
HAL Id: hal-02288116
https://centralesupelec.hal.science/hal-02288116v1

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isolating malicious code in Android malware in the wild
Valérie Viet Triem Tong, Cédric Herzog, Tomás Concepción Miranda, Pierre

Graux, Jean-François Lalande, Pierre Wilke

To cite this version:
Valérie Viet Triem Tong, Cédric Herzog, Tomás Concepción Miranda, Pierre Graux, Jean-François
Lalande, et al.. Isolating malicious code in Android malware in the wild. MALCON 2019 - 14th
International Conference on Malicious and Unwanted Software, Oct 2019, Nantucket, United States.
�hal-02288116�

https://centralesupelec.hal.science/hal-02288116v1
https://hal.archives-ouvertes.fr

Isolating malicious code in Android malware in the wild

Valérie Viet Triem Tong, Cédric Herzog, Tomás Concepción Miranda,
Pierre Graux, Jean-François Lalande, Pierre Wilke

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, Rennes, France
firstname.lastname@inria.fr

Abstract

A malicious Android application often consists of a be-
nign part which is the body of the application, and a ma-
licious part that is added later, by repackaging. Fast and
efficient analysis of Android malware depends on the ana-
lyst’s ability to quickly locate malicious code and have a
clear representation of it. To do this, the analysis tools must
allow the suspicious code to be quickly located and isolated
from the rest of the application. In this article, we propose
in a first part to synthesize recent works from the literature
and to refresh older research works in order to highlight
the discriminating characteristics of malicious code. Then,
we propose a heuristic to reveal the suspicious methods of
an Android application by static analysis. Finally, we dis-
cuss an algorithm to recover the malicious graft. This graft
should contain the methods considered suspicious as well
as the code calling these suspicious methods.

1. Introduction

The code of an Android application consists of multi-
ple packages, classes, Java or native methods. When such
an application is malicious, statically understanding the at-
tack requires to first accurately locate the malicious meth-
ods. Few applications contain only code produced by the
attacker. Other malware are formed from healthy applica-
tions to which malicious code has been added: malware
authors can simply decompress a benign application, then
add their malicious code to it before finally repackaging
it: these repackaged applications have been named piggy-
backed apps by Li et al. [12]. In the Android context, a
classic assumption is that most malware are repackaged ap-
plications.

Malicious code localization can first be done manually.
For example, the first datasets of malware were manually
reversed: one of the pioneering projects is the Android mal-
ware Genome Project [19] presented in 2012. This dataset
initially contained 1,200 malware samples, covering most

of the existing Android malware families, collected between
August 2010 and October 2011. This dataset was mainly
maintained thanks to student efforts in charge of the reverse
and classification of the malware. However, when handling
larger-scale malware datasets, the manual reverse engineer-
ing does not scale anymore. Thus, we need an automatic
method to locate suspicious code.

Our long term goal is to explore different methods to
quickly locate malicious code. More precisely, we would
like to distinguish the code that implements the malicious
intent from the benign code that supports the application.
To achieve this goal, we have first compiled and completed
various investigations on malware and goodware to high-
light the features specific to Android malware. Our ex-
periments were conducted over one malware dataset and
one goodware dataset, each containing 5000 unique appli-
cations published between 2015 and 2018. These datasets
(named GM19) have been carefully constructed to avoid
statistical biases. Secondly we propose a heuristic resulting
from this study. This heuristic guides a static analysis by
highlighting in the application control flow graph the meth-
ods considered suspicious because they are more used by
malware than by goodware. Finally, we identify the mali-
cious graft (the malicious code written by the attacker) in an
application by identifying the code handling data acquired
by these methods considered suspicious.

2. Android applications background

An Android application is an archive (an .apk file) that
usually includes a collection of ressources and the code of
the application compiled in the DEX file format. In this arti-
cle, all the classes.dex are decompiled into Jimple and
we compute the interprocedural control flow graph with im-
plicit flows from this representation. A control flow graph is
an oriented graph where nodes are Jimple statements and an
oriented edge from a node A to a node B indicates that state-
ment B can be executed immediately after the statement
A. Such a graph can be easily recovered for each method
in the bytecode using Soot [3]. The inter-procedural con-

Average Average Average
Apps number of number of number
type packages methods of invoke

Declared Dead Declared Dead statements
GOOD 121 69% 16,059 63% 9844
MAL 199 52% 12,539 60% 8138

Average 160 59% 14,300 62% 8991

Table 1. Average usage of packages and
methods for GOOD and MAL datasets

Obfuscation Dataset Ratio of
techniques nature obfuscated

applications
Identifier Google Play 43%
Renaming Third-party apps 73%

(*) Malware 63.5%

String Google Play 0%
Encryption Third-party apps 0.1%

(*) Malware 5.3%

Java Google Play 48.3%
Reflection Third-party apps 49.7%

(*) Malware 51%

Native method GOOD 25.8%
usage (**) MAL 62.5%

Packer GOOD 0.06%
usage (**) MAL 10.88%
(*) Experiments conducted in [5]

(**) Our own findings

Table 2. Evaluation of some obfuscation tech-
niques used by goodware and malware

trol flow graph is constructed by connecting all the method
graphs, i.e. by adding edges representing inter-procedural
calls. Explicit inter-procedural calls permit to connect two
graphs from a method A and a method B when a node in
the graph for A explicitly calls the entry point of the graph
for B (by an invoke statement). Implicit calls are (se-
quence of) calls that start in the application space, con-
tinue in the Android framework and end in the application
space. Formally, a method f calls implicitly a method g if f
calls a method of the runtime h (e.g. Thread.start())
which itself calls the method g. The interprocedural con-
trol flow graph with implicit flows can be recovered using
GPFinder [9]. In the following, we simply refer to the in-
terprocedural control flow graph with implicit flows of an
application simply as the control flow graph or simply G.

We rely in the following on a quantitative study on An-
droid applications. To make this study as objective as possi-
ble and avoid statistical biases, we constructed two datasets1

1https://gitlab.inria.fr/cidre-public/malcon19

MAL and GOOD, named GM19, with the following fea-
tures: MAL and GOOD each contain the same number
(5000) of elements. MAL is composed of malware from
VirusShare [15]; and GOOD of benign applications from
AndroZoo [2], where we keep only those confirmed as non-
malicious by VirusTotal [8]. We discard random samples
in order to ensure a uniform temporal distribution between
2015 and 2018, and thus avoid biases in the characteristics
of APKs due to date differences (for example, API methods
found only in newer versions of the SDK in goodware vs.
old API methods in malware, avoiding concept drift [14]).

Table 1 details the number of packages, classes and in-
voke statements found in these applications. Note that a
high dead code rate is observed because APKs usually in-
clude android.* and com.google.* packages with-
out fully using them.

