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Abstract—The paper proposes to solve the off-grid issue 
arising in sparse processing involving Orthogonal Matching 
Pursuit (OMP) algorithm. It starts by establishing the 
Generalized Likelihood Ratio Test using a stochastic model to 
represent target location uncertainty within one resolution cell. 
In a second step, a linear approximate of the detector is built, 
requiring only a grid oversampling of 2 relative to the resolution 
cell size. Moreover, it involves only the formation of standard 
delta channels in each dimension, leading to low computational 
burden without loss of efficiency. The approach is here 
demonstrated on MIMO radar detection. 

 Keywords: Orthogonal Matching Pursuit; off-grid ta rget; 
MIMO radar;  

I.  INTRODUCTION  

In conventional radar processing, since the target 
parameters (for instance range, Doppler or angle) are unknown, 
different matched filter operations (range matched filter, 
Doppler processing, array beamforming) are applied for 
different parameter hypotheses in order to retrieve the target. 
This matched filter is mainly derived in the single target 
hypothesis and is however used in multi-targets environment 
with loss of processing. This usually consists in adding 
standard weighting windows onto the filter in order to lower 
the side lobes level of the mismatched filtering. In addition, the 
different single-source assumptions define a grid in the 
parameter space and the targets are never exactly on the 
resolution grid, causing a loss of processing due to a shift 
between the nearest grid point and the real target steering 
vector. However, for the specific kind of signals encountered in 
radar, the average losses over all target position within a 
resolution cell with conventional weighting functions are 
generally contained below 3dB. Theses losses are traditionally 
accepted to save computational load and remain in the most 
manageable case of the multiple single-source assumptions for 
detection with noise independence assumptions, which also 
allow the theoretical calculation of the threshold for the control 
of the false alarm probability.  

However, in some situations, it appears that the 
mismatched filter in the multi-targets environment leads to 
poor performance and is not practical, due to the inability to 
find efficient apodization techniques. This is the case when the 

signal model deviates significantly form the linear phase 
complex exponential, found in particular in coherent MIMO 
radars where the range and angle dimensions are coupled due 
to the non-perfect orthogonality of the waveforms  [1]. 

In this situation, the main idea is to find a feasible 
approximate implementation of the global matched filter in the 
context of sparse targets hypothesis. In presence of spread non-
point targets, a relevant solution is the Orthogonal Matching 
Pursuit (OMP) algorithm, see for instance [2]. Because the 
projector onto the space orthogonal to one target steering 
vector is very sharp, the standard OMP solution requires to 
severe oversampling to mitigate the off-grid target issue. 
Anyway, in case of closely spaced targets (typically less than 
one resolution cell), estimation of target signal in the detection 
step becomes so biased that the rejection step can only perform 
poorly and spurious detections may occur. In [2,3], the authors 
proposed to mitigate the off-grid issue by using in the OMP 
rejection step the space spanned by the entire resolution cell. 
Unfortunately, the proposed methods are mainly dedicated to 
the case of steering vectors being complex exponential with 
linear phase evolution, otherwise computational load will 
become prohibitive.  

In [4] we proposed to mitigate the off-grid issue by using in 
the OMP rejection step the space spanned by adjacent steering 
vectors of a half cell. The basic idea is to enlarge the rejection 
region in the OMP rejection step. The method has been proven 
to work well on real data, to be computationally very efficient, 
and was justified using the development in Taylor series at 
second order of the steering vector in [5].  

In this paper we go much deeper in the previous 
justification, showing the link with the Generalized Likelihood 
Ratio Test (GLRT) for target arbitrary localized within one 
resolution cell (or extended target) and deriving the discrete 
formulation of the detector in the Low Energy Coherence 
(LEC) case, already established for continuous signal in  [6].  
This is detailed in section II.   

In section III, using the Taylor series development of the 
steering vectors in one resolution cell, we show that the space 
spanned by one resolution cell can be well defined by few 
steering vectors. It is furthermore shown  that the computation 
of these steering vectors only requires an oversampling by two 



of the conventional one-cell grid, for the majority of practical 
radar waveforms and/or radar antenna configurations. 

