
HAL Id: hal-02305924
https://centralesupelec.hal.science/hal-02305924

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Obfuscated Android Application Development
Pierre Graux, Jean-François Lalande, Valérie Viet Triem Tong

To cite this version:
Pierre Graux, Jean-François Lalande, Valérie Viet Triem Tong. Obfuscated Android Application De-
velopment. CECC 2019 - Central European Cybersecurity Conference, Nov 2019, Munich, Germany.
pp.1-6, �10.1145/3360664.3361144�. �hal-02305924�

https://centralesupelec.hal.science/hal-02305924
https://hal.archives-ouvertes.fr

Obfuscated Android Application Development
Pierre Graux

pierre.graux@inria.fr
CentraleSupélec, Inria, Univ Rennes,

CNRS, IRISA
Rennes, France

Jean-Francois Lalande
jean-francois.lalande@inria.fr

CentraleSupélec, Inria, Univ Rennes,
CNRS, IRISA
Rennes, France

Valérie Viet Triem Tong
valerie.viet_triem_tong@inria.fr

CentraleSupélec, Inria, Univ Rennes,
CNRS, IRISA
Rennes, France

ABSTRACT
Obfuscation techniques help developers to hide their code when
distributing an Android application. The used techniques are linked
to the features provided by the programming language but also
with the way the application is executed. Using obfuscation is now
a common practice and specialized companies sell tools or services
for automatizing the manipulation of the source code. In this paper,
we present how to develop obfuscated applications and how obfus-
cation technique usage is evolving in the wild. First, using advanced
obfuscation techniques requires some advanced knowledge about
the development of Android applications. We describe how to build
such applications for helping researchers to generate samples of
obfuscated applications for their own research. Second, the use of
obfuscation techniques is evolving for both regular applications or
malicious ones. We aim at measuring the development of these us-
ages by studying application and malware samples and the artifacts
that indicate the use of obfuscation techniques.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Soft-
ware reverse engineering.

KEYWORDS
obfuscation, mobile, application

ACM Reference Format:
Pierre Graux, Jean-Francois Lalande, and Valérie Viet Triem Tong. 2019.
Obfuscated Android Application Development. In Central European Cyber-
security Conference (CECC 2019), November 14–15, 2019, Munich, Germany.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3360664.3361144

1 INTRODUCTION
Obfuscation techniques help to protect an application from mali-
cious users or competitors that want to gain knowledge about it.
Understanding the internals of an application could be a legitimate
need. For example, a security officer could be in charge of precisely
understanding what is doing an application, before authorizing its
installation in a company. On the other hand, malware developers
want to protect the malicious code or some artifacts of the code
(remote server URLs, ciphering keys,. . .). Whatever the purpose,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CECC 2019, November 14–15, 2019, Munich, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7296-1/19/11.
https://doi.org/10.1145/3360664.3361144

whether legitimate or not, the source code or the compiled code is
manipulated to slow down or to prevent at least its static analysis.

Due to the nature of Android applications, specific obfuscation
techniques using the capabilities of the development framework
have been created. These techniques can work on both the source
code or the compiled bytecode, in addition to the possibility to
execute native libraries. Indeed, an Android application is deliv-
ered to the end user using a specific format of the Java bytecode,
interpreted by a virtual machine named Dalvik. Besides, the operat-
ing system can compile parts of the bytecode before or during the
execution. This flexibility makes possible to develop obfuscation
techniques, working on the bytecode directly, without access to
the original source code. Using combinations of these techniques
makes obfuscated applications difficult to reverse.

In this paper, we first briefly review the seminal works about
generating obfuscated Java programs and later, obfuscated An-
droid applications. Then, we propose in Section 3 to pedagogically
describe development techniques for helping the reader to build ob-
fuscated applications1. These techniques are illustrated by snippets
of code for the sake of clarity, even if the presented technique can be
used directly on the bytecode. When developing new deobfuscation
techniques, researchers can use these examples as unitary tests for
improving their approach. Additionally, we discuss the difficulty
to decide if an application has been obfuscated or not using the
presented development technique. Indeed, finding artifacts of the
use of a technique is often an easy task but deciding if the devel-
oper intent was to obfuscate parts of its code is a difficult problem.
Finally, in Section 4 we present an overview of the use of these
techniques on several application and malware datasets.

