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Abstract—The paper proposes to solve the off-grid issue
arising in sparse processing involving Orthogonal Mtching
Pursuit (OMP) algorithm. It starts by establishing the
Generalized Likelihood Ratio Test using a stochasti model to
represent target location uncertainty within one resolution cell.
In a second step, a linear approximate of the det@r is built,
requiring only a grid oversampling of 2 relative tothe resolution
cell size. Moreover, it involves only the formationof standard
delta channels in each dimension, leading to low egutational
burden without loss of efficiency. The approach ishere
demonstrated on MIMO radar detection.
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signal model deviates significantly form the linephase
complex exponential, found in particular in cohersfiMO
radars where the range and angle dimensions apdecbdue
to the non-perfect orthogonality of the wavefoijiis

In this situation, the main idea is to find a fédesi
approximate implementation of the global matchédrfin the
context of sparse targets hypothesis. In presehsgread non-
point targets, a relevant solution is the Orthogdvatching
Pursuit (OMP) algorithm, see for instance [2]. Bexma the
projector onto the space orthogonal to one targeerisg
vector is very sharp, the standard OMP solutioruireg -to
severe oversampling to mitigate the off-grid targetue.
Anyway, in case of closely spaced targets (typjckdss than
one resolution cell), estimation of target sigmathie detection
step becomes so biased that the rejection steprdguperform
poorly and spurious detections may occur. In [2]8},authors

Inconventional radar processing, since the targebroposed to mitigate the off-grid issue by usinghia OMP

parameters (for instance range, Doppler or angéejaknown,
different matched filter operations (range matchidter,

Doppler processing, array beamforming) are applfed
different parameter hypotheses in order to retrigneetarget.
This matched filter is mainly derived in the singiarget
hypothesis and is however used in multi-targetsrenment
with loss of processing. This usually consists idiag
standard weighting windows onto the filter in orderlower
the side lobes level of the mismatched filteringatidition, the
different single-source assumptions define a gnd the
parameter space and the targets are never exactlthe
resolution grid, causing a loss of processing duea tshift
between the nearest grid point and the real tastgring
vector. However, for the specific kind of signateeuntered in
radar, the average losses over all target positithin a
resolution cell with conventional weighting funct® are
generally contained below 3dB. Theses losses adiitnally
accepted to save computational load and remaimeanniost
manageable case of the multiple single-source gssums for
detection with noise independence assumptions, hwhlso
allow the theoretical calculation of the threshigidthe control
of the false alarm probability.

However, in some situations, it appears
mismatched filter in the multi-targets environmédeads to
poor performance and is not practical, due to tiability to
find efficient apodization techniques. This is ttase when the

that th

rejection step the space spanned by the entirdutieso cell.
Unfortunately, the proposed methods are mainly ciged to
the case of steering vectors being complex exp@ienith
linear phase evolution, otherwise computationald loaill
become prohibitive.

In [4] we proposed to mitigate the off-grid issueusing in
the OMP rejection step the space spanned by adjatzsring
vectors of a half cell. The basic idea is to erdaite rejection
region in the OMP rejection step. The method has lproven
to work well on real data, to be computationallyyvefficient,
and was justified using the development in Tayleries at
second order of the steering vector in [5].

In this paper we go much deeper in the previous

justification, showing the link with the Generalizkikelihood
Ratio Test (GLRT) for target arbitrary localizedthin one
resolution cell (or extended target) and derivihg tiscrete
formulation of the detector in the Low Energy Carare
(LEC) case, already established for continuousasigm [6].
This is detailed in section II.

In section 1ll, using the Taylor series developmehthe
steering vectors in one resolution cell, we shoat the space

&panned by one resolution cell can be well defibgdfew

steering vectors. It is furthermore shown thatdbmputation
of these steering vectors only requires an overbagpy two



of the conventional one-cell grid, for the majority practical
radar waveforms and/or radar antenna configurations

Section 1V, illustrates in more details the apgiima of the

proposed method to the coherent MIMO radar detectio

processing, involving OMP algorithm.

II.  LOwW COHERENCE ENERGY CASE DETECTOR FOR GFF
GRID TARGET—IMPACT ONOMP REJECTION STEP

A. Sandard matched filter and OMP

As a clarification, we recall that the standard ardoal
hypothesis testing (i.e. on whitened data) for pdarget
leading to the matched filter is the following sition:

Ho: x=n (noiseonly) n~CHN (0,Id)

H,: x=as®,)+n (signal +noise) )

ais the unknown target complex amplitude ag(@,)is
the steering vector, depending on a vector of patars.