Section IV, illustrates in more details the application of the 
proposed method to the coherent MIMO radar detection 
processing, involving OMP algorithm.   

II. LOW COHERENCE ENERGY CASE  DETECTOR FOR OFF-
GRID TARGET – IMPACT ON OMP REJECTION  STEP 

A. Standard matched filter and OMP 

As a clarification, we recall that the standard canonical 
hypothesis testing (i.e. on whitened data) for point target 
leading to the matched filter is the following situation: 

)(:0 onlynoiseH nx =  n~ ),0( IdCN             

)()(: 01 noisesignalH ++= nθsx α                        (1) 

α is the unknown target complex amplitude and )( 0θs is 

the steering vector, depending on a vector of parameters. 
[ ]T

P002010 θθθ L=θ . 0θ =(range, and/or Doppler frequency, 

and/or angles) in radar detection problems. 

The GLRT for detection is then the matched filter: 
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0θ is usually sampled on a grid with mesh corresponding to 

a resolution cell. The OMP algorithm built on the previous 
model is then an iterative implementation of the multi-target 
matched filter that consists in detecting and rejecting each 
contribution of the strongest targets successively. It starts 
with xx =1  and the kth iteration of the procedure can be 
summarized by the two following steps: 
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B. Low Coherency Energy detector and impact on OMP  

In order to deal with the off-grid issue, we first change the 
target deterministic model in hypothesis H1 to a stochastic one 
as follow: 
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)( 0θS is the normalized power known covariance matrix 

of the target, according to the possibility for the target to fall 
anywhere in one resolution cell defined by 

[ ]TPθθθ ∆∆∆= L21∆θ around [ ]TP002010 θθθ L=θ . 2σ is the 

unknown target power. It is worth noting that this model can 
also be used for extended target detection or for modeling 
steering vectors uncertainties (by adding extra parameters in 
steering vector model in the last case). 

The likelihood ratio test with this stochastic model can be 
written now after some operations: 
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Denoting the singular value decomposition of )( 0θS by: 
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After some more operations, the likelihood ratio test (5) can be 
finally written as : 
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It is worth noting that (7) is a weighted and generalized version 
of the subspace-based matched detector [6], where projections 
on the eigenvectors of )( 0θS  accounts for signal to noise ratio 

in each eigenvector related subspace. Only in the case of a 
strong target and a limited number of non-zero eigenvalues of 

)( 0θS we recover the matched subspace detector of [6]. One 

can also note that we recover the matched filter of (2) in case 
)( 0θS  is of rank 1 and in that case (4) is simply written as 

)()()( 000 θsθsθS H= H
00vv= . 

More interesting is the case of weak target (much below the 
noise), where we can get rid of the target power 2σ in the test 
(7). Indeed, for weak target the test leads to: 
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Equation (8) shows that for weak target the detector simply 
turns to the weighted average of the projections onto the 
eigenvectors of )( 0θS by the eigenvalues. In our situation of 



interest, where )( 0θS describes the signal in one resolution 

cell, the sn 'λ  in (6) decrease very rapidly.  

Equation (8) then can be reduced with little loss to the first 
term in the sum for detection purpose. However, for enough 
rejection of signal falling in one resolution, as required for 
OMP algorithm rejection step, a few more eigenvectors are 
needed. The OMP procedure with the stochastic target model 
then becomes: 
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[ ]k
M

kk
s 10 ,, −= vvV L : matrix formed by the eigenvectors 

corresponding to the M dominant eigenvalues of )( 0
k
θS  that are 

sufficient to get enough cancelation of all the signals within 
one resolution cell.  

C. Illustration on  mono dimensional complex exponential 
signal with linear phase 

The previous results are illustrated for the particular but 
relevant case of a mono dimensional complex exponential with 
linear phase for signal )(θs , which can represent in radar 
Doppler analysis, range compression, or antenna beamforming 
on a uniform linear array. In that case: 
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n can represent either  the pulse index in Doppler analysis, the 
frequency bin index in pulse compression, or the antenna 
element index in a linear uniformly space array.  θ represents 
then respectively the Doppler bin index, the range bin index, or 
the angle bin index. The resolution cell extent is defined by 

1=∆θ  and due to the nature of )(θs : 

 [ ])()()( 000 θθθ
HssS = � )0(S , with �: Hadamard product. 

