (9) to evaluate which group of material parameters is the 

best, i.e., which one minimizes the norm function. This specific set of parameters corresponds to the 

teacher vector, Xt, upon which we modify the rest of the population using the expression 

                     ,      (10) 
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where s is a positive number lower than 1. Then we calculate the norm for each X’k and from the lowest 

norm we define a new teacher vector X’t, upon which we modify again the population. This process 

continues until the whole vector population is sufficiently close to the teacher vector, and in this way we 

find the set of parameters that best represents the material. The convergence is faster when s is closer 

to one, but the parameter’s space is better explored when s is closer to zero. 

 

3. Numerical simulations 

Table 1. The first two columns contain the parameters names and the values used as 

input in the numerical simulation, corresponding to undoped a-Si:H. The third 

column presents the parameters obtained as a result of the application of the TLBO 

algorithm.  

Parameter Initial Value TLBO  

rCBT (dimensionless) 0.5 0.49 
rVBT (dimensionless) 2 3.1 
r+ (dimensionless) 4 4.6 
r- (dimensionless) 0.25 0.24 
  
    (cm3s-1) 3×10-8 3.8×10-8 

  
    (cm3s-1) 4×10-9 5.7×10-9 

  
  (cm3s-1) 1×10-8 1.4×10-8 

  
  (cm3s-1) 4×10-8 7.3×10-8 
n (cm2V-1s-1) 18 20 

p (cm2V-1s-1) 2 2.4 
N(EV) (cm-3eV-1) 2×1021 2.9×1021 
N(EC) (cm-3eV-1) 2×1021 2.2×1021 
   

  (cm-3) 2×1016 1.7×1016 

1 (eV) 0.2 0.26 
U (eV) 0.25 0.24 
   

  (eV) 0.95 0.93 
EC (eV) 1.8 1.79 
TC (K) 280 274 
TV (K) 540 534 

 

In this section we test through numerical simulations the ability of the method that we have 

proposed to obtain the material parameters of a-Si:H. We follow the procedure that would be 

implemented experimentally, first obtaining the steady-state conductivity under illumination and the 

ambipolar diffusion length for different temperatures and generation rates (equations (A5) and (A7)). 

For that purpose, using typical material parameters for undoped a-Si:H (listed in the first two columns of 

table 1), the fundamental equations of section 2 and appendix A are solved without approximations. By 

solving the charge neutrality equation for a certain temperature under dark conditions we find the 

Fermi level, and with this value we obtain the thermal equilibrium free carrier concentrations, ne and pe 

[27]. For the same temperature and different generation rates, we calculate the steady-state free carrier 

concentrations n and p by solving simultaneously the continuity and charge neutrality equations. The 

integrals are solved numerically without approximation, using the trapezoidal rule after discretization of 
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the energy interval. For simplicity, from now on we use just one Gaussian function to describe the deep 

states, and we take the valence band edge as the energy reference (EV = 0), so that EC is coincident with 

the mobility-gap energy.  

We numerically obtain a total of 25 pairs of values (, Lamb), for 5 different temperatures 

between 130 and 290 K separated by 40 K, and 5 different generation rates for each temperature from 

5.2×1018 to 4.2×1020 cm-3s-1, obtained by dividing successively by 3 the highest generation rate value. 

These values are treated as if they were measurements, applying to them the TLBO algorithm to retrieve 

the set of parameters that better satisfies the approximate analytic solutions to the continuity and 

charge neutrality equations obtained in appendices B and C.  

The initial ranges of allowed values for the different material parameters, needed to implement 

the algorithm, are listed in table 2. Generally, we used initial populations of 100000 vectors and s values 

near 0.13. The procedure consists in running the algorithm with the initial intervals dozens of times until 

convergence. Then we compare the different material parameters obtained in each run, and if we 

observe that some parameters vary on a narrower interval we reduce the initially assigned interval. We 

continue with this intervals reduction until no smaller value of the norm is obtained. The whole 

procedure takes several hours on a desktop computer.   

 

Table 2. Initial ranges of allowed values for the material parameters 

corresponding to undoped a-Si:H. They were taken from the specific 

literature of the material [4] and the theoretical inequalities 

mentioned in section 2.  