3. Discriminant Features

One of the major challenges of automatic malware anal-
ysis is to differentiate between malicious and benign code.
In general, malicious code is code whose result will cause
damage to whoever executes it. This code is very similar to
benign code and we think that the only characteristics that
can differentiate malicious code from benign code are:

1. The result of the execution of malicious code goes
against the user. It can attempt to contact a remote
control server, encrypt user data, access sensitive data
(geolocation, contacts, IMEI, etc.), make calls or send
messages to premium rate numbers, take control of the
device. For all this, malicious code can use some li-
braries (crypto, TelephonyManager, . . .) more often
than benign code would.

2. The attacker’s gain increases as long as his code is not
analyzable and detectable by common anti-virus soft-
ware. Therefore, the attacker tries to protect his code
against (a) static analysis and (b) dynamic analysis. To
do this, he obfuscates his code, and delays the execu-
tion of its payload to trigger the attack only on a real
device when not under analysis.

3. On Android, some malware are distributed directly
as entire applications. Many other malware are dis-
tributed by hiding in popular third-party applications,
encouraging users to install it. These fake applica-
tions are referred to as piggybacked applications and
are simply repackagings of benign applications where
some malicious code has been grafted.

We believe that characteristics (1) refer to the content of
the code while characteristic (2) refers to the form (is it ob-
fuscated or not) (a) and structure (is the payload accessible

directly from an entry point) (b) of the malicious code and
(3) impacts the internal structure of the whole application
code. We now detail how these features can be exploited
(or have been exploited) in Android malware analysis.

Content of the malicious code (1) In 2013, Aafer et al.
described malware through their usage of API functions,
packages, and parameter level information [1]. Relying on
this description, they proposed a detection method that dis-
tinguishes malware from benign applications. In particular,
their work has highlighted a list of APIs that reveal the pres-
ence of potentially malicious code.

This seminal study was very important and has been used
by many approaches: mostly as a basis [7,16–18], fewer for
comparison [6]. This work was conducted in 2013 and we
conducted a similar study on malware from 2019 in order
to update these results.

We have listed all the API methods invoked by the sam-
ples of MAL and GOOD datasets. Among these methods,
it appears that at least 30 methods are invoked by samples
in the MAL dataset and are never invoked by samples in the
GOOD dataset, see Figure 1. We also computed the top 30
methods with the highest difference between malware and
benign apps. Our results are presented in Figure 2. Com-
paring to the methods highlighted by Aafer et al. in 2013,
we notice that the preferred method for malware is still
getSubscriberId in the TelephonyManager API.
But the rest of the top 30 has changed: nowadays malware
get more information about the device they are running on
(about the network, the wifi), rather than manipulating ser-
vices, SMS messages, and timers. We can note the usage of
getPackageManager, which allows to make adminis-
trative tasks with the OS, and of getApplicationInfo,
which allows to check if an application is debuggable.
These operations can obviously be used by malware, for ex-
ample to become persistent or to disable some applications
that would analyze them.

Form of the malicious code (2a) The malware developer
implements malicious code protections to prevent analy-
sis and therefore detection. These protections are of two
types, depending on whether they are protective against
static analysis or dynamic analysis. Common obfuscation
techniques that protect the code against static analysis are
variable renaming, string encryption, reflection, packing
(encryption of all or part of the bytecode) and usage of na-
tive code. Bacci et al. [4] proposed to automatically iden-
tify whether a sample under analysis has been modified by
means of obfuscation techniques including disassembling
followed by reassembling, repackaging, renaming pack-
ages, using call indirections, inserting junk code, renaming
identifiers, encoding data, reordering code. Dong et al. [5]
investigated how obfuscation techniques are really used by

Figure 1. Methods invoked only in the sam-
ples in MAL

malware in the wild. They have evaluated how three ob-
fuscation techniques (identifier renaming, string encryption,
and Java reflection) are really used by Android applications
of three typical datasets (Google Play, third-party markets,
and malware). Their study has revealed that the percent-
age of malware using identifier renaming is 63.5%, which is
more than for applications available on Google Play (43%),
but slightly less than for third-party apps (73%). String
encryption is not used by benign applications and only by
5.3% of malware. The proportions of reflection deployment
in benign apps and malware are similar (around 50%). To
complete this study, we have explored how native code ob-
fuscation is used by malware and goodware. To detect if
an application resorts to native code obfuscation we have
checked the presence of methods declared as native in the
DEX file of APKs from GOOD and MAL dataset. Ac-
cording to our investigation, we have found that malware
use way more native methods than goodware (62.5% vs.
25.8%). This can be explained by the necessity of malware
to obfuscate their code and, thus, to use native code. We
have also quantified the usage of known packers by run-
ning APKiD [13] over the GOOD and MAL datatsets. We
have observed that malware use more packers than good-
ware (10.88% vs. 0.06%). This can also explain the higher
usage of native methods in DEX files: packers rely on na-
tive methods to load the packaged code. The results from
Dong et al. and our own findings are gathered in Table 2.

Structure of the malicious code (2b) The protection of
malware against dynamic analysis is of a different nature. A
code is protected against dynamic analysis when it is not ex-
ecuted immediately after the application is launched. From
the malware code point of view, this means that the pay-

Figure 2. TOP 30 of the highest difference in methods invoked in MAL and GOOD

load can only be reached from an application entry point by
passing through one or more conditional statements which
are triggering conditions. These conditions ensure that code
is only executed when the environment context appears to
be suitable for malicious code, outside an analysis platform.
These conditions are various: they can delay the execution
in time, check the presence of emulators, check that user ac-
tions are performed. Leslous et al. [10] explored execution
paths towards any piece of code considered as suspicious
in Android applications. First, their study revealed that
the malicious payload is regularly hidden behind implicit
control flow calls (i.e. flows occurring when the Android
framework calls a method implemented in the application
space) making usual static analyzers believe that the mali-
cious code is unreachable. Their study has also revealed
an average of 12.34 conditions per execution path leading
to suspicious code locations. These conditions are a mix
of necessary checks for the app to work, and of triggering
conditions that protect the malicious behavior in order to
run only under certain circumstances.

Internal structure of application hosting malicious code
(3) As mentioned above, malicious code is often hosted
by a benign application and the resulting application is
called a piggybacked application. These applications have
been investigated by Li et al. [11] and they have built a large
dataset of piggybacked and benign applications pairs. This
dataset was obtained by searching for pairs of applications
with highly similar code. To know the similarity between
two applications, each method of each application is ab-
stracted by a string encoding the different types of state-
ments of the method. Then the similarity between these
two applications is reduced to the similarity between two
sets of strings. On this dataset, Li et al. described how
piggybacked applications differ from benign ones: what ac-
tions are performed, what payloads are inserted, and so on.
Among several insights, they claimed that piggybacking is
done with little sophistication, in many cases automatically,
and often via library code.