In that particular case, the eigenvalues of )( 0θS are the same 

than the ones of )0(S , and the nth eigenvector )( 0θnv of )( 0θS  

is equal to )( 0θs � )0(nv , with )0(nv  the nth eigenvector of 

)0(S . The eigenvalues of )0(S  are plotted for illustration on 
Fig. 1. It is clear that most of the energy is captured by the first 
eigenvector with 80% (-1dB) of the total energy (see zoom on 
the first eigenvalues).  

 In next section, using 1st order and 2nd order expansion of 
the steering vector in one resolution cell, we show that the 
space spanned by one resolution cell can be well defined by 
only two or three steering vectors for each parameter. It leads 
to a very computationally efficient implementation of the 
projection of the signal in the space orthogonal to one 

resolution cell, needing only an oversampling by 2 of the 
standard one-cell stepped grid.  
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Fig. 1 Eigenvalues of S(0) for complex exponential signal with N=32  

 

III.  APPROXIMATE SPACE SPANNED BY ONE CELL 

A. Taylor series expansion approximate  

We start here by 1st  and 2nd order linear approximation of the 
steering vector, quite valid in one resolution cell, around the 
value 0θ (the center of the resolution cell): 
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Clearly the spaced defined by the vectors 
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way, the corresponding approximation of  )( 0θS is obtained 

by using the expressions of )(θs in (11) to compute (4). Note 

however that these vectors do not correspond necessarily to 
the eigenvectors of the approximation of )( 0θS  since there 

are not orthogonal in the general case. Actually only 
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 are also orthogonal (usual case 

case for range/angle/Doppler dimensions in radar, except in 
the MIMO case, or except with Doppler effect on the pulse). 
This means that for regular radar cases, the first order 
expansion of the steering vector corresponds also to the 
eigenvector decomposition of the first order approximate of 

)( 0θS . 



B. Efficient computation of the projector on the space 
othogonal to one resolution cell via difference channels 

From the previous section, it is clear that to compute an 
approximate projection on the space orthogonal to one 
resolution cell, needed for the rejection step in OMP, we have 
for each hypothesis 0θ  to compute P+1 "channels" at 1st order 

and P+1 + P(P+1)/2 channels at 2nd order defined by: 
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and to use, for rejection step in OMP, the matrix:  
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In order to compute very efficiently the delta channels xV H
s  

(and hence the rejection step), we approximate them by finite 
differences derived from a twice oversampled grid to get half 
resolution cells.  
For a mono-dimensional signal, as the one in (10), this 
approximation is written classically as:  
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To compare the efficiency of the projections defined by (13) 
and its approximates defined by (14), we took the same signal 
example as in Fig. 1, and computed the projector  response 

)())()(( 1 θθ sVVVVIds H
ss

H
ss

H −− , and added also the standard 

OMP projector  using only 
0sV =s
. The results are plotted on  

Fig. 2. Clearly the delta channel projectors avoid the sharpness 
of the standard projector, while preserving a deep notch. It can 
be seen also that the approximate delta channels of (12) are 
closed to the exact delta channels of (11), which validates the 
proposed approach.  
 
 
It is worth noting that at 2nd order we get the same projector 
using the delta channels defined by (14) in 

sV  or using directly 






 ∆−∆+= )
2

()
2

( 000

θθθθ sssVs
             (15) 

Indeed the delta channels are a linear combination of the three 
vectors involved in (15). This latest formulation is  the half-cell 
projector already identified in an heuristic way in  [4].  

 
Fig. 2 Projectors comparison 

 

IV.  APPLICATION TO MIMO RADAR PROCESSING  

In this section we will first briefly review  the coherent MIMO 
radar with intrapulse coding and the associated sidelobes 
issues of the ambiguity function (to go further, detailed 
discussions can be found for instance in  [1]). In a second step, 
we will then give some applications of the technique described 
in  III on simulated and real MIMO data.  