2 RELATEDWORKS
Obfuscation techniques for Java programs have been firstly studied
by Collberg et al. [3]. They distinguish the obfuscation of the con-
trol flow, the layout of the program and the manipulated data. All
techniques are discussed in term of cost for the obfuscator (how it is
easy to implement a transformation), of obfuscation robustness (the
added time to reverse), of performance at execution time (the over-
head). This seminal work helps to understand the transformations
presented in this paper, such as field renaming or string encryption.
Nevertheless, some transformations like reordering statements in
basic blocks would be of no interest if the program is analyzed by
automated tools or executed symbolically. Additionally, the devel-
oper could want to hide some assets, more than slowing down the
reverse process. This explain why, when applied to Android system,
developers would prefer to rely on transformations that hide the
data more than complexify the flow.

1Available at: https://gitlab.inria.fr/cidre-public/obfuscated-android-unit-examples

https://doi.org/10.1145/3360664.3361144
https://doi.org/10.1145/3360664.3361144
https://gitlab.inria.fr/cidre-public/obfuscated-android-unit-examples

CECC 2019, November 14–15, 2019, Munich, Germany Graux et al.

Table 1: Overview of our analysis methods

Development technique Analysis method Detection
String encryption usage ratio yes (threshold)
Identifier renaming usage ratio yes (threshold)

Reflection use no
Dynamic code loading use no

Native method use no
Packer artifacts yes

As Android enables to escape the Dalvik virtual machine into
native code, new possibilities of obfuscation have been designed.
Rastogi et al. [8, 9] have worked on the design of new code ob-
fuscation techniques and how to detect them. They have split the
obfuscation techniques in two categories: the ones that can be de-
feated by static analysis tools or the ones that cannot. Only the use
of reflection and bytecode encryption is presented as circumventing
a static analysis as the static analyzer cannot even parse the code.
Nevertheless, techniques used by packers, as shown in this paper,
defeat easily the static analysis of the bytecode.

Recently, Dong et al. [4] contributed on the problem of detection
of obfuscation techniques in Android applications. Their approach
relies on two techniques: first, they parse the bytecode for collect-
ing the used strings or identifiers (class, method and field names);
second, if needed, they build on the collected data vectors of fea-
tures using n-grams for preparing a classification phase. Then, they
detect an obfuscation by classifying the vectors with an SVM clas-
sifier. This requires to train the classifier on labeled datasets which
is a constraint we want to avoid. The obtained results on applica-
tions extracted from markets and malware repositories have been
validated on manually analyzed datasets of goodware and malware.
Nevertheless, the used datasets only focus on years 2016 and 2017
and do not use datasets from the literature. Finally, as they rely on
a SVM classifier, it is difficult to express the reasons that make a
sample classified as obfuscated or not. The detection rule, contained
in the SVM classifier, is not expressed using real life elements (such
as “this specific API is used”), but is a condition on vector values.

In this paper, we propose to enhance the results of Dong et al. [4]
by proposing the following new contributions. First, we describe
carefully how to create an application using development tech-
niques that can be used for obfuscation. These techniques are listed
in the left column of Table 1 and described from the most simple
ones to the most advanced ones. Second, we provide static analysis
methods for detecting the use of these development techniques.
We either detect the use or the usage ratio if this technique can be
applied on multiple parts of the code (listed in the middle column
of Table 1). When possible, the analysis method is extended as a
detection decision, as shown in the right column of Table 1. Finally,
we analyze both goodware and malware datasets of the literature
and give a global view of development techniques over the years
2008–2018, a time period five times longer than Dong et al..