0,=[6,,6,6,] - 8,=(range, and/or Doppler frequency,

and/or angles) in radar detection problems.
The GLRT for detection is then the matched filter:

s" @)’
sT(0,)50,) <
Ho

Y(0,) = n (7 threshold) )

0, is usually sampled on a grid with mesh correspanttin

a resolution cell. The OMP algorithm built on theeyous
model is then an iterative implementation of theltrarget
matched filter that consists in detecting and tejgceach
contribution of the strongest targets successivélystarts

withx' =x and the K iteration of the procedure can be

summarized by the two following steps:

H k|?
_ o ‘S (80)x ‘
Detectionstep:find 0 = ArgmaxHi

6o S (00)s®o)
3
Ac=|Acusol)] | ao=l] @

= -aafan?alx

Rejectionstep:

B. Low Coherency Energy detector and impact on OMP
In order to deal with the off-grid issue, we ficdtange the

target deterministic model in hypothesig td a stochastic one

as follow:
Hi: x=t+n t~CN (0,02S(8g)), n~CN (0,Id)
‘5’01+A76]l 90P+A6]F>
2 2
Se)= | [ s(0)s™ (9)de 4)
Y A8
01—+ Bop——."

S(8¢)is the normalized power known covariance matrix

of the target, according to the possibility for tiaeget to fall
anywhere in  one resolution cell defined by

A8 = [Agl A92"'A9F’]T around 0, = [6?01 602...00P]T. 02 is the
unknown target power. It is worth noting that thiedel can
also be used for extended target detection or fodaiing

steering vectors uncertainties (by adding extraampaters in
steering vector model in the last case).

The likelihood ratio test with this stochastic mbdan be
written now after some operations:

Hy
xH (1d = (1d + o25(0)) )x : n Log‘ld +028(90)‘ (5)
Ho

Denoting the singular value decompositionS{# ) by:
S(00) = Avavh  n=1:N  NxN :sizeof S(00)
n

o2 ®)

(Id +2S(0g)) L =1d - VpV

n 02/1n +1
Log‘ld + 0—25(90)‘ =3 Log(a?A, +1)
n

After some more operations, the likelihood ratist {®) can be
finally written as :

Hl
v:'x‘2 >/7 > Log(a?A, +1) ()
< n

Ho

g’a,
2 g%, +1

n

It is worth noting that (7) is a weighted and gatieed version
of the subspace-based matched detector [6], whrejections

on the eigenvectors @(0,) accounts for signal to noise ratio

in each eigenvector related subspace. Only in Hee ©f a
strong target and a limited number of non-zeroreigkies of
S(8)we recover the matched subspace detector of [63. On
can also note that we recover the matched filtg@2pin case
S(0p) is of rank 1 and in that case (4) is simply writtas

S(00) =5(00)s" (8g) = Vv -

More interesting is the case of weak target (muelow the

noise), where we can get rid of the target powéin the test
(7). Indeed, for weak target the test leads to:

2
A ‘VHX‘ H,
% T xMseg)x > ®)
2 4n
n

Tr{S(00)} <
HU
a?A 2 2 2
becauseZ—”za An and Log(o“A, +1) = oA,
0%Aq +1

Equation (8) shows that for weak target the detesitoply

turns to the weighted average of the projectionto dhe
eigenvectors ofg(g,) by the eigenvalues. In our situation of



interest, whereg(g,) describes the signal in one resolutionresolution cell, needing only an oversampling

cell, the ) 's in (6) decrease very rapidly.

Equation (8) then can be reduced with little losshe first
term in the sum for detection purpose. However,eoough
rejection of signal falling in one resolution, aquired for
OMP algorithm rejection step, a few more eigenvectare
needed. The OMP procedure with the stochastic ttangelel
then becomes:

H k|?
‘ ‘S (80)x ‘
Detection step:find 0 ) = ArgmaxHi
6 S (80)s®p)
— . _ k 9)
Rejectionstep: Ay =[Ak. Vg

= -A AL AO) AR )X

V= [Vg,...,v‘;/l_l ] . matrix formed by the eigenvectors
corresponding to the M dominant eigenvalues@f) that are

sufficient to get enough cancelation of all thensig within
one resolution cell.