A. Brief review of coherent MIMO radar processing and 
ambiguity function 

For the sake of simplicity, let us consider a transmitting linear 
array composed of M colocated isotropic antennas. In a 
conventional phased array, all antennas transmit the same 
waveform, and only the phases of the waveforms are different 
to form the beam in a given direction. In coherent colocated 
intrapulse coding MIMO radar, each of the M antennas 
transmits a different pulsed waveform )(tsm

, with repetition 

interval TR so that the signal transmitted by the array in target 
located at direction cθ  is given by: 
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where mE ,x is a vector representing the position of the mth 

antenna, and )( cθk is the wave vector.  

Let us now assume without lack of generality that the receive 
array is composed of one isotropic antenna. Indeed it is shown 
in   [8] that the angular reception processing can be completely 
decoupled. Then the received signal from a target of unknown 
amplitude α, with delay crc /2=τ (r is target range) and 

Doppler frequency cυ  is provided by: 
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Then, the response of the matched filter at the output of the 
receiver is: 
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Moreover it is also shown in  [8] that in case of  no Doppler 
effect on the pulse, the Doppler processing can be completely 
decoupled from the range-angle processing, and that what 
matters in coherent MIMO processing is the range-angle 
matched filter for one elementary pulse given by: 
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We can derive from the above equations established in 
continuous time the formulation for discrete signals with 
sampling period Te. The signal model we need for matched 
filtering and OMP processing can be written as: 
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The matched filter expressed in digital formalism is: 
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And the corresponding ambiguity function is: 
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The matrix ( ) )(

~
)()( ccw

H
w ττττ −= SSS  of size MxM  is the time 

cross-correlation matrix of the waveforms, and is not a 
diagonal matrix with practical waveforms, inducing range-
angle coupling in coherent MIMO radar. Note also that the 
ambiguity function is a 3D function, depending on tested 
angle θ and actual target angle θc. Only hypothetic 
unrealizable orthogonal waveforms, with same autocorrelation 
function )(τssC gives ))((diag)()( csscw

H
w C ττττ −=SS  and then a 

decoupled range-angle ambiguity function (see  [1] for details): 

      )()()(),( csscs
H
scc

decoupled C ττθθθθττ −⋅=−−Χ ss  

However, some waveform families may approach this 
condition. Among these families, an interesting case is 
provided by the Code Division Multiple Access (CDMA) 
phase codes used in digital communications  [1]. For instance 
Gold codes which are optimized for having good periodic auto 
and cross correlation also provide good aperiodic correlations. 
Fig. 3 presents the range/angle 2D cut of the ambiguity 
function for τc=0 and θc =0 with Gold codes with N=127 
chips, M=12 transmitters, pulse duration Tp=100µs, and 
bandwidth B=2 MHz. This set of parameters will be used 
further throughout the rest of the paper. 
We observe a thumbtack type MIMO ambiguity function 
instead of a 2D sinc function in the ideal decoupled case. 
There is no noticeable coupling effect (so we get the full 

resolution in range and angle) but the energy is spread over 
the entire parameter space with high sidelobe level. This 
spreading comes from the summation of the non-zero cross 
correlations of the codes. This spreading can moreover not be 
mitigated with the use of conventional techniques of 
apodization windows. 
There is therefore a strong need to decrease this level in multi-
target environment to avoid the masking of weak targets by 
the sidelobes of strong targets. In the next paragraph, we 
present benefits provided by the robust OMP technique 
detailed in section  III for that goal.  

 
Fig. 3 – Range/angle cut of the MIMO ambiguity function for CDMA Gold 

codes of length N=127, N=12 transmitters, Tp=100µs, B=2 MHz 
 

B. Extension of  Robust OMP to MIMO radar  

 First we have to extend the approach of finite differences 
approximation defined in (14) for 1D on a 2D half-cell mesh 
grid. It was found, due to the finite differences approximation,  
that sufficient nulling of the space spanned by one cell 
requires not only to compute the regular 1st and 2nd order 
differences on each axes (4 parameters), but also the 1st and 
2nd order differences obtained after a rotation of 45° of the 
parameter plane (4 additional parameters). This is equivalent 
to take for sV  in (13) the cell under test and its eight 

neighbors on a half-cell mesh grid. This is the direct extension 
of (14) in 1D (2 neighbors) to 2D (eight neighbors). The 
rationale is described in detail in  [5]. The extended projector 

response, ),())()(,( 1 θτθτ sVVVVIds H
ss

H
ss

H −− , and the 

standard OMP projector using ),( 00 θτsV =s are plotted on 

Fig. 4. Clearly the notch covers one resolution cell with a 
sufficient depth of almost 60dB. 
 