Our conclusions To conclude, we believe that the studies
mentioned above provided a good indication of the char-
acteristics of Android applications hosting malicious code.
First, these applications use more libraries than others (re-
sult of Aafer et al. in 2013, updated here). Then, malicious
code can be protected against security analysis. The pro-
tection methods that differentiate them from goodware are
mainly string encryption and native code based obfuscation.
Lastly, the malicious code may have been added in an ini-
tially healthy application, so it forms an independent part
grafted to the original code.

In the remainder of this article, we use the first two con-
clusions to decide whether an Android application is sus-
picious or not (Section 4). We propose to evaluate the use
of suspicious APIs by Android applications and assess their
potential threat levels. This type of study helps us distin-
guish malware from goodware but is not enough to quickly
locate the malicious part in all the code of an application
since it does not allow us to find all the parts of the code
written by the attacker, nor to highlight the structure of the
malicious code. For this reason we propose in Section 5 to
isolate the malicious graft from the healthy code using the
data dependency graph.

4. Highlighting suspicious methods

Section 3 quantifies method invocations in MAL and
GOOD datasets, allowing us to highlight which classes and
methods are statistically more used by malware than by
goodware. Now, we propose to build a heuristic that can
be used by static analysis to study the profile of an appli-
cation according to its use of APIs preferred by malware
rather than by goodware. A heuristic file lists methods that
should be preferred by a malware than by a goodware. Here,
our heuristics files are filled using the study presented in the
previous section. Our problem is therefore to select enough
methods not to wrongly classify too much goodware and
not to wrongly dismiss too much malware, i.e. to be neither
too selective nor too little selective.

To tune this heuristic we separate MAL in two subsets:
a training set of 4, 000 samples and a test set of 1, 000 sam-
ples. Then, we build a heuristic parametrized by a distance
d and a threshold t. A distance d means that the meth-
ods listed in the heuristic have been chosen because in the
previous study, these methods were invoked more than d%
by malware than by goodware. Choosing a distance of 0%
means we add in our heuristic a method present as much in
the GOOD dataset than in the MAL dataset. H0 is there-
fore very non-discriminating. On the contrary, a distance of
100% means we add in our heuristic methods exclusively
present in the MAL dataset. We have computed 11 heuris-
tics with a distance d going from H0 to H100 by steps of
5%.

Figure 3. Evaluation of the impact of the dis-
tance choice

We measured the accuracy and relevance of these heuris-
tics on the remaining test set of 1, 000 samples in MAL and
a similar test set issued from GOOD. We count the num-
ber of invocation methods listed in the heuristics for each
heuristic H0 to H100. We define a detection threshold t: an
application is considered as malicious if it uses more than t
methods occurring in a heuristic Hd. We evaluate the im-
pact in term of true positive rate (TPR) and false positive
rate (FPR) of a threshold value from 0 to 10000 in Figure 3.

Finally, from this results, we draw the ROC curves, as
shown in Figure 4, for all heuristics. By maximizing the
true positive rate while minimizing the false positive rate
(point closest to the upper left of the ROC curve), we found
that the best parameters are when using a distance of 35%
and a threshold of 900 suspicious invokes, making H35 with
the threshold of t = 900 invocations of suspicious methods
above which the application is considered malicious.

5. Isolation of suspicious code

We conclude this article by focusing on the control flow
graph and the data dependency graph of an application. In
the control flow graph, we can highlight methods that seem
suspicious because one or more of their instructions invoke
a suspicious API function according to the previously de-
scribed heuristics. This methodology leads to the identifi-
cation of methods in the bytecode. The highlighted code

Figure 4. Comparaison of ROC curves

can be grouped or scattered in the graph. This first step can
be used to decide whether or not an application is malicious
as we have proposed in the previous section. This method
does not allow to understand the structure of the malicious
code because it only reports a set of methods without any
link between them. We now propose to try to separate ma-
licious code from healthy code by assuming that the ma-
licious code contains the suspicious methods and that the
malicious code manipulates data contaminated by instruc-
tions considered suspicious.

Suspicious instructions and suspicious methods An in-
struction is suspicious if it is an invoke of an external sus-
picious Android API or when it depends on data generated
by other suspicious instructions. A method is considered
suspicious if it contains at least one suspicious instruction.
The set of suspicious methods is recursively computed from
the data dependency graph of the application. This data
dependency graph is computed using Soot [3] and Grodd-
Droid [10]. It represents the data dependency between a
bytecode instruction i and the set of previous instructions
that modify the registers impacting i.

Figure 5 depicts the control flow graph of a sample of
Airpush issued from the AMD dataset2. This sample has
830 methods, among them 23 (2.8%) invoke an external
suspicious Android API (3 invoke a telephony API, 3 invoke
a system API and 17 invoke a network API). The suspicious
methods are colored in black in Figure 5. The computation
of methods depending on at least a suspicious instruction
leads to the identification of 330 (39.8%) suspicious meth-
ods in the following packages:

2SHA256: 84cde6a088b3303dfc4db7fe25443a82094d89441b68f39
6d2e8c2b70ce963fc

• com.flurry* : 20 methods over 44

• com.bugsense* : 27/60

• com.mobclix.android* : 101/378

• com.ZGisNcvn* : 177/310

• com.boa.whis* : 5/8

Here again, the precision depends above all on the
heuristics chosen: if the heuristic is too broad, then the error
is further amplified by the search for methods manipulating
data that are incorrectly labeled. In a random sample3 from
MAL having 6127 methods, we found a graph composed of
11 connected components for a total of 2289 methods with
the heuristic H5, 2248 methods (loss of 41 methods) with
the heuristic H35, and a total of 1876 (loss of an entire pack-
age) with the heuristic H50. The different grafts for H35 are
depicted in gray in Figure 6.

For each of these heuristics, we found the following
number of components depicted here by their size:

• H5 : 49 components
(1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 2, 1,
1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 1, 1, 1, 1,
2214)

• H35 : 6 components
(1, 1, 1, 10, 1, 2372)

• H50 : 2 components
(1, 2355)

Malicious connected component and grafting point
When an attacker grafts malicious code to an application,
he ensures that the execution of malicious code is possible
through the execution of the original application. To do this,
he can either add a new entry point to the application, this is
what we have called a ”coarse” graft, or he can modify one
(or more) methods of the application so as to modify at least
one normal execution path to drift it to the malicious code,
this is what we have called a ”fine” graft. The malicious
code can be gathered in a newly added library.

From the graph point of view, a grafting point corre-
sponds to an articulation point (i.e. a method whose removal
would increase the number of connected components) that
maximizes the number of suspicious methods contained in
a single component. To highlight this suspicious graft, we
highlight connected components of the control flow graph
containing only suspicious methods obtained in the previ-
ous step: these nodes are suspicious either because they
invoke a suspicious API or because they manipulate data
acquired from suspicious APIs.