Parameter Initial Range 

N(EC), N(EV) (cm-3eV-1) [9×1020, 8×1021] 
rVBT, r + (dimensionless) [1, 25] 
rCBT, r - (dimensionless) [0.04, 1] 

  
   ,   

   ,   
 ,   

  (cm3s-1) [10-9, 4×10-7] 
n (cm2V-1s-1) [8, 40] 
p (cm2V-1s-1) [0.4, 5] 

EC (eV) [1.7, 1.9] 
TC  (K) [220, 380] 
TV  (K) [450, 680] 
U (eV) [0.1, 0.5] 
ω1 (eV) [0.04, 0.9] 
   

  (eV) [0.4, 1.35] 
   

  (cm-3) [5×1015, 6×1017] 

 

In the third column of table 1 we present the results obtained when the TLBO algorithm is used 

to minimize the norm function defined by equation (9). Without approximations, these values should be 

identical to the initially introduced ones. However, the approximations introduced in appendices B and C 

imply that they differ. It can be seen that the largest error is obtained for   
  (83 %). The error in the rest 

of the parameters is not higher than 55 %, consequently we can conclude that the procedure allows 

estimating all the transport material parameters. The largest errors are found in those parameters 

whose initial intervals are also the largest, i.e., in capture coefficients. Besides, we have tested other 
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norm functions that take into account separately the charge neutrality and the continuity equations. In 

these tests, the errors obtained for the material parameters were generally larger. Moreover, the 

capture coefficients cannot be obtained individually if the charge neutrality equation is used alone, as 

this equation depends only on the ratios between capture coefficients (see appendix B).  

Other DOS shapes have been tested, obtaining in all cases similar results: the largest errors are 

in some capture coefficients, while the mobilities and parameters describing the DOS shape are well 

reproduced. In figure 2 we have plotted the localized one-electron effective density of states Neff, which 

is equal to the DOS given by equation (1) plus the DB states when they are doubly occupied: 

             
   

 

     
 

       
    

 

   
 

.    (11) 

Observe that Neff is also a function of the correlation energy. The continuous curve in figure 2 

corresponds to the initially introduced DOS (second column of table 1), while the dashed curve was 

obtained with the parameters given by the optimization algorithm (third column of table 1). A very good 

agreement between both curves can be observed, suggesting that the proposed method is especially 

useful for the DOS determination.   

 
Figure 2. Localized one-electron effective density of states as a function of energy. The 

red dashed line corresponds to the DOS obtained after application of the TLBO 

algorithm, while the black solid line was obtained with the initial parameters (second 

column of table 1).  

Even when using the exact material parameters, the norm given by equation (9) is not zero due 

to the analytical approximations introduced in appendix B. The value of the norm function, obtained 

when using the exact material parameters (second column of table 1), is 7.32×10-3. After application of 
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the TLBO algorithm, the norm value decreases to 6.74×10-4. This smaller value indicates than the TLBO 

algorithm works properly, partially correcting the errors coming from the analytical approximations.  

4. Experimental methods 

Having tested numerically the applicability of the method, we have applied it to a device-grade a-

Si:H sample. It was deposited on a Corning 1737 glass substrate by Plasma Enhanced Chemical Vapor 

Deposition (PECVD), in a conventional capacitively coupled reactor operated at 50 MHz, from pure silane 

at a flow rate of 40 sccm, a chamber pressure of 0.53 Torr and a substrate temperature of 250 °C. Two 

parallel silver paint electrodes were deposited on top of the sample for electrical contacts, with a height 

of 1 cm and a separation of 1 mm between them. After a proper annealing, the ohmicity of the contacts 

was checked. The sample was light-soaked during 2 hours with a He-Ne laser (100 mW/cm2) to minimize 

the effects of light-induced changes on the transport parameters during the experiments [28]. All the 

measurements were performed in a cryostat evacuated to a pressure lower than 10-6 Torr, to avoid the 

presence of adsorbed gases.  