3 BUILDING OBFUSCATED APPLICATIONS
To have a simple explanation, this section relies on a running ex-
ample of code that could be found in malware sample. This code is

1 class CommandAndControl {
2 public String url = "cc.url";
3 public int port = 4242;
4 public void sendCommand(byte[] buf, int length) {
5 DatagramPacket dp = new DatagramPacket(buf, length,
6 InetAddress.getByName(this.url),
7 this.port);
8 new DatagramSocket().send(dp));
9 }
10 }

Listing 1: Unobfuscated malicious code

1 class AES256 {
2 static public String aes256(String str) {
3 String key = "<<key>>"... }
4 }
5 class CommandAndControl {
6 public String url = "<<ciphered url>>"; // "cc.url"
7 public int port = 4242;
8 public void sendCommand(byte[] buf, int length) {
9 DatagramPacket dp = new DatagramPacket(buf, length,
10 InetAddress.getByName(AES256.aes256(this.url)),
11 this.port);
12 new DatagramSocket().send(dp);
13 }
14 }

Listing 2: String encrypted version

typical of the code used by malware to communicate with its com-
mand and control server (C&C). This code is presented in Listing 1.
This code has three sensitive assets: the value of two constants rep-
resenting the url and the port of the C&C server and the call to the
method send() of the DatagramSocket class used to communicate
with the C&C server.

3.1 String encryption
3.1.1 Description. The string encryption is a technique that con-
sists in replacing string constants by an encrypted version [8].
Before using the constant, the code has to decrypt it. When reverse
engineering an APK, all the constant strings are available2. Thus, by
encrypting them, the developer forces the analyst to understand the
decryption code before accessing the original strings. Additionally,
the encryption key can be hidden in the code, or downloaded dy-
namically, which increases reverse engineering efforts. As we can
see in Listing 2, the C&C url is no more directly available because
of the use of the AES256 ciphering algorithm.

3.1.2 Detection. To detect the usage of string encryption, a naive
approach is to compute the entropy of strings. Indeed, encryption
algorithms such as AES, DES, RC4, output bytes with a high en-
tropy close to the random distribution entropy. Thus, we propose
to extract all strings of an application (excluding field, method
and class names) and compute their entropy. The proposed detec-
tion method consists in counting the number of stringsm with an
entropy greater than an entropy threshold. Then, we say that an
application has been obfuscated for n strings ifm is greater than n.
We discuss the choice of the threshold and we show the effect of
choosing n = 1, 10 or 100 in Section 4.

2https://source.android.com/devices/tech/dalvik/dex-format

https://source.android.com/devices/tech/dalvik/dex-format

Obfuscated Android Application Development CECC 2019, November 14–15, 2019, Munich, Germany

1 class ____ {
2 public String ____ = "cc.url";
3 public int ___ = 4242;
4 public void ________(byte[] __, int _____) {
5 DatagramPacket _______ = new DatagramPacket(__,
6 _____,
7 InetAddress.getByName(this.____),
8 this.___);
9 new DatagramSocket().send(_______);
10 }}

Listing 3: Identifier renaming version

A more advanced detection technique have been used by Dong
et al. [4]. It uses 3-grams to traverse the identifier names and an
SVM classifier to recognize encrypted identifiers. This technique
requires to train the classifier on a manually labeled dataset.

These detection techniques can be defeated by the use of en-
cryption algorithms that does not modify the entropy, for example
ROT13. Additionally, strings that are converted in integer arrays
escape the detection.

3.2 Identifier renaming
3.2.1 Description. Similarly to the string encryption technique, the
identifier renaming technique consists in replacing code identifiers
by obfuscated ones. As the constant strings, the identifiers (package,
class, method and field names) are available directly in the APK3.
By replacing the identifiers by meaningless ones, the developer
prevents the analyst to guess the purpose of an identifier. Moreover
it can confuse him by using identifiers hard to distinguish or to
remember, as shown in Listing 3. Some tools such as ProGuard4,
propose to automate this renaming process.

3.2.2 Detection. To detect the usage of identifier renaming, we
have implemented a naive approach based onword lists. This heuris-
tic relies on the fact that usually developers use composition of
words to build their identifiers (either CamelCase or snake_case).
We retrieve all the identifiers and we split them by underscore and
uppercase in order to get the constitutive words of the identifier.
We remove all the potential small words of size lesser than 4, that
may be abbreviations. Then, we check the ratio r of the number of
non-meaningful identifiers over the total, by searching them in a
word list. The proposed detection method consists in comparing r
with a chosen threshold. We discuss the choice of the threshold in
Section 4.