3SHA256: d0faedd5a230685ac027f7e1136015dc5ffa5ef7ba12344b75
7cd90b57141e25

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CA
LL
S

C
A
LL
S

C
A
LLS

CALLS

C
A
LLS

CA
LL
S

CA
LL
S

CA
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

C
A
LLS

C
ALLS

C
A
LL
S

CALLS

CALLS

CA
LLS

C
A
LL
S

CA
LL
S

CALLS

C
A
LL
S

CA
LL
S

CALLS

CALLS

C
A
LL
S

CA
LL
S

C
A
LLS

C
AL
LS

CALLS

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LLS

CALLS

CAL
LS

CALLS

CALLS

C
A
LL
S

C
A
LLS

CALLSC
A
LL
S

C
A
LL
S CA

LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

C
AL
LS

C
A
LLS

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LLS

CALLS

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

CALLS

C
A
LLS

C
A
LL
S

C
ALLS

CALLS

CA
LL
S

CAL
LS

C
A
LL
S

C
A
LL
S

CA
LLSCA

LL
S

CA
LLS

CALLS

C
A
LL
S

CALLS

CA
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

C
AL
LS CA

LL
S

CALLS

CA
LL
S

C
A
LL
S

C
A
LL
S

CA
LLS

C
AL
LS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CAL
LS

CALLS

CA
LL
S

C
A
LL
S

C
A
LLS

CAL
LS

CA
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LLS

CA
LLS

C
A
LLS

CALLS

CA
LLS

C
AL
LS

C
A
LL
S

C
A
LL
S

CAL
LS

C
A
LLS

C
A
LL
S

C
A
LL
S
C
A
LL
S

CA
LL
S

CA
LL
S

C
A
LLS

C
A
LL
S

C
AL
LS

C
A
LLS

C
A
LL
S

CA
LL
S

CALLS

CALLSCALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CALLS
CALLS

CALLS

CALLS

CA
LL
S

CAL
LS

C
A
LLS

CALLS

CALL
SCALLS

CALLS

CA
LL
S

CALLS
CA
LLS

CA
LL
S

CALL
S

CALLS
CALLS

CA
LL
S

CALLS

C
ALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CAL
LS

CALLS

CALLS

CALLS

CA
…

CA
LL
S

CA
LL
S

CALLS

CAL
LS

CALLS

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CALLSCALL
S

CA
LL
S

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

CA
LL
S

CALLS

CA
LLS

CA
LL
S

CALLS

CALL
S

C
A
LL
S

C
A
LL
S

CALLS

C
A
LLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CALLS

C
A
LLS

CA
LLS

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LLS

CA
LLS

CALLS

C
AL
LS

C
A
LL
S

CAL
LS

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CAL
LS

CA
LL
S

CA
LL
S

CA
LL
S

CALLS

CALLS

CA
LL
S

CALLS

C
A
LLS

CAL
LS

CA
LL
S

CALLS

CALLS

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LLS CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