The film thickness was measured by making use of the interference pattern of the UV- vis (400–1750 

nm) transmittance and reflectance spectra, obtaining a value of L = 0.49 m. The absorption coefficient 

 in the strong absorption region was also evaluated at room temperature (298 K) from the UV-vis 

spectra, while the subgap  was measured by means of the Fourier-Transform Photocurrent 

Spectroscopy (FTPS) technique [21].  

The SSPG and steady state conductivity measurements have been made using a He-Ne laser (633 nm 

or 1.96 eV), for light fluxes  between 1015 and 5×1016 s-1cm-2, and for the following temperatures: 130, 

150, 170, 210, 230, 270 and 290 K. The description of the automated equipment used for these 

measurements can be found in Ref. [29]. The SSPG technique consists on measuring the electrical 

current that results when the sample is illuminated with two beams of different intensities that strike 

the sample forming an angle. When the beams are coherent and have the same polarization parallel to 

the electrodes, a sinusoidal interference pattern is created in the direction of the current between the 

electrical contacts, while the illumination is uniform when the beams have perpendicular polarizations. 

It is necessary to perform measurements of the photocurrent with and without the interference pattern 

to obtain the ratio between them,  . Finally, a fit of   as a function of the interference grating period  

is made using the Ritter-Zeldov-Weiser (RZW) equation [20]: 

    
  

    
      


 
 
 
 ,      (12) 

where   and Lamb are fit parameters. We use the RZW equation to obtain Lamb for its simplicity, although 

other formulas have also been proposed in the literature [30]. The determination of the best formula to 

extract Lamb from SSPG measurements is beyond the scope of the present work.  

In figure 3 we present the experimental results measured on the sample, as a function of the 

generation rate and for different temperatures. Figure 3a) is the steady-state conductivity under 

illumination, and figure 3b) the ambipolar diffusion length obtained from SSPG measurements. Figure 

3b) includes the statistical errors obtained for Lamb when the SSPG experimental data are fitted with 

equation (12). When the relative error is calculated, the trend is clear: the error increases when the 
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generation rate increases and when the temperature decreases. The increment of the relative error is a 

consequence of the decrease of Lamb with higher generation rates and smaller temperatures, as can be 

seen in figure 3b). With the exception of equation (B11), the approximations made in this work are 

generally better for smaller temperatures and higher generation rates, although the Lamb values 

obtained from SSPG are less precise in this case. As a consequence, for low temperatures we only 

performed measurements for small generation rates (see figure 3b).  

  

Figure 3. Experimental results of steady-state conductivity under illumination (a) and 

ambipolar diffusion length measured by SSPG (b), as a function of generation rate, 

for different temperatures indicated in the inset. The error bars in (b) (lower than the 

symbol size in some cases) correspond to the statistical errors obtained from a fit 

with equation (12) of the SSPG data. 

The modulated photocurrent experiment was performed illuminating the sample with a red light 

(625 nm or 1.98 eV) modulated at an angular frequency , at temperatures from 110 to 330 K with a 

20 K step. The high-frequency MPC allows obtaining an estimation of the DOS through the following 

equations [22]:  

  
              

           
          

  
 

              

         
,    (13) 

             
          

 
 .      (14) 

It is necessary to measure the modulus       and the phase shift   of the modulated photocurrent 

generated through a temporally modulated illumination superimposed to a uniform illumination of 

higher intensity, while a steady electric field   is applied between the electrical contacts. The uniform 

and alternating light fluxes used were 1013 and 3×1012 cm-2s-1, respectively.     is the carrier generation 

rate corresponding to the modulated illumination. To get the energy scaling, in equation (14) we have to 

choose one of the three electronic capture coefficients obtained (see table 3). We used the   
  value, 

because it is situated between   
  and   

   , although in figure 4 there was nearly no change to the 

naked eye when using any of the other two.  

As usual, the mean generation rate for each light flux was obtained with the formula 
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  
     

 
        ,      (15) 

where r is the reflection coefficient of the front surface. It can be found in the literature that  increases 

uniformly with temperature for the light energies (1.97 eV) used in the experiments [31,32]. In Ref. 

[31] it can be seen that the value of  doubles when temperature changes from 151 to 293 K. Not 

having found more precise measurements, we used this information to define a linear relation (T). To 

implement the TLBO algorithm, we assigned the same initial intervals to the material parameters that 

were used in section 3 (table 2), and applied exactly the same procedure.  