C. llustration on mono dimensional complex exponential
signal with linear phase
The previous results are illustrated for the paldc but
relevant case of a mono dimensional complex expga@ievith
linear phase for signas(@), which can represent in radar
Doppler analysis, range compression, or antennafoeming
on a uniform linear array. In that case:
T
2’TE(N—l)
N 2 (10)

n can represent either the pulse index in Doppialyais, the
frequency bin index in pulse compression, or théeram
element index in a linear uniformly space arr&/represents
then respectively the Doppler bin index, the rabigendex, or
the angle bin index. The resolution cell extentigined by
AG =1 and due to the natures{®) :

i277EM i2n£

s@)=|e Nz ..e N

_(N-)
(U )'

S(6,) = [s(6,)s" (6,)| @ S(0) , with @: Hadamard product.

In that particular case, the eigenvaluesspd,) are the same
than the ones o§(0), and then” eigenvectory _(g,) of S(6,)

is equal tog(gy) @ v, (0), With v_(0) the " eigenvector of
S(0). The eigenvalues of(0) are plotted for illustration on

Fig. 1. It is clear that most of the energy is cegd by the first
eigenvector with 80% (-1dB) of the total energye(geom on
the first eigenvalues).

In next section, using®lorder and %' order expansion of
the steering vector in one resolution cell, we shbat the
space spanned by one resolution cell can be wéhetkby
only two or three steering vectors for each paramdt leads
to a very computationally efficient implementatiai the
projection of the signal in the space orthogonal cioe

byof2the
standard one-cell stepped grid.

EIGENVALUES OF S(0)

0

-20

-40

20
EIGENVAL UE INDEX

Fig. 1Eigenvalues of S(0) for complex exponential sigmigh N=32

Ill.  APPROXIMATE SPACE SPANNED BY ONE CELL

A. Taylor series expansion approximate

We start here by®1 and 2° order linear approximation of the
steering vector, quite valid in one resolution calound the
value g, (the center of the resolution cell):

s(0) =s(8g) + " (6 —Hop)% 1% order
p P lo=o, (12)

1 9%s(0
+22.2.(0p=00p)0; ~00r) (©) 2" order

254 00,06,

p ¢ 'lo=0,

Clearly the spaced defined by the vectors
s(0,) 0s(6) 0°s(8) | s the best approximation at order

o6, 06,06,

2 of the space spanned by one resolution cellhéndame
way, the corresponding approximation @§(6,) is obtained
by using the expressions g{0) in (11) to compute (4). Note
however that these vectors do not correspond nadgsto
the eigenvectors of the approximation (@) since there
are not orthogonal in the general case. Actuallyly on

«(0,) and 0s(0)| are orthogonal in the general case due to
0

006, oo,
the maximum of the ambiguity function & =0,, and only
in case of non-coupled parameters
0s0) g 956) . p# ¢ are also orthogonal (usual case
00, oo, a6, o=o,

case for range/angle/Doppler dimensions in radece@ in
the MIMO case, or except with Doppler effect on fhdse).
This means that for regular radar cases, the firster
expansion of the steering vector corresponds atsdhée
eigenvector decomposition of the first order apprate of

S(0p)-



B. Efficient computation of the projector on the space
othogonal to oneresolution cell via difference channels

From the previous section, it is clear that to catapan

approximate projection on the space orthogonal @ o

resolution cell, needed for the rejection step MR) we have
for each hypothesi§, to compute P+1 "channels" at arder

and P+1 + P(P+1)/2 channels &tcder defined by:

s X1 " sumt' channel S, =S(0,)

(12)
0s; x :1% order" delta” channels ds, = 05(0)

26, oo,
2
0%shx : 2" order "delta" channels  0°s} = 9°S(0)
06,06,|

and to use, for rejection step in OMP, the matrix:
V, = [so s, - 0s, J at 1% order (13)

VS:[s0 ds, -+ 0s, azsl---azsp] at 2™ order

In order to compute very efficiently the delta chels VSHx

(and hence the rejection step), we approximate therfinite
differences derived from a twice oversampled goidyét half
resolution cells.

For a mono-dimensional signal, as the one in (1bis
approximation is written classically as:

NG NG
N S () +?) -s(6y _7)

9s(@)|
30 |g=g A (14)
Y A6
2@ 002100 +s(8- )
262 |, 06?14

To compare the efficiency of the projections dedir®y (13)
and its approximates defined by (14), we took #mmes signal
example as in Fig. 1, and computed the projectespanse

s"(@)(1d -V (VHV,)Vv)s(@) , and added also the standard

OMP projector using only/_=s,. The results are plotted on

Fig. 2 Clearlythe delta channel projectors avoid the sharpness

of the standard projector, while preserving a deatgh. It can
be seen also that the approximate delta channe(&2pfare
closed to the exact delta channels of (11), whilidates the
proposed approach.