C
A
LL
S

CALLS

CALLS

CA
LL
S

CA
LL
S

CALL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

CAL
LS

CA
LL
S

CALLS

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CALLS

CA
LL
S

CALLS

C
A
LLS

CA
LL
S

CA
LL
S

CALLS

CA
LLS

C
A
LL
S

CALLS

CALLS

CALL
S

CALLS

C
A
LL
S

CALLS

CALLS

CA
LL
S

CALL
S

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS
CALLS

CALLS

CALLS

C
A
LL
S

CALLS

C
A
LLS

CALLS

CAL
LS

CALLS
CALLS

CALLS

C
A
LL
S

CALLS

CALLS CA…

CAL
LS

CALLS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

CALL
S

CALLS

CALLS

C
A
LLS

C
A
LLSC

A
LL
S

C
A
LLS

CALLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS

CALLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

C
A
LLS

CA
LLS

CA
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LLS

CA
LL
S

CALLS

C
A
LLS

CALLS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

CA…

C
A
LLS

C
A
…

CALLS

CA
LLS

C
A
LLS

CAL
LS

CA
LL
S C

A
LLS C
A
LLS

C
…

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LL
S

CALLS

C
A
LLS

C
A
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

CA
LL
S

CALLS

CALLS

CAL
LS

CALLSCALLS
C
A
LLS

CALLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

CA
LLS

CALLS

CALLS
CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LL
S

C
A
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CAL
LS

CALLS

CA
LLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CAL
LS

CALLS

CALLS

CA
LL
S

CA
LLS

CAL
LS

CA
LLS

CALLS

CA
LL
S

C
A
LL
S

CALLS

CALLS

CALLS

CALLS
CALLS

CAL
LS

C
AL
LS

CALLS
CALLS

CA
LL
S

CALLS

CALL
S

CAL
LS

CALL
S

CALL
S

CALLS

CA
LL
S

CALLS

CALLS

CA
LL
S

CA
LLS

CALLS

CALL
S

CALLS CA
LLS

CALLS

CALLS
CALL

S

CALLS

CALLS

CALLS

CALLS

CA
LL
SCA
LL
S CA

LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
AL
LS

CA
LL
S

C
A
LL
S

C
A
LL
S

CA
LLS

CA
LL
S

CA
LLSCA

LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALL
SC…

CALLS

CA
LL
S

CALL
S

C
A
LLS

CALLS

C
A
LLS

CA
LL
S

C
A
LLS

C
A
LL
S

CALLS

CAL
LS

CA
LL
S

C
A
LL
S

CALLS

CA
LLS

CALLS

C
A
LLS

CAL
LS

CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CA
LL
S

CALLS

CALL
S

CA
LL
S

C…

CALLS

CALLS

CA
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

CAL
LS

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LLS

C
A
LL
S

C
A
LL
S

CALLS C
A
LL
S CA

LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LL
S

CA
LLS CALLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

CA
LL
S

C
A
LLS

CALLS

CALLS

CALLS

C
A
LLS

CALLS
C
A
LLS

CALLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LL
SC

ALLS

CALLS

C
A
LL
S

CALLS

CALL
S

C
A
LL
S

C
A
LLS

CA
LLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

CALL
S

CALLS

CA
LL
S

CALLS

CA
LL
S

CAL
LS

CA
LL
S

C
A
LL
S

CALLSCALLS
CALLS

CA
LL
S

CALL
S

CALLS

CALLS

CA
LLS

CALLS

CALLS

CALL
S

CALLS

CALLS

CA
LL
S

CAL
LS

CALLS

CALLS

CALLS

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CALLS
CALL

S

CALLS

CALLS

CALLS

CA
LL
S

CAL
LS

CA
LL
S

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CALL
S

CALLS

CALLS

CALLS

CALLSCALLS
CALLS

CA
LL
S

CALLS

CALLS

CAL
LS

CA
LL
S

CALLS

CAL
LS

C
A
LL
S

CA
LL
S

CAL
LS

CALLS

CALLS

CAL
LS

C
AL
LS

CALL
S

CAL
LS

CA
LL
S

CALLS

CALL
S

CA
LLS

C
AL
LS

CA
LLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CA
LL
S

CAL
LS

CAL
LS

CALLS

CALLS
CALLS CALLS

CA
LL
S

CALLS

CA
LLSCAL

LS

CALLS

C
A
LLS

CA
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CA
LLS

CALLS

C
A
LL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
SC
A
LL
S

CA
LL
S

CA
LL
S C

A
LL
S

CALLS

C
A
LL
S

CA
LLS

C
A
LL
S

C
A
LL
S

CA
…

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

CA
LL
S

CA
LL
S

C
A
LLS

C
A
LL
S C

A
LLS

CALLS

CA
LL
S

C
A
LL
S

CALLS

C
A
LL
S

CALLS

C
A
…

C
A
LL
S

CALLS

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LLS

C
A
LLS

CALLS

C
A
LL
S

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

C
A
LLS

CA
LLS

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CAL
LS

C
A
LLS

CA
LLS

CA
LL
S

C
A
LL
S

CA
LL
S

CALL
S

C
A
LLS

CA
LL
S

C
A
LL
S

CA
LLS

CAL
LS

CALLS

CA
LL
S

CALLS

CAL
LS

CA
LL
S

C
A
LLS

CALLS

C
A
LLS

C
A
LL
S

CALLS

CALLS

C
A
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

CA
LLS

CALLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CA…

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

CA
LL
S

CA
LL
S

CA
LL
S

CALLS

CA
LLS

CA
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS C

A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CA
LLS

CA
LL
S

CALLS

CAL
LS

CALLS

CALLS

CALLS

C
A
LLS

CALLS

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

C
AL
LS

CA
LL
S

CAL
LS

CA
LL
S

C
A
LL
S

C
A
LL
S

CA
LLS

CA
LL
S

C
A
LL
S

C
AL
LS

CAL
LS

C
A
LL
S

CA
LL
S

CALL
S

CA
LL
S

CALL
S

C
A
LL
S

CA
LL
S

C
A
LLS

C
A
LL
S

CA
LL
S

CA
LL
SCA

LL
S

CALLS

CA
LL
S

C
A
LLS

CALLS

CALLS

CA
LL
S

CALLS

CAL
LS

CALLS

C
AL
LS

CALL
S

CALLS

C
A
LL
S

CALLS

CA
LLS

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

C
AL
LS

CA
LL
S

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CA
LL
S

CA
LL
S

C
A
LLS

C
A
LL
S

CALLS

C
A
LL
SC
A
LL
S

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CA
LLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LLSCALLS

CALLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LLSCA

LL
S

CALLSCAL
LS

CAL
LS

CAL
LS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LLS

CA
LLS

CALL
S

CA…

CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

C
A
LL
S

CA
LLS

CALLS

CAL
LS

CALLS

CALLS

C
AL
LS

CA
LL
S

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CALLS

CA
LLSCA
LLS

CALLS

CALLS

CAL
LS

CA
LL
S

CALLS

CAL
LS

CA
LLS

C
A
LL
S

CALLS

C
A
LL
S

CA
LL
S

CALLS

CALL
S

CA
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CAL
LS

CALLS

CALLS

CA
LL
S

C
A
LLS

CALLS

C
A
LL
S

CA
LLS

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CAL
LS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS CA