5. Results and discussion 

Table 3 shows the material parameters obtained from the application of the TLBO algorithm to the 

measurements performed on the a-Si:H sample. The holes capture coefficients presented in table 3 are 

calculated from the electronic capture coefficients and the ratios between capture coefficients that 

were obtained. All the parameters are within the range of acceptable values for device-quality intrinsic 

a-Si:H. By requiring that rVBT, r + > 1 and rCBT, r – < 1 in the allowed initial intervals (see table 2), the 

inequalities   
      

   ,   
      

   ,   
    

  and   
    

  are guaranteed. Moreover, it can be 

observed in table 3 that the inequalities   
    

  and   
    

  are also fulfilled, as theoretically 

expected.  

Table 3: Parameters obtained using the procedure described in section 2 for an 

undoped a-Si:H sample.  

Parameter Value 

  
    9.0×10-8 cm3s-1  

  
    1.2×10-7 cm3s-1  

  
    3.0×10-9 cm3s-1 

  
    5.0×10-10 cm3s-1 

  
  1.2×10-7 cm3s-1 

  
  6.9×10-7 cm3s-1 

  
  3.9×10-7 cm3s-1  

  
  2.5×10-8 cm3s-1  

n 37 cm2V-1s-1  

p 4.0 cm2V-1s-1 

N(EV) 6.8×1021 cm-3eV-1 

N(EC) 6.4×1021 cm-3eV-1 

   
  1.3×1016 cm-3 

1 0.84 eV 

U 0.26 eV 

   
  0.96 eV 

EC 1.75 eV 

TC 257 K 

TV 531 K 
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Figure 4 (solid line) presents the one-electron effective DOS obtained from the application of our 

method, given by the parameters specified in table 3. In order to compare with the MPC measurements, 

the DOS is multiplied by the respective electronic capture coefficient and divided by the electron 

mobility, i.e., in the form of the left-hand side of equation (13) plus the corresponding VBT term. The 

deep states region is practically flat, as a consequence of the large value obtained for 1 (see table 3). 

This shape of the DB density is consistent with the results of the improved Defect Pool Model (DPM) 

described in Ref. [7]. The green points in figure 4 were obtained applying equations (13) and (14) to the 

MPC measurements. The points plotted with the same symbol correspond to the same temperature 

(isotherm). For each temperature, the higher energy points correspond to the higher frequency 

measurements. As a result, it is expected that the solid line matches the high energy envelope 

generated by the isotherms (see equation (13)). As can be seen, the agreement between the results of 

our new method and the MPC experiment is quite good. As usual, the high frequency MPC envelope 

slightly overestimates the DOS in the energy region located between the CBT and the DB states [33,34]. 

However, a non-expected underestimation in the deep states region is also observed. 

 

Figure 4. Density of localized states, multiplied by the respective electronic capture 

coefficient and divided by the electron mobility, as a function of energy. The black solid 

curve is the result of the TLBO optimization algorithm. The green points are MPC 

measurements, obtained applying equations (13) and (14) to the data, each symbol 

corresponding to a different temperature. The dashed red line corresponds to the VBT 

term obtained from FTPS measurements, corrected with Stutzmann’s formula (see text).  



14 
 

The decrease of the MPC curves in figure 4 for the higher temperatures (i.e., smaller energies), 

leading to a discrepancy with the solid line, may be a consequence of the temperature dependence of 

the deep states capture coefficients. As established from photoconductive time of flight (TOF) 

measurements [35,36] the capture cross-sections of defect states decrease with the increase of 

temperature. For simplicity we make no difference between charged and neutral dangling bonds, 

although TOF experiments applied to doped and undoped samples suggest stronger temperature 

dependence for charged states. According to Ref. [36], for undoped samples the dangling bond capture 

cross-section     goes approximately as       , and assuming that the thermal velocity     of the 

carriers has a dependence       [24], we finally get that   
    

            . Figure 5 is a close-up 

of the MPC data region of figure 4, where we have also plotted with red dashed lines the deep states 

isotherms corrected to the median temperature of steady-state measurements (230 K). With this 

temperature correction, the agreement in the dangling bond region results excellent.  

