
Orchestrating Android Malware Experiments
Jean-François Lalande, Pierre Graux and Tomás Concepción Miranda

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA
Rennes, France

Abstract—Experimenting with Android malware requires to
manipulate a large amount of samples and to chain multiple
analyses. Scripting such a sequence of analyses on a large
malware dataset becomes a challenge: the analysis has to handle
fails on the computer and crashes on the used smartphone, in case
of dynamic analyses. We present a new tool, PyMaO, for handling
such experiments on a regular desktop PC with the highest
performance throughput. PyMaO helps to write sequences of
analyses and handle partial experiments that should be restarted
after a crash or continued with new unknown analyses. The tool
also offers a post processing capability for generating number
tables or bar graphs from the analyzed datasets.

I. INTRODUCTION

Researchers working on malware analysis usually performs
benchmarks on large datasets of malware samples [1], [2].
These datasets can contain malicious applications, benign
applications or both, and eventually some metadata that help
to investigate the samples. When experimenting with these
datasets, the samples are consumed by the software that
perform a bunch of analysis. Analysis can be either static
or dynamic. For example, a static analysis can open the
APK file of the sample and perform an analysis of the
resources and of the application bytecode. On the other hand,
a dynamic analysis may execute the application in an emulator
or real smartphone for extracting dynamic events. The obtained
artifacts are then collected and can feed another step of the
experiment, for example a machine learning tool.

The code for handling these analyses and collecting the
results are much more complex than a loop. In the litera-
ture, Andrubis [1] was one of the most complex developed
framework that handles multiple analyses on large volume of
applications. They were able to achieve 3,500 analyses per day.
Andlantis [2] is another solution using 200 computing nodes,
with very high throughput and scalability. Most of the time,
researchers that have developed software for coordinating
multiple analyses, do not share the code [2], [1], except few
tools, like the IRMA framework1. Additionally, this code have
precise hardware requirements i.e. multiple physical servers
that enables to have high performance throughput. These
solutions cannot be used when prototyping experiments and
are only useful for production time.

In this paper we present the PyMaO2 (Python Malware Or-
chestrator), a tool for orchestrating an experiment on a regular
PC desktop. An experiment is a sequence of analyses. Each
analysis can depend on other ones and have pre-conditions
authorizing its run. An experiment is robust to crashes of the
tool (results are not lost) or to crashes of the smartphones that
are used by dynamic analyses.

II. SOLVED CHALLENGES

Prototyping software for malware analysis requires to test
methodologies with a dataset containing enough material for
triggering special cases that can reveal some bugs. When
manipulating a smartphone or an emulator, the execution of
malicious software may damage the operating system, requir-
ing to restore the used device. As a consequence, any error
should be clearly reported to the user for further investigation.
If our tool crashes, it should be able restart itself and to take
into account that some results have been previously computed
and should not be done again. In our tool, this is achieved
using a JSON representation of the results of all analyses that
is reloaded if the tool have to evaluate again an APK file.

Moreover, the tool brings simplicity when crafting new
experiments and performances at execution time. This is
achieved by coding each analysis as an independent class and
by combining these analyses with pre-conditions authorizing
the execution of each of them. At runtime, multiple workers
use all the available CPU threads and manipulate the uncom-
pressed data directly into the RAM memory.

III. ORCHESTRATOR ARCHITECTURE AND USAGE

A. Overview

Figure 1 depicts an overview of the architecture of PyMaO.
This tool receives a set of APKs and an experiment to conduct
on each APK file. The experiment is composed by a sequence
of multiple analyses. An analysis is launched, for a given APK,
if all its dependencies have already been launched and if its
associated conditions are met. An example of an experiment is
given in Section III-B. All these requirements are handled by
the producer which is in charge of dispatching the analyses’
run to the workers. Each worker is executed on a separate
thread. When a worker finishes an analysis, it updates the
JSON file corresponding to the analyzed APK. Finally, all the
JSONs are processed by the reporter. This part is described in
Section III-C.

When performing a dynamic analysis, a worker can uses
a real smartphone. To avoid concurrency issues, each worker
has a dedicated device. Because running malware on a smart-
phone may crash the smartphone, a watchdog thread has been
implemented, which continuously receives heartbeats sent by a
homemade software installed on every phone. If the watchdog
does not receive a heartbeat, it reboots and restores the crashed
phone to an initial state.



APKs

Producer

...Worker 1 Worker m

Reporter

Ai/Ai ∈ Todo,
APK

JSONSUses

Watchdog

Reboot

Heartbeat

Experiment:
DO A1

DO A2 IF COND

Analysis 2Analysis 1

Analysis 3

Analyses
Library

Depends
on

Composed of

Fig. 1. Architecture overview

1 class XpExample(Experiment):
2 def appendAnalysis(self):
3 self.analyses.append((Apkid(self), None))
4 self.analyses.append((Packer(self),
5 [{"Apkid": {"status": "done"}}]))
6 self.analyses.append((AdbInstall(self),
7 [{"Packer" : {"packer": True}}]))
8 self.analyses.append((LaunchAndSurvive(self),
9 [{"AdbInstall" : {"install": True}}]))

Listing 1. Experiment example

B. Declaring chains of analysis

PyMaO has been developed with usability in mind. Thus,
developing new experiments that use external tools is sim-
ple. Listing 1 contains all the required code, except few
import statements, to create a fully working experiment.
All the remaining information is contained in the super
class Experiment (line 1). The created experiment first runs
APKiD3, a tool that detects packers artifacts (line 3). Then,
if APKiD has correctly run (condition line 5), it parses its
output using the Packer analysis (line 4). Finally, if the
usage of a packer has been detected (line 7), the experiment
installs (line 6). If this install succeeded (line 9), the tool
launches the APK and checks its liveness (line 8). By dividing
analyses in unitary operations, PyMaO avoids to copy past
these functionalities for new designed experiments.

Te
le

ph
on

yM
an

ag
er

.g
et

Su
bs

cr
ib

er
Id

Te
le

ph
on

yM
an

ag
er

.g
et

De
vi

ce
Id

W
ifi

In
fo

.g
et

M
ac

Ad
dr

es
s

Ne
tw

or
kI

nf
o.

ge
tE

xt
ra

In
fo

Ru
nt

im
e.

ex
ec

M
es

sa
ge

.<
in

it>

Ne
tw

or
kI

nf
o.

isA
va

ila
bl

e

Ap
pl

ica
tio

n.
on

Cr
ea

te

Ap
pl

ica
tio

n.
<i

ni
t>

W
ifi

M
an

ag
er

.g
et

Co
nn

ec
tio

nI
nf

o

API Names

0
500

1000
1500
2000
2500
3000
3500
4000
45004500
5000

Nu
m

be
r o

f i
nv

ok
ed

 m
et

ho
ds

24
0

88
4

60
3

33
9 64

8

58
0

61
7

1,
31

9 1,
74

0

1,
10

7

2,
95

9 3,
54

2

3,
08

5

2,
66

1

2,
85

9

2,
79

1

2,
80

1 3,
48

8

3,
83

4

3,
17

4

GOOD Invoke
MAL Invoke

Fig. 2. Top 10 most used API methods by malware in relation to goodware [3]

C. Reporting results

After executing an experiment, the tool can extract an
aggregated information from the JSON files. We developed
two post processing scripts generating two types of results.
First, the tool can generate tables for counting features in the
JSON files and generate ratios. For example, the table can
report the number of detected malware if the experiment is
a detection algorithm. Second, the tool can draw charts for
reporting the usage of a feature in the dataset. For example,
Figure 2 is an extract of an experiment conducted previously
on the GM19 dataset [3], that shows the top most used methods
on 5000 goodware and 5000 malware.

IV. FUTURE WORK

We continue to enhance the tool with new functionalities.
For example, the resource usage (CPU, devices, memory) can
be handled more accurately. By evaluating the profile of each
analysis, the workers can choose the best task to achieve with
the current remaining amount of resources available. Another
future work concerns the generation of subsets of datasets with
a descriptive language requesting the wanted features.

REFERENCES

[1] M. Lindorfer and M. Neugschwandtner, “ANDRUBIS - 1,000,000 Apps
Later: A View on Current Android Malware Behaviors,” in 3rd Interna-
tional Workshop on Building Analysis Datasets and Gathering Experience
Returns for Security. San Jose, CA, USA: IEEE Computer Society, 2014.

[2] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R.
Choe, “Andlantis: Large-scale android dynamic analysis,” CoRR, vol.
abs/1410.7751, 2014. [Online]. Available: http://arxiv.org/abs/1410.7751

[3] V. Viet Triem Tong, C. Herzog, T. Concepción Miranda, P. Graux, J.-F.
Lalande, and P. Wilke, “Isolating malicious code in android malware in
the wild,” in 14th International Conference on Malicious and Unwanted
Software. Nantucket, MA, USA: IEEE Computer Society, 2019.

NOTES
1https://github.com/quarkslab/irma
2https://gitlab.inria.fr/cidre-public/pymao
3https://github.com/rednaga/APKiD