 
Fig. 4 – 2D standard (left) and extended (right) projector responses 



C. Results on simulated data  of  Robust OMP for MIMO 
radar detection 

In order to test the effectiveness of the robust OMP method, 
i.e. how the filter manages difficult situations, we use a 
particular scenario with two strong targets (same output SNR 
of 40 dB) with a decreasing distance d from 1.5 to 0.25 with 
steps of 0.25 range cell distances, and with a third weak target 
hidden in the sidelobes of the matched filter (output SNR of 
15dB), located on a grid node in (-300m ; 0). The left-hand 
strong target is fixed on a grid node, while the right-hand 
strong target has a changing position, localized on a node only 
when its distance to the left target is a multiple of 0.5 cell 
width. We compute for each scenario the matched filter 
output, the standard OMP output and the proposed robust 
OMP output. These results are displayed on Fig. 5, Fig. 6, and 
Fig. 7 respectively. The proposed robust OMP avoids the 
spurious generation with standard OMP in case of closed or 
off-grid targets, and behaves as the matched filter for closed 
target within one resolution cell, giving only one detection. It 
also recovers well the weak target hidden in the sidelobes of 
the matched filter. In  [5] the approach is also demonstrated on 
real data. 
 

 
Fig. 5 – Matched Filter Output on simulated data 

 

 
Fig. 6 – Standard OMP Output on simulated data 

 

 
Fig. 7 Robust OMP Output on simulated data 

 

V. CONCLUSION 

In this paper we derived a robust version of OMP algorithm 
against off-grid/closed targets issues, justified with a 
stochastic model on targets relative to their location within 
one resolution cell in the parameter test grid. We have 
proposed a low computational load implementation involving 
only a half-cell mesh oversampled grid. The approach was 
demonstrated on simulated MIMO radar data. In  [5] results on 
real data are given and it is also shown that the proposed 
method can be extended to model mismatch arising from 
hardware imperfect knowledge/calibration by incorporating 
small variants of the steering vector in the computation of (4). 

REFERENCES 
[1] Olivier Rabaste; Laurent Savy; Mathieu Cattenoz; Jean-Paul Guyvarch ; 

Signal waveforms and range/angle coupling in coherent colocated 
MIMO radar, 2013 International Conference on Radar 

[2] J. Bosse, O. Rabaste, and D. Poullin, "Matching pursuit via continuous  
resolution cell rejection in presence of unresolved radar targets", 2015 
23rd European Signal Processing Conference (EUSIPCO). 

[3] O. Rabaste, J. Bosse and J.P. Ovarlez, "Off-Grid Target Detection With 
Normalized Matched Subspace Filter", 2016 24th European Signal 
Processingà Conference (EUSIPCO). 

[4] Mathieu Cattenoz; Laurent Savy; Sylvie Marcos, Adaptive processing 
methods for MIMO radar experimental signals, 2014 IEEE International 
Radar Conference 

[5] M. Cattenoz, L. Savy, and S. Marcos, Extended orthogonal matching 
pursuit for robust and fast target localisation in multiple-input multiple-
output radar, IET Radar, Sonar & Navigation, Volume 11, issue 11, 
November 2017, p. 1709-1717 

[6] Harry L. Van Trees, “Detection, Estimation, and Modulation Theory, 
Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise”, 
p 131, 2001 Wiley & Sons, Inc.  

[7] L.L. Scharf and L.T. McWhorter, “Adaptive matched subspace detectors 
and adaptive coherence estimators”,  Signals, Systems and Computers, 
1996. Conference Record of the Thirtieth Asilomar Conference on. 

[8] C. Chen and P. Vaidyanathan, “MIMO Radar Ambiguity Properties and 
Optimization Using Frequency-Hopping Waveforms,” IEEE Trans. On 
Signal Processing, vol. 56, no. 12, pp. 5926–59 368, 2008. 