 

Figure 5. Density of localized states, multiplied by the respective electronic capture 

coefficient and divided by the electron mobility, as a function of energy. The black solid 

curve is obtained with the parameters of table 3. The green points are obtained applying 

equations (13) and (14) to the MPC data. The red dashed lines correspond to the deep 

states MPC isotherms corrected to the median temperature (230 K) of steady-state 

measurements, assuming a T-1 dependence of the capture coefficients.  

 



15 
 

Figure 6 presents the absorption coefficient vs. the incident photon energy measured as 

described in section 4 for T295 K, together with an exponential fit (note the logarithmic vertical scale) 

of the energy region known as Urbach tail [4]. In a-Si:H the CBT slope is much steeper than the VBT 

slope, so the slope of the Urbach tail reflects the VBT slope. Therefore, from the fit of figure 6 we get TV 

= 562 K. Although for simplicity we assumed a temperature-independent DOS model, there are reports 

in the literature of a slight decrement in the VBT slope with temperature [37]. Stutzmann’s formula with 

  = 1 gives the temperature-dependent expression                for the VBT slope. The value 

obtained with the TLBO algorithm, TV = 531 K, is smaller than the one obtained from the Urbach tail 

measurement (TV = 562 K), as expected considering that the Urbach tail was measured at a higher 

temperature. However, it is nearly equal to the value obtained with Stutzmann’s formula for the median 

temperature of all measured values, T = 230 K, i.e.                  This is indicative of an excellent 

agreement between both experimental techniques for the determination of the valence band tail slope 

(red dashed line in figure 4), and gives confidence to the method proposed in this work for the 

determination of TV.  

 

Figure 6. Absorption coefficient as a function of photon energy. The red curve 

corresponds to a measurement performed at 295 K, while the black dashed line is the 

best fit to the Urbach tail region.  

 As a final test of the validity of the results, we have calculated the steady-state conductivity 

under illumination and the ambipolar diffusion length that result from the application of the transport 

equations with the parameters obtained from our method (table 3). Figure 7 presents the results, for 

the same temperatures and generation rates used in the experiments. Comparing with figure 3, we see 

that the experimental results are very well reproduced, both for the conductivity and the diffusion 
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length. Even the unusual behavior of the conductivity as a function of temperature of figure 3a), 

increasing from 130 to 150 K and then decreasing from 150 to 210 K, is reproduced by the simulations in 

figure 7a). Regarding the diffusion length, all the features of figure 3b) are reproduced by figure 7b), 

except for the lowest temperature (130 K), where the increase of Lamb with G found in figure 3b) is 

probably due to an experimental error. Therefore, we are quite confident on the capability of the 

proposed method to provide trustable mobilities and DOS estimations, and to offer good insight into the 

different capture coefficients.  

  

Figure 7. Calculated results of steady-state conductivity under illumination (a) and 

ambipolar diffusion length (b), as a function of generation rate, for different 

temperatures indicated in the inset. The calculations are performed solving the 

transport equations with the parameters of table 3. 

Future investigations could explicitly include the temperature dependence of the VBT, the 

mobility gap and the capture coefficients [4,24,35,36]. Also, a better description of the deep states could 

be achieved by using several Gaussian functions [7], although these would notably increase the number 

of material transport parameters, making slower the convergence of the algorithm and increasing the 

computing time. The possibility of carrier hopping through localized states could also be included in the 

theoretical description. The method that we propose for intrinsic a-Si:H can be applied without change 

to n-doped a-Si:H samples, and could also be applied to p-doped samples after exchanging n and p in 

equations (7) and (8). Although there are several characterization methods for a-Si:H based on 

photoconductivity measurement for different temperatures and generation rates [11,38], we have not 

found in the specific literature a detailed measurement of the temperature dependence of its optical 

parameters at the light energy used to perform the experiments (1.97 eV). According to equation (15), 

the temperature dependence of the optical parameters is needed for a precise determination of the 

generation rate at different temperatures. The technique that we propose in this work, and others that 

also include the generation rate directly in their formulas, could be benefited from these measurements. 