LL
S

C
ALLS

CA
LL
S

C
…

C
A
LL
S

C
A
LLS

CA
LL
S

C
A
LLS

CALLS

C
A
LL
S

C
A
LLS

C
A
LLSCA

LLS

CA
LL
S

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LL
S

CA
LLS

C…

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS

CA
LL
S

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS C

A
LL
S

C
A
LLS

C
A
LL
S

CALL
S

C
A
LLS

CALLS

CALLS
CALLS

CALLS

CALLS

C…

CALLS

C
A
LL
S

CALLS
CALLS

CALLS

CA
LLS

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CAL
LS

CALLS

C
A
LLS

C
A
LLS

CALLS
CA
LL
S

C
A
LL
S

C
A
LLSCA

LL
S

CALLS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

C
AL
LS

CA
LL
S

C
A
LL
S

C
A
LLS

CALLS

CALLS

C
A
LLS

CALLS

CA
LL
S

CALLS

C
A
LLS

CALLS

C
A
LL
S

CALLS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C…

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LL
S

CA
LL
S

C
A
LL
S

CALLS

C
A
LLS

CALL
S

C
A
LL
S

CALLS

C
A
LL
S

CALLS

C
A
LLS

C
A
LL
S

CA
LLS

CALLS

C
A
LL
SCA

LL
S

C
A
LL
S

CALLS

CALLS

CA
LL
S

CALLS

CAL
LS

CALLS

CALLS

CALLS

CALLS
CALLS

CALLS

CA
…

CALLS

CALL
SCA

LL
S

CALLS
CALLS

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS CALL
S

CALL
S

CALLS

CAL
LS

CALLS

C
A
LL
S

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CALL
S

CALLS

C
A
LL
S

CALLS

CA
LL
S

CA
L…
CA
LL
S

CA
LLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CAL
LS

CALLS

CALLS

CALLS

C
A
LL
S

CALL
SCA

LLS

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LL
S

CALLSCALLS

C
A
LLS

CALLS

CALL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS
CALLS

C
A
LL
S

CA
LL
S

CALLS
CAL

LS

CA
LL
S

CALLS

C
A
LL
S

CALLS

C
A
LLS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LLS

CALLS

CALLS

CALLS

C
A
LLS

C
A
LL
S

CALLS

C
A
LLS

CALLS

CALLS

CALLS

C…

C
ALLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CA
LLS

CALLS

C
A
LLS

C
A
LL
S

C
AL
LS

CALLS

CA
LL
S

CALLS

CALLS

C
A
LLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

CALL
S

CALLS

CA
LL
S

CALLS

C
A
LLS

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS
CALLS

CA
LL
S

CALLS

C
A
LLS CA

LL
S

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LL
S

CALLS

CAL
LS

C
A
LLS

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LLS

CA
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

C
A
LLS

CA…

C
…

CA
LLS

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS

C
A
LLS

C
A
LLS

C
ALLS

C
A
LL
S

CA
LL
S

C
A
LLS

CA
LL
S

CALLSCA
LL
S

CALLS

CA
LL
S

CALLS

C
A
LL
S

CALLS

CA
LL
S

C
A
LLS

C
A
LLS

CAL
LS

C
A
LL
S

CALLS

CALL
S

CALLS

CALLSCALLS

CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LLSC

A
LLS

C
A
LLS

CALLSCALLS

CA
LL
S

C
A
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
ALLS C

A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CA
LLSCAL

LS

C
A
LL
S

C
A
LL
S

CALLS

C
A
LLS

CA
LL
S

CALLS

CALLS

C
A
LLS

C…
CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CA
LL
S

CALLS

CALLS

C
A
…C
A
LL
S

C
A
LLS

C
A
LL
S

CA
L…

C
A
LLS

CALLS

CALLS CALL
S

CALLS

CAL
LS

CA
LLS

CA
LL
S

CALLS

C
A
LLS

C
A
LLS

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS C
A
LLS

CALLS

C
A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CALLS

CA
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

CALLS

CAL
LS

CA
LLS

CALLS

CAL
LS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CA
LL
S

CALLS

CAL
LS

CALLS

CALLS

CAL
LS

CALLS

CAL
LS

C
A
LL
S

CALLS

C…

CA
LL
S

CALLS

C
AL
LS

CA
LLS

CALLS

CA
LL
S

CALL
S

C
A
LL
S

CA
LL
S

CALLS

C
A
LLS

CALLS

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CAL
LS

CA
LL
S

CALLS

CALLS

CALLS

CALL
S

CA
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

CA
LL
S

CALLS
CALLS

C
A
LLS

C
A
LL
S

C
A
LL
S

CALLS

CA
LL
S

CALLS

CALL
S

CA
LL
S

CAL
LS

CA
LL
S

C
A
LLS

CA
LLS

CALLS

CA
LLS

CAL
LS

CALLS

CAL
LS

CALL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CA
LL
S

CALLS

CA
LL
S

CALLS

CA
LL
S

C
A
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CAL…

CALLS

C
A
LLS

CALLS

CALLS
CALLS

CALLS

CALLS

CALLS

C
A
LLS

C
ALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LLS CALLS

C
A
LL
S

CALLS

C
A
LLS C

A
LLS

CALLS

C
ALLS

CALLS

CALLS

CALLS

C
ALLS

CALLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

CALLS

CAL
LS

CAL
LS

CALLS

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CAL
LS

CA
LL
S CA

LL
S

C
A
LLS

C
A
LLS

CALLS

CA
LL
S

CALLS

CA
LLS

C
A
LL
S

CALLS

CA
LL
SCALL

S

CA
LL
S

C
A
LL
S

CALLS

CALLS

C
A
LL
S

CA
LLS

C
A
LL
S

C
A
LL
S

CA
LLS

CAL
LS

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CALLS

C
A
LL
S

CAL
LS

CA
LLS

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

C
A
LLS

C
A
LL
S C
A
LL
S

C
A
LLSC

A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LLS

CA
LL
S

C
A
LLS

CALLS

C
A
LL
S

C
A
LL
S

CA
LL
SC
A
LL
S

C
A
LL
S

C…

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

CAL
LS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LL
S

CA
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

CALLS
CA

LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS
CALLSC…

CA
LL
S

CALLS

CALL
S

CALLSCALLS

CAL
LS

CA
LLS

CAL
LS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CA
LL
S

CALLS

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

CALLS CALLS

CALLS
CALLS

CAL
LS

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CAL…

C
A
LLS

CAL
LS

CALLS

CALL
S

CAL
LS

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CALLS C
A
LL
S

C
A
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CALLS
C
A
LL
S

CALLS CALLS

CA
LLS

CALLS

CALL
S

CAL
LS

CALLS

CAL
LS

CAL
LS

CAL
LS

CALLS

CALLS

CA
LLS

C…
CALLS

CALLS

CA
LLSCA

LL
S

CALLS

C
A
LL
S

CALLS
CALLS

CALLS

CALLS

CA
LL
S

CALLS

CA
LLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

CA
LLS

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LLS

CALLS

C
A
LL
S

CA
LL
S

CALLS
C
A
LLS

C
A
LLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS
CALLS

C
A
LLS

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CALL
S

CALLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

C
A
LL
S

CA
LL
S

CALLS

CA
LL
S

C
A
LL
S

CA
LL
S

CALLS

CALLS

CAL
LS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LLS

CALLS

CAL
LS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

CA
LL
S

CA
LLS

CALLS

CALLS CA
LLS

C
A
LL
S

CA
LL
S

CALLS

CAL
LS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LL
S

CAL
LS

C
A
LL
S
C
A
LL
S

CALLS

CALLS

CAL
LS

CALLS

CA
LL
S

CAL
LS

CA
LL
S

CA
LL
S

CALLS

C
…

CALLS

CALLS
CALLSCAL

LS

CA
LL
S

CA
LL
S

C
A
LL
S

CALLS CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CA
LL
S

CALLS

CA
LLS

CALLS
CALLS

CALLS

CALL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS CALLS

CALLS

CALLS

C
AL
LS

CA…

C
A
LLS

CA
LLS

CALLS

C
A
LLS

CA
LL
S

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LLSC

A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

C
ALLS

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

CAL
LS

CALLS

CALL
S

CA
…

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LL
S

CALLS

C
ALLS

CALLS

C
A
LLS

C
A
LL
S

C
A
LL
S

CAL
LS

C
A
LL
S

CALLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

CAL
LS

CALLS

C
A
LLS

CA
LLS

C
A
LL
S

CALLS