It is worth noting that at"? order we get the same projector

using the delta channels defined by (14)inor using directly

V.= s 50,05 s6,-5) | 9)

Indeed the delta channels are a linear combinatidhe three
vectors involved in (15). This latest formulatien the half-cell
projector already identified in an heuristic wayj4dh.

PROJECTORS COMPARISON

Standard

1%t order exact
delta Channel

15 order approximate
delta channel

nd
2" order exact
delta Channel
—Half cells
. . ’ L L

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
CELL INDEX
Fig. 2Projectors comparison

IV.  APPLICATION TO MIMO RADAR PROCESSING

In this section we will first briefly review theoberent MIMO
radar with intrapulse coding and the associatec|dids
issues of the ambiguity function (to go further,taied
discussions can be found for instance in [1])a lecond step,
we will then give some applications of the techeigiescribed
in 1l on simulated and real MIMO data.

A. Brief review of coherent MIMO radar processing and

ambiguity function
For the sake of simplicity, let us consider a traitisng linear
array composed ofM colocated isotropic antennas. In a
conventionalphased array, all antennas transmit the same
waveform, and only the phases of the waveformgidferent
to form the beam in a given direction. In cohereolbcated
intrapulse coding MIMO radar, each of th®l antennas
transmits a different pulsed waveforg (t), with repetition

interval Tr so that the signal transmitted by the array igear
located at directiorg,, is given by:

M T
S (t,60,) = Z Zelk (GC)XE'mSm(t —TR) (16)
¢ m=1
where X is a vector representing the position of i
antenna, and g, )is the wave vector.

Let us now assume without lack of generality tihat teceive
array is composed of one isotropic antenna. Initeaecshown
in [8] that the angular reception processing loarcompletely
decoupled. Then the received signal from a taranknown
amplitude a, with delay 7, =2r/c (r is target range) and

Doppler frequencyy,, is provided by:
x(t) =as(t,7¢,6;,0c) +b(t) with b(t) the noise

M T .
St.7¢,06,05) =Y Y X EMems - 1T - 1,)e PVt
7 m=1



Then, the response of the matched filter at thpududf the
receiver is:

kT OXem [ iy -2t
yr.6.0)=> >e Em J'x(t)sm-(t ARG
7 m=1

Moreover it is also shown in [8] that in case nb Doppler
effect on the pulse, the Doppler processing candpepletely
decoupled from the range-angle processing, and vitneit
matters in coherent MIMO processing is the rangglean
matched filter for one elementary pulse given by:

Mo o7 .
y(r.0) =Y e e [xtysy (t -yt
m'=1

We can derive from the above equations establisimned
continuous time the formulation for discrete signalith

sampling periodTe. The signal model we need for matched

filtering and OMP processing can be written as:

S(0) =s(7,6) =S\ (7)ss(6)
(55(8)) =€ @Em.
Sw®))nm =sm(nTe = 7),

Ss : Mx1 spatialsteeringvector
Sw(7): NxM waveformmatrix

The matched filter expressed in digital formaligm i
y(7,8) =s" (0)x =s(7,8) = 8 (B)S (1)x

And the corresponding ambiguity function is:
X (1~ 76,60,8) = st (6) Sl (1)Su(r0)) s5(66)

The matrix(s\',*v (T)Sw(Tc))=§(T‘Tc) of sizeMxM s the time
cross-correlation matrix of the waveforms, and ist
diagonal matrix with practical waveforms, inducimgnge-
angle coupling in coherent MIMO radar. Note alsattthe
ambiguity function is a 3D function, depending asted
angle 8 and actual target angled. Only hypothetic
unrealizable orthogonal waveforms, with same autetation
function C(r)gives Sii(nS,(7.) =diagC(r-7,)) and then a
decoupled range-angle ambiguity function (seddf fetails):

 decoupled (1-1.,6-6;) = SSH (0)s5(6:) [Cs (T — 1)

resolution in range and angle) but the energy ieap over
the entire parameter space with high sidelobe leVeis
spreading comes from the summation of the non-zeoss
correlations of the codes. This spreading can nverepnot be
mitigated with the use of conventional techniquek
apodization windows.

There is therefore a strong need to decreaseethés in multi-
target environment to avoid the masking of weakets by
the sidelobes of strong targets. In the next pagtgr we
present benefits provided by the robust OMP teakmiq
detailed in section Il for that goal.