6. Conclusion 

We proposed a method that allows obtaining all the transport parameters of a-Si:H from 

measurements of steady state photoconductivity and ambipolar diffusion length, performed at different 
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temperatures and generation rates. The method consists in solving the continuity and charge neutrality 

equations using a simplified TLBO algorithm. In a numerical simulation we observed that the material 

parameters are obtained with less error when the pair of equations is solved simultaneously. In this 

case, the parameters exhibiting more uncertainty in their estimation are some of the capture 

coefficients, in agreement with the fact that these parameters also present the highest initial 

indeterminacy. With the mentioned theoretical analysis we conclude that the proposed methodology 

allows for a complete electrical characterization of undoped a-Si:H.  

We also tested the procedure experimentally, applying it to an undoped a-Si:H sample. We 

compared the obtained TV value with the one measured from the Urbach tail and the agreement was 

excellent. The parameters corresponding to dangling bonds and conduction band tail were compared 

with high frequency MPC experiment, and the matching was also excellent. We are confident that the 

shape of the DOS can be obtained with good accuracy.  
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Appendix A – Basic equations 

The equilibrium concentrations of free carriers under dark are given by 
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where NC and NV are the effective DOS at the band edges, defined as 
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.     (A4) 

The conductivity under a steady state uniform generation rate is 

            ,       (A5) 

where n and p are the total concentrations of electrons and holes in extended states, respectively. The 

photoconductivity is defined as  
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                        ,     (A6) 

where ne and pe are the electron and hole concentrations in thermal equilibrium, respectively. 

The ambipolar diffusion length is given by 

      
                    

                    
.     (A7) 

The electronic occupation function of monovalent states under a steady state uniform 

generation rate is [39] 

      
  

                   ,     (A8) 

where Nj y Pj are 

     
 
    

 
   

    

                          ,      (A9) 
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The occupation functions of amphoteric states under a steady state uniform generation rate are [40]: 
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             ,       (A13) 

where       ,    and    are defined by 
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When hopping is taken into account, the conductivity will be the sum of the conductivity via extended 

states and the conductivity by hopping. Equation (A5) will change to [19] 

             
  

    
         
  

  
                         

       
  

  
, (A18) 
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with 

       
  

          

  

     
    
  

  

and  

               

  
 
 

 

 , 

where    is the attempt-to-hop frequency and    the decay length of the wavefunction. From equation 

(A18) it can be observed that the contribution of hopping to the conductivity decreases as temperature 

increases, being negligible for temperatures higher than about 110 K according to different authors. 

[18,19].   

 

Appendix B –Approximate analytical solutions 

The charge neutrality equation can be written as 

                      ,     (B1) 

while the continuity equation can be written as 

           
     
                      .   (B2) 

We will first give approximate expressions for the terms involving monovalent states (VBT and CBT) and 

then for those involving amphoteric states (DB). The charges trapped in the conduction and valence 

band tails are 

                      
  

  
,      (B3) 

                           
  

  
,     (B4) 

where      and      represent the electronic occupation function of monovalent states, and are given 

by equation (A8). The occupation functions for the conduction and valence band tails can be well 

approximated by 
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   ,   (B6)  
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where    
 

 and    
 

 are the quasi-Fermi levels for electrons and holes trapped in monovalent states, and 

     
 

  
 

 , j = VBT or CBT. By definition, the quasi-Fermi levels for trapped charge are 
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Replacing equations (B5) and (B6) into equations (B3) and (B4), respectively, we get 
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,     (B10)  

where      and      represent the following integrals: 
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.     (B12)  

The analytical approximation (B12) is theoretically valid for T<TV, but only results in a good 

approximation of the integral when the temperature is less than 75 % of the characteristic 

temperature TV. In a-Si:H TV is usually higher than 400 K [4], justifying the applicability of the 

approximation in the measured temperature range. TC is usually much smaller than TV, consequently an 

approximation equivalent to equation (B12) would have a very narrow temperature validity. The 

deduction of the more complex analytical approximation (B11) is presented in appendix C, and we have 

numerically tested that its error is lower than 1% in the measured temperature range. A detailed 

deduction of equation (B12) can be found in Ref. [27]. 