Similarly to string encryption method, Dong et al. have used 3-
grams and an SVM classifier. Although they obtain good results [4],
the learning phase uses applications obfuscated by Proguard and
DashO, which implies that the detection method is efficient with
these two tools. Using an unknown obfuscator renaming identifiers
may be not detected by the learning machine. For these reasons,
we prefer to rely on a detection method not based on a precise
obfuscation tool.

3.3 Reflection
3.3.1 Description. The reflection usage technique aims at hiding
the methods and fields that the code is calling [8]. Developers use
3https://source.android.com/devices/tech/dalvik/dex-format
4https://www.guardsquare.com/en/products/proguard

1 class CommandAndControl {
2 public String url = "cc.url";
3 public int port = 4242;
4 public void sendCommand(byte[] buf, int length) {
5 InetAddress addr = InetAddress.class
6 .getDeclaredMethod("get"+"ByName", String.class)
7 .invoke(null, this.url);
8 DatagramPacket dp = new DatagramPacket(buf, length,
9 addr, this.port);
10 DatagramSocket.class.getDeclaredMethod("s"+"end",
11 DatagramPacket.class)
12 .invoke(new DatagramSocket(), dp);
13 }}

Listing 4: Reflection version

an API to access and modify at runtime internal object entities
such as fields of an object. For obfuscation purpose, using reflection
removes the direct references to the type or the method names
that are used in the bytecode. For example in Listing 4, the meth-
ods getByName and send will not appear in the bytecode of the
sendCommand method. Coupled with the string encryption tech-
nique, the use of reflection prevents the APK to be easily statically
analyzed.

3.3.2 Detection. Because reflection mechanisms are given by the
Java API java.lang.reflect and thus cannot be renamed, its
detection is trivial [4]: one only has to search for references to
methods belonging to this package.

It has to be noted that reflection can be used for non-obfuscation
purpose. Thus, it is non trivial to distinguish reflection usages that
are made for obfuscation purpose and those that are not. Dong et
al. [4] have developed a more advanced technique that analyzes
instructions of the bytecode to recover the name of the class on
which is invoked a reflection method, but this extra information is
not sufficient to determine if the goal is to obfuscate.

3.4 Dynamic code loading
3.4.1 Description. Dynamic code loading can be used for loading
dynamically some classes when not available at compile time or
when building a distributed application loading remote compo-
nents from a server. In addition, the bytecode can be ciphered and
deciphered before loading it [8]. DexFile and PathClassLoader
provide helper classes for mapping a dex file into the memory and
instanciate new objects. The updated snippet of code is given in
Listing 5: after downloading a Jar file, the send()method is invoked
using reflection.

Substituting totally the class loader at runtime is also possible [5].
Nevertheless, it requires to access and update the private attribute
mClassLoader of the class LoadedApk of the application5.

3.4.2 Detection. Because dynamic code loading mechanisms are
given by specific classes of the Android API, its detection is triv-
ial [4] we only need to search for occurrences of all class loader
classes. Once again, this detection does not distinguish between
dynamic code loading used for obfuscation purpose and the others.

5https://gist.github.com/marshall/839003

https://source.android.com/devices/tech/dalvik/dex-format
https://www.guardsquare.com/en/products/proguard
https://gist.github.com/marshall/839003

CECC 2019, November 14–15, 2019, Munich, Germany Graux et al.