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LL
S

CA
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

CALLS

CA
LL
S

CALLS

CA
LL
S

C
A
LLS

CA
LL
S

CA
LLS

C
A
LLS

CAL
LS

CALLS

CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALL
S

C
A
LLS

CALLS

C
ALLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LL
S

CALLS

C
A
LL
S

C
A
LLS

C
A
LL
S

CALLS

C
A
LLS

CALLS

CALLS

CA
LL
S C

A
LL
S

C
AL
LS C
A
LL
S

C
A
LL
S

C
A
LL
S

CAL
LS

CALLS
CA…

CALLS

CALL
S

CALLS

CALLS

C
A
LLS

C
A
LLS

CALL
S

C
A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

C
A
LL
S

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CA
LLS

CALLS

CA
LL
S

CALLS

C
A
LLS

CALLS

CALLS
CALLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

CALLS

CALLS

CALLS

C
A
LL
S

CALLS
C
A
LLS

CALLSC
A
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CAL
LS

C
A
LL
S

CALLS

CALL
S CALL

S

CA
LL
S

C
A
L…

C
AL
LS

CA… CALLS

C
A
LL
S

CALLS

CA
LL
S

CALLS

CA
LL
S

CALLS
CA
LLS

CALLS

C
A
LL
S

C
A
LL
S

CALLS
CAL

LS

C
A
LLS

CALLS

C
A
LL
S

C…

C
A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

CA
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CA
LL
S

C
ALLS CA

LL
S

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CA
LL
S

CALLS

C
ALLS

C
A
LLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

CA
LL
S

C
ALLS

CALLS

C
A
LLS

CALLS

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LLS

CALL
S

C
A
LLS

C
A
LL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LL
S

CA
LL
S

CALLS

C
A
LLS

CALLS
C
A
LL
S

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CALLS

CALLS

CA
LLS

CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

C
A
LL
S

CALLS

CALLS

CA
LL
S

CALLS

CALLS

C
A
LLS

CALLS

CA
LLSC

A
LL
S

CALLS

CA
LL
S

CALLS

C
A
LL
S

C
A
LLS

CA
LL
S

CALLS

C
A
LLS

CALLS

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

C
A
LL
S

CA
LL
S

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

C
A
LLS

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CALLS

CALLS

CALLS

C
A
LL
S

CA
LL
S

C
A
LLS

C
A
LLS

CA
LLS

CALLS

CA
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

CALLS

CALL
S

CALLS

C
A
LLS

CA
LLS

CA
LL
S

C
A
LL
S

CA
LL
S

C
A
LL
S

CA
LL
S

CALLS

CALLS

CA
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CA
LLS

C
A
LLS

CA
LL
S

CA
LL
S

C
A
LLS

CA
LL
S

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LLS C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CALL
S

CAL
LS

CAL
LS

CAL
LS

CA
LLS

CALLS

CAL
LS

CALLS

CALL
S

CA
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CA
LL
S

CA
LL
S

CALLS

CA
LL
S

CALLS

CALLS

C
A
LL
S

CALLS

C
A
LL
S

CALLS

CALLS

CA
LLS

CALLS

CALLS

C
A
LLS

CALLS

CALLS

CALLS

CA
LL
S

C
A
LLS

C
ALLS

CALLS

CALLSCALLS

CALLS

CALLS

CALL
S

CALLS

CA
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LLS

C
A
LL
S

C
A
LLS

CA
LL
S

CA
LL
S

CA
LLS

CALLS

CALLS

CALLS

CALLS

CA
LLS

CALLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

C
A
LL
S

CA
LL
S

CALLS

C
A
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CALLS

CALLS

CALLS

C
A
LLS

C
A
LLS

CALLS

C
A
LLS

CALLS

C
A
LL
S

CALLS

CALLS
CALLS

C
A
LL
S

CALLSCALLS

CALLS

CA
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS

CALLS

CAL
LS CALLS

CALLS

C
A
LL
S

C
A
LL
S

CAL
LS

C
ALLS

CA
LL
S

CALLS

CALLS

CALL
S

C
A
LLS

C
A
LLS

C
A
LL
S

CALLS

CALLS

CALLS

C
A
LLS

C
A
LL
S

CALLS

C
A
LLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CALLS

CA
LL
S

CALLS

CALLS

CALLS

CAL
LS

C
A
LLS

C
A
LLS

CA
LL
S

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

C
A
LLS

C
A
LLS

CA
LL
S

CALLS

CALLS

CA
LL
S

C
A
LLS

CALLS

CA
LLS

CA
LL
S

CA
LL
S

CA
LL
S

C
A
LL
S

CALLS

CALLS

C
A
LLS

CALLS

CA
LL
S

CALLS

C
A
LL
S

C
A
LL
S

CA
LL
S CA

LL
S

CA
LL
S

CALLS

CALLS

CALLS

CALLS CALL
S

C
A
LL
S

CALLS

C
A
LLS

C
A
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CA
LL
S

CALLS

C
A
LL
S

CALL
S

CALLS

CALL
S

C
AL
LSCA

LL
S

CAL
LS

CAL
LS

CALLS

CALLS

CA
LL
S

C
A
LL
S

C
ALLS

CALLS

C
A
LLS

CA
LL
S

C
A
LLS

C
A
LLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LL
S

C
A
LLS

CALLS

C
A
LL
S

C
AL
LS

CALLS

CALLS

CALLS

CALLS

CALLS

C
ALLS

C
A
L…

CALLS

C
A
LLS

C
A
LLS

CALLS

CALLS

C
A
LL
S

C
A
LL
S

C
A
LL
S

CALLS

CALLS

C
AL
LS

CALL
S

C
A
LL
S

CALLS

CALLS

CALLS

CALLS

CALLS

C
A
LLS

CAL
LS

CA
LLS

CA
LLS

C
A
LLS

CALL
S

C
A
LLS

C
A
LL
S

C
A
LLS

C
A
LLS

C
A
LLS

CALLS

CALLS

CALLS

CA
LL
S

CA
LL
S

CALLS

CALLS

CALLS

CALLS

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.bu…

<com.bu…

<com.m…
<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<org.jso…

<com.m…

<com.m…

<com.m…

<com.Z…
<org.xml…

<com.Z…

<com.Z…

<com.flu… <com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<org.jso…

<com.m…

<com.m…

<com.bu…

<com.bu…

<com.Z…

<org.jso…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…
<com.m…

<com.Z…

<com.flu…

<com.flu…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.flu…

<com.m…

<com.m…

<com.Z…

<com.Z…

<org.jso…

<com.m…

<com.m…<com.m…

<com.Z…

<org.jso…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<org.jso…

<com.Z…

<com.m…

<com.flu… <com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<org.jso…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<org.jso…

<com.Z…

<com.Z…

<com.m…

<com.flu…

<com.flu…

<com.m…

<com.m…

<com.m…

<com.Z… <com.Z…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.bu…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.bu…
<com.bu…

<org.jso…

<com.Z…
<com.Z…

<com.m…

<com.Z…

<com.m…
<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<org.jso…

<com.Z…<com.m…

<com.m…

<com.Z…

<com.bu…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.flu…

<com.Z…

<com.Z…

<com.bu…

<com.bu…

<com.Z…

<com.m…
<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…
<com.Z…

<com.Z…

<com.Z…

<com.flu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…
<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.bu…

<com.m…
<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.flu…

<com.flu…

<com.flu…
<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.bu…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.flu…

<com.bu…

<com.bu…

<com.Z…

<com.m…

<org.jso…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.flu…

<com.flu…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.bu…

<com.flu…
<com.flu…

<com.m…

<com.Z…

<com.Z…

<com.m…

<org.jso…

<com.m…

<org.xml…

<org.jso…

<com.bu…

<com.bu…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.m…

<org.jso…

<com.bu…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.flu…
<com.m…

<com.m…

<com.Z…

<org.xml…

<com.Z…

<com.m…

<org.jso…

<com.Z…

<com.Z…

<com.flu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.Z…

<com.m…

<org.jso…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.flu…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.bo…

<com.bo…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.flu…

<com.flu…

<com.m…

<com.m…

<com.Z…

<org.jso…

<com.m…

<com.m…

<com.flu…

<com.flu…

<com.m…

<com.bu…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.Z…<com.Z…

<com.bu…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.flu…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.flu…