The terms corresponding to the recombination in the conduction and valence band tails are 

      
  
     

          

           
  

  
,     (B13) 

      
  
     

          

           
  

  
,     (B14) 

where NCBT, NVBT, PCBT, PVBT are defined in equations (A9) and (A10) [39]. The factors that multiply the 

DOS in the integrands of equations (B13) and (B14) can be approximated by 
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Replacing equations (B15) and (B16) into equations (B13) and (B14), respectively, gives 
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The negative and positive charges trapped in the deep states are given by 

                   
  

  
,      (B19) 

                   
  

  
,      (B20) 

where       and       give the probabilities of a DB center at energy E to be negatively charged and 

positively charged, respectively. Their definitions are presented in equations (A12) and (A11). As a result 

of the slower variation with energy of the deep states concentrations, stronger approximations can be 

made on their occupation functions. Following the analysis made in Ref. [22], we have 
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where      
    

  and      
    

 . The quasi-Fermi levels for trapped-charge corresponding to 

amphoteric states are 
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 .      (B26) 

The approximations given by equations (B21) and (B22) are good while the temperature is not 

too high, and are exact at 0 K.    
  could be smaller than EV, falling outside the energy domain. In this 

case, the first line of equation (B21) should be neglected and we should make    
     in the second 

line to stay in the domain. See Ref. [22] for a complete discussion of DB quasi-Fermi levels. Replacing the 

approximations (B21) and (B22) into equations (B19) and (B20), respectively, we obtain 
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where we have used the identity for the definite integral of a normalized Gaussian function  
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The dangling bond term of equation (B2) is 

     
   

   
      

   
          

                
  

  
,                                                  (B30) 

where N+, N0, P0 y P- are Okamoto’s parameters [40], defined by equations (A14), (A15), (A16) and (A17). 

The factor multiplying the DOS inside the integrand of equation (B30) can be well approximated by the 

following formula, as soon as the temperature is not too high: 
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Replacing equation (B31) into equation (B30), and using the property (B29), we finally obtain 
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Appendix C – Approximation of integral ICBT.   

Defining   
     

   

   
 and   

 

  
, equation (B11) can be rewritten as 

                  

      
   

   

   
       

   

   

,    (C1) 

where f(x) is: 

     
 

     .    (C2) 

For x large enough (see figure 7), the one in the denominator of equation (C2) can be discarded,  

             (C3) 

while for x small enough (see below), a Maclaurin series could be used to approximate f(x): 

         .    (C4) 

The factor multiplying f(x) inside the integrand is a fast growing x function, consequently the largest x 

values have the strongest contribution to the integral. Therefore, it is not necessary to have a very 

precise approximation of f(x) for small x values, and is enough to use just the first term of equation (C4).  

According to the previous analysis, we can divide the integral (C1) in three regions: 

               
  
   
       

   

   

           
 

  
           

      
   

   
 

 ,   (C5) 

where the first and third integrals can be solved analytically. The number -b correspond to the x value 

under which f(x) = 1 results a good approximation. Similarly, the number c corresponds to the x value 

after which the approximation (C3) is a good one. From figure 7, where we plot f(x) with the two 

mentioned approximations, we could choose b = 5 and c = 3. However, the problem is still unsolved 

because we are not able to evaluate the second integral of equation (C5). Its integration region [-b, c] is 

much smaller than those corresponding to the other two integrals, consequently its contribution to the 

integral is minor. If we discard this term, the integral (C5) would be slightly underestimated. On the 

other hand, we can see in figure 7 that both approximations tend to overestimate f(x) outside its validity 

range, i.e., the smaller we take b and c, the higher is the overestimation of the integral. Consequently, 
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discarding the second integral of equation (C5) could be compensated by extending the limits of the first 

and third integrals.  

Discarding the middle integral and solving the other two, we have 
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It have been found numerically that with b = 0.2 and c = 0.8 we obtain a very good estimation of the 

integral. The second term inside the brackets can be discarded, while the third term can be rewritten 

using equation (B7), finally giving 
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Figure 7. Function (C2) is plotted in black, together with the asymptotic 

approximations valid for small x values (in blue) and for large x values (in green).  
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