1 void invokeDynamically() {
2 /* Loads the implementation of C&C */
3 PathClassLoader pcl =
4 new PathClassLoader(file.getPath(), null);
5 Class<?> clazz =
6 pcl.loadClass("CommandAndControl", this);
7 Log.i("CL", "Loaded class from dex: " + clazz);
8 Constructor<?> c = clazz.getConstructor();
9 Object o = c.newInstance();
10 Method m = clazz.getMethod("send",
11 byte[].class, int.class);
12 m.invoke(o, ...); // CommandAndControl.send(....)
13 }

Listing 5: Dynamic code loading version

1 class CommandAndControl {
2 public String url = "cc.url";
3 public int port = 4242;
4 native public sendCommand(byte[] buf, int length);
5 }
6 JNICALL Java_CommandAndControl_sendCommand(JNIEnv*env,
7 jobject thisPtr, jbyteArray buf, jint length) {

9 byte * bufData = env−>GetByteArrayElements(buf, NULL);
10 jint port = env−>GetIntField(thisPtr,
11 env−>GetFieldId(env−>GetObjectClass(thisPtr),
12 "port", "I"));

14 /* Use libc functions to send the packet */
15 }

Listing 6: Native version

3.5 Native method
3.5.1 Description. For performance purpose, Android gives to the
developers the ability to directly write methods in C++ which are
then compiled in assembly. Such methods are called native. Com-
paratively to the bytecode, the assembly is difficult to decompile.
Thus, it can be used to circumvent tools that only work on the
bytecode. For exemple, an analyst that searches for the usage of
network package methods, can miss the usage of libc socket, as
shown in Listing 6.

3.5.2 Detection. The detection of native methods is easy because
they have to be declared as native in the bytecode and their im-
plementation are located in a specific compiled library. However
it is difficult to determine if native methods are used for obfusca-
tion purpose or for a legitimate use, for example graphical routines
using OpenGL ES.

3.6 Packer
3.6.1 Description. A packer is a tool than encrypts the bytecode
of an APK, stores it in a resource file and removes the original byte-
code. Finally, it adds an unpacking routine which is called before
using the bytecode and is in charge of decrypting and loading the
original bytecode. Thus, the bytecode is only available at runtime.
Usually, the unpacking routine is developed using native code be-
cause the bytecode is constrained by the Dalvik virtual machine
which protects its internal structure representing the loaded APK
against modification. Numerous packing services6 propose to pack
6Alibaba Inc.: http://jaq.alibaba.com, Baidu: http://app.baidu.com, Bancle: https://www.
bangcle.com, Ijiami: http://www.ijiami.cn, Qihoo360: http://dev.360.cn

1 void unpack_method(jclass cls, jstring methodName,
jstring methodSignature) {

2 /* Get the method ID that will be overwritten */
3 /* In fact, in Android runtime, this ID is a pointer

to an internal class named ArtMethod */
4 void* art_method = (void*) env−>GetMethodID(cls,

methodName, methodSignature);

6 /* Get the dex_code_item_offset_ field of the
ArtMethod class

7 The hardcoded offset (8) has been retrieved using
objdump on the compiled runtime. This offset
could change from one Android version to
another */

8 unsigned int code_item_offset = *(unsigned int*) ((
char*)art_method + 8);

10 /* Find the location of the DEX in the memory using /
proc/self/maps. To found the DEX area, search for
the .odex file */

11 void* dex_file_location = getDexFileLocation();

13 /* Get the new bytecode from a PNG file */
14 const void* mmaped_file_location = GetXoredApk();

16 /* Retrieve the CODE_ITEM structure using its offset
from the beginning of the DEX. CODE_ITEM is a DEX
structure and is documented */

17 void* code_item = (void*)((char*)dex_file_location +
code_item_offset);

19 /* Retrieve the bytecode size and the bytecode address
by navigating in the CODE_ITEM structure */

20 unsigned int APK_insns_size_in_code_units_ = *(
unsigned int*) ((char*)code_item + 12);

21 void* APK_insns_ = (void*) ((char*)code_item + 16);

23 /* Do the same for the PNG (xored APK). Recomputing
code_item_offset is not needed because the
offsets in the APK and in the xored APK are the
same */

24 code_item = (void*)((char*)mmaped_file_location +
code_item_offset);

25 unsigned int PNG_insns_size_in_code_units_ = *(
unsigned int*) ((char*)code_item + 12);

26 void* PNG_insns_ = (void*) ((char*)code_item + 16);