<org.jso…

<org.jso…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.flu…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.bo…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.bu…

<com.bu…

<com.Z…

<org.jso…

<com.Z…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.Z…

<com.m…

<com.flu…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.flu…

<com.m…

<com.m…

<com.flu…

<com.bu…

<com.Z…

<com.Z…

<com.m…

<com.bu…

<org.jso…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.m…

<com.bu…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.flu…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.bo…

<com.air…

<com.m…

<com.m…

<com.bu…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.flu…

<com.m…

<com.bu…

<com.bu…

<com.Z…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<org.jso…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.bu…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.bu…

<com.Z…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.bu…

<com.flu…

<com.m…

<com.m…

<com.flu…

<com.Z…

<com.flu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.bu…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.Z…

<com.bu…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.bo…

<com.m…

<com.bu…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.bu…

<com.bo…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<org.jso…

<org.jso…

<com.m…

<com.m…

<com.m…

<org.jso…

<com.m…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.flu…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.flu…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.bu…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.flu…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.bu…

<com.flu…

<com.bo…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.bu…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.bu…

<com.Z…

<org.jso…

<com.m…

<com.m…

<com.Z…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.m…

<com.flu…

<com.flu…

<com.bu…

<com.flu…

<com.Z…

<com.m…

<com.flu…

<com.Z…

<com.m…

<com.Z…

<com.m…

<com.bu…

<com.m…

<com.bu…

<com.m…

<com.Z…

<com.m…

<com.bu…

<com.m…

<com.m…

<com.Z…

<com.m…

<com.bu…

<com.flu…

<com.Z…

<com.m…

<com.m…

<com.bo…

<com.bu…

<com.Z…

<com.Z…

<com.bu…

<com.m…

<com.Z…

Figure 5. Method in the CFG depending on a suspicious instruction in AIRPUSH

Figure 6. Estimation of a malicious graft with H35

6. Conclusion

In this article we have addressed the difficult problem
of accurately locating malicious code in the entire code of
an Android application. First, we conducted a broad study
of the different characteristics that can lead to identify this
malicious code. We have updated the list of classes and
packages preferably used by malware rather than goodware.
This first part was done by randomly selecting goodware
and malware sets in the wild with a uniform distribution of
numbers of samples between 2015 and 2018 and a distribu-
tion of the size of the goodware similar to the distribution of
size of malware. This choice of input datasets allows us to
limit the bias that datasets representing only certain families
can bring. We deduced a heuristic that can be used to detect
whether an application is a malware or not. This heuristic
relies on the classes and methods used by the application.
We have shown that, using this heuristic in conjunction with
the data dependency graph allows to locate malicious code
grafts. Hash values and heuristic files used here are avail-
able on demand.

References

[1] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-
level features for robust malware detection in android. In
T. Zia, A. Zomaya, V. Varadharajan, and M. Mao, editors,
Security and Privacy in Communication Networks, pages
86–103, Cham, 2013. Springer International Publishing.

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. An-
drozoo: Collecting millions of android apps for the research
community. In Proceedings of the 13th International Con-
ference on Mining Software Repositories, MSR ’16, pages
468–471, New York, NY, USA, 2016. ACM.

[3] S. Arzt, S. Rasthofer, and E. Bodden. Instrumenting Android
and Java Applications as Easy as abc. In Fourth Interna-
tional Conference on Runtime Verification, volume 8174 of
LNCS, pages 364–381, Rennes, France, sep 2013. Springer
Berlin Heidelberg.

[4] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, and F. Mer-
caldo. Detection of obfuscation techniques in android appli-
cations. In Proceedings of the 13th International Conference
on Availability, Reliability and Security, ARES 2018, pages
57:1–57:9, New York, NY, USA, 2018. ACM.

[5] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu,
K. Chen, X. Wang, and K. Zhang. Understanding android
obfuscation techniques: A large-scale investigation in the
wild. In R. Beyah, B. Chang, Y. Li, and S. Zhu, editors, Se-
curity and Privacy in Communication Networks, pages 172–
192, Cham, 2018. Springer International Publishing.

[6] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab.
A review on feature selection in mobile malware detection.
Digital Investigation, 13:22 – 37, 2015.

[7] Y. Feng, S. Anand, I. Dillig, and A. Aiken. Apposcopy:
Semantics-based detection of android malware through
static analysis. In Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engi-
neering, FSE 2014, pages 576–587, New York, NY, USA,
2014. ACM.

[8] Hispasec Sistemas. Virus Total. https://www.
virustotal.com.

[9] M. Leslous, V. Viet Triem Tong, J.-F. Lalande, and T. Genet.
GPFinder: Tracking the Invisible in Android Malware. In
12th International Conference on Malicious and Unwanted
Software, pages 39–46, Fajardo, oct 2017. IEEE Conputer
Society.

[10] M. Leslous, V. Viet TriemTong, J. Lalande, and T. Genet.
Gpfinder: Tracking the invisible in android malware. In
2017 12th International Conference on Malicious and Un-
wanted Software (MALWARE), pages 39–46, Oct 2017.

[11] Li, D. Li, T. F. Bissyande, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro. Understanding android app piggybacking: A
systematic study of malicious code grafting. Trans. Info. For.
Sec., 12(6):1269–1284, June 2017.

[12] L. Li, D. Li, T. F. Bissyande, J. Klein, Y. Le Traon, D. Lo,
and L. Cavallaro. Understanding Android App Piggyback-
ing: A Systematic Study of Malicious Code Grafting. IEEE
Transactions on Information Forensics and Security, 12,
2017.

[13] E. Novella. Apkid: ”peid” for android applications. Black
Hat Europe, dec 2018.

[14] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro. Tesseract: Eliminating experimental bias in
malware classification across space and time. arXiv preprint
arXiv:1807.07838, 2018.

[15] VirusShare. VirusShare.com - Because Sharing is Caring.
https://virusshare.com/.

[16] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Por-
ras. Droidminer: Automated mining and characterization
of fine-grained malicious behaviors in android applications.
In M. Kutyłowski and J. Vaidya, editors, Computer Security
- ESORICS 2014, pages 163–182, Cham, 2014. Springer In-
ternational Publishing.

[17] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck.
Appcontext: Differentiating malicious and benign mobile
app behaviors using context. In Proceedings of the 37th In-
ternational Conference on Software Engineering - Volume
1, ICSE ’15, pages 303–313, Piscataway, NJ, USA, 2015.
IEEE Press.

[18] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware
android malware classification using weighted contextual
api dependency graphs. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’14, pages 1105–1116, New York, NY, USA,
2014. ACM.

[19] Y. Zhou and X. Jiang. Dissecting android malware: Charac-
terization and evolution. In 2012 IEEE Symposium on Secu-
rity and Privacy, pages 95–109, May 2012.