. M f{ 'w\l”wﬂ"m "w.\n I )\ i

m i «n ,ui iyl

nbtm»mu 'nr«mmqu'“'

.m i ')mgw'l iy AR
"'hv \(’WH"'I "‘“‘;ﬂ' i ?f ity

-40

0.5

sin(f)

Ranae

Fig. 3 — Range/angle cut of the MIMO ambiguity ftioe for CODMA Gold
codes of length N=127, N=12 transmitters, Tp3i§B=2 MHz

B. Extension of Robust OMP to MIMO radar

First we have to extend the approach of finitdedénces
approximation defined in (14) for 1D on a 2D hatflanesh
grid. It was found, due to the finite differencegpeoximation,
that sufficient nulling of the space spanned by aed
requires not only to compute the reguldt dnd 2° order
differences on each axes (4 parameters), but bisdtand
2" order differences obtained after a rotation of 45the
parameter plane (4 additional parameters). Thisgisivalent
to take for vg in (13) the cell under test and its eight

neighbors on a half-cell mesh grid. This is theclirextension
of (14) in 1D (2 neighbors) to 2D (eight neighbor$he
rationale is described in detail in [5]. The exted projector

response, s (r,6)(1d - v (Vi v)tvisr,6), and the

However, some waveform families may approach thi$tandard OMP projector usivg =s(ry,6,)are plotted on

condition. Among these families, an interesting ecds

Fig. 4. Clearly the notch covers one resolution eéth a

provided by the Code Division Multiple Access (CDMA sufficient depth of almost 60dB.

phase codes used in digital communications [1t.iRstance
Gold codes which are optimized for having goodgm#id auto
and cross correlation also provide good aperiodicetations.

Fig. 3 presents the range/angle 2D cut of the ambiguity

function for =0 and 8§, =0 with Gold codes with N=127
chips, M=12 transmitters, pulse duratiofp=10Qus, and

bandwidth B=2 MHz. This set of parameters will be used

further throughout the rest of the paper.

We observe a thumbtack type MIMO ambiguity function

instead of a 2D sinc function in the ideal decodptase.
There is no noticeable coupling effect (so we dut full

sinfg) cells
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Fig. 4 — 2D standard (left) and extended (righ()jepﬁ:tor responses



C. Resultson simulated data of Robust OMP for MIMO
radar detection

In order to test the effectiveness of the robustFOMethod,

i.e. how the filter manages difficult situationsewse a
particular scenario with two strong targets (samgput SNR

of 40 dB) with a decreasing distanddrom 1.5 to 0.25 with
steps of 0.25 range cell distances, and with d thizak target
hidden in the sidelobes of the matched filter (autNR of

15dB), located on a grid node in (-300m ; 0). Te#-hand

strong target is fixed on a grid node, while thghtihand

strong target has a changing position, localized ande only
when its distance to the left target is a multipfe0.5 cell

width. We compute for each scenario the matchetkrfil
output, the standard OMP output and th@posed robust
OMP output. These results are displayed on Figid,6, and

Fig. 7 respectively. The proposed robust OMP avdhds

spurious generation with standard OMP in case oded or

off-grid targets, and behaves as the matched fittecclosed

target within one resolution cell, giving only odetection. It

also recovers well the weak target hidden in tidelsbes of

the matched filter. In [5] the approach is alsedaestrated on
real data.

Ll

sin(#)
sin(®)

sin(e)
sin(e)

Rance Im Rance Iml

Fig. 5 — Matched Filter Output on simulated data

Ll

sin(@)
=]
sin(a)

50 0 50

Range [m] Range [m]

=}
singa)

d=0,25

S0 0 500
Range m]

Renge [m]
Fig. 6 — Standard OMP Output on simulated data

sin(#)
sin(®)

500 0 S0 500 0 500
Range [m] Range [m]

=
sin(a#)

Range [m] Range fm]

Fig. 7 Robust OMP Output on simulated data

V. CONCLUSION

In this paper we derived a robust version of OM§oathm
against off-grid/closed targets issues, justifiedthwa
stochastic model on targets relative to their llocatwithin
one resolution cell in the parameter test grid. Wave
proposed a low computational load implementatioroliving
only a half-cell mesh oversampled grid. The appnoaas
demonstrated on simulated MIMO radar data. Inr§Splts on
real data are given and it is also shown that ttepgsed
method can be extended to model mismatch arisiog fr
hardware imperfect knowledge/calibration by incogtimg
small variants of the steering vector in the corapah of (4).
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