28 /* Set the method instructions writable */
29 void* base_addr = (void*)((char*)APK_insns_ − ((

unsigned long)APK_insns_ % PAGE_SIZE));
30 mprotect(base_addr, (size_t)((char*)APK_insns_ +

APK_insns_size_in_code_units_*2 − (char*)
base_addr), PROT_READ|PROT_WRITE|PROT_EXEC);

32 /* Un−xor and copy all new instructions. 0x42 is the
xor key */

33 unsigned int i;
34 for(i=0 ; i < APK_insns_size_in_code_units_; i++) {
35 *((char*)APK_insns_ + 2*i) = *((char*)PNG_insns_

+ 2*i) ^ 0x42;
36 *((char*)APK_insns_ + 2*i + 1) = *((char*)

PNG_insns_ + 2*i + 1) ^ 0x42;
37 }
38 }

Listing 7: Packer replacing the bytecode of a method

application sent by customers. However, packer’s internals are not
documented. Thus, we give in the following more insight on how
to implement a packer and we focus on the native code that unpack
and replace parts of the bytecode.

As dynamic code loading can be easily detected by a dynamic
tool hooking the relevant methods, packers use native code to

http://jaq.alibaba.com
http://app.baidu.com
https://www.bangcle.com
https://www.bangcle.com
http://www.ijiami.cn
http://dev.360.cn

Obfuscated Android Application Development CECC 2019, November 14–15, 2019, Munich, Germany

Table 2: Obfuscation detection for various datasets

Total Packer Native DCL Reflection

GOOD [11] 4999 3 1266 4544 4735
0,06% 25,58% 91,82% 95,68%

MAL [11] 4991 542 2378 3730 3893
10,86% 57,62% 90,38% 94,33%

AMD [12] 24552 31 5206 15267 19184
0,13% 21,52% 63,12% 79,31%

Drebin [2] 5560 0 1051 1449 3066
0% 19,07% 26,29% 55,62%

change the Dalvik virtual machine internal structures representing
the APK and the mapped bytecode of the memory. This principle
can be exploited at different levels. Packers can either populate the
bytecode for one method, for the whole class, or for the whole APK.

As an example, we present a packer that populate the bytecode of
a method [5]. This application locates the packed bytecode from the
file /proc/self/maps where the APK file is located in the memory.
Then, it fully overwrites its bytecode. To locate the bytecode that
needs to be re-written, the code navigates in internal structures
of the Android runtime. Finally, to ensure to be run before any
other bytecode, the unpacking routine can be implemented in a
class Application and set in theManifest under the android:name
parameter of the application manifest block. The main steps of
the native code that unpacks and replaces the bytecode is given in
Listing 7.

3.6.2 Detection. To detect the presence of packerwe useAPKiD [7],
a tool that searches static artifacts of known packers in APKs. How-
ever, an “home-made” packer would not be detected. Detecting
unknown packer remain an open research problem [6, 10, 13].

4 OBFUSCATION USAGE IN DATASETS
In this section, we discuss the use of development techniques, used
for obfuscation or not, for goodware and malware datasets.

4.1 Used datasets
The four datasets used in our experiments are: two well known
but old datasets (AMD dataset [12] and the Drebin dataset [2]),
one more recent (GM19 dataset [11]) and one large (AndroZoo [1]).
Drebin is the oldest one: it contains 5560 samples from 2008 to 2012.
AMD contains 24552 samples from 2010 to 2016. GM19 contains two
balanced sets of 5000 goodware and 5000 malware with an homo-
geneous repartition of dates (2015-2018) and APK size. Finally, we
built a custom large dataset by picking randomly 9,041 applications
from AndroZoo in order to cover the largest time interval.

4.2 Packer, native, DCL, reflection
Table 2 compares the detection rates for the different techniques
presented in Section 3. When a packer is detected, the tests for
native method, dynamic code loading and reflection are not run
because they are static techniques and would end up analyzing
the unpacker code instead of the application code itself. The per-
centages associated to these three techniques are computed for the
non-packed applications only.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Date

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Reflection DCL Native methods Packer

Figure 1: Obfuscation evolution on a subset of AndroZoo [1]

When comparing the results of the recent dataset MAL with
the old AMD and Drebin datasets, we globally see an increase of
native methods, dynamic code loading and reflection usage. This is
confirmed by the experiment on the subset of Androzoo for which
we represented the detection rate over the years 2008 to 2018 in
Figure 1. In this figure, we also note an increase of the packer
usage after 2014. The reader should note that the years 2008 to
2010 contain few samples analyzed (less than 164) which make the
curves less precise for these dates. In particular, the year 2008 is
based on 61 samples only and results seem biased.

When comparing goodware (GOOD dataset) and malware (MAL
dataset), it is clear that native methods are more frequently used
in malware samples. On the contrary, dynamic code loading and
reflection does not discriminate a goodware from amalware. Indeed
the usage of such development technique is not by itself an obfus-
cation attempt. For example, Google libraries, that are embedded
in goodware APK file, contains reflection calls and class loading
mechanisms even if these librairies do not use any obfuscation
techniques (they are open-source).

4.3 String encryption and identifier renaming
For studying globally the identifier renaming, we represented in
Figure 2, for each dataset, the percentage of APKs detected for every
possible threshold. An application is said to use identifier renaming
if the number of identifiers out of the dictionary divided by the total
number of identifier is greater than the threshold. We observe that
the curves decrease slowly until reaching a ratio threshold of 0.5.
Thus, almost all applications have more than 50% of identifiers out
of the dictionary which can be explained by our dictionary nature: it
only contains natural language and no technical words of computer
science domain. We also observe a slow down of the decreasing of
the curve around the ratio threshold of 0.8. That means that less
than 13% of applications have their identifiers out of our dictionary,
and thus are probably obfuscated. Thus, we propose a detection
threshold of 0.8 for deciding if an application has been obfuscated
by renaming identifiers.

CECC 2019, November 14–15, 2019, Munich, Germany Graux et al.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio threshold

20

0

20

40

60

80

100

120

13

De
te

ct
io

n
ra

te

GOOD
MAL
AMD
Drebin

Figure 2: Identifier renaming

0.0 1.0 2.0 3.0 4.0 5.04.4 4.6
Entropy threshold

0

20

40

60

80

100

11

De
te

ct
io

n
ra

tio

n = 1
n = 10
n = 100

Figure 3: Entropy for GOOD dataset

Figure 3 discusses the detection method based on the entropy
for applications containing encrypted strings. We consider that
an application is using string encryption if more than n strings
have an entropy greater than a threshold t . For GOOD dataset,
Figure 3 shows the percentage of detected applications for every
threshold and for three different values of n (1, 10, 100). A threshold
higher than 4.6 does not detect any application. The curves for
other datasets are very similar and thus not shown in this paper.
The choice for the entropy threshold and the value of n have a
high impact on the number of selected applications. For example,
n = 10 and threshold = 4.4 would select 20% of applications for the
GOOD dataset. As we know that string encryption is not used a
lot [4], such parameters would lead to get a high number of false
positive. Moving the threshold to 4.6 results of a selection of 0% of
applications. We conclude that choosing a threshold for a detection
method is not reliable. Further investigations are needed with a
ground truth labeled dataset.

Nevertheless, we manually checked the results obtained for
string encryption and identifier renaming. Because such a veri-
fication is time consuming, we only measured that the top most

scored are really true positives. Thus, we took the 5 top most de-
tected malware of each dataset and reversed them manually. We
observed 40% of true positives (60% of false positive) for string
encryption and 100% of true positive (0% of false positive) for iden-
tifier renaming. The observed false positive are due to a legitimate
usage of high entropy strings such as base64 encoded strings or
fields containing the full english alphabet.

5 CONCLUSION
This paper has presented obfuscation techniques used by applica-
tions developers. We concentrated on showing how to develop an
obfuscated application. Experiments show the increasing usage of
these techniques. We also proposed simple detection techniques
for obfuscation method that are simple to develop. They help to
quantify the usage of each obfuscation technique. Nevertheless,
choosing the detection thresholds that have a high true positive
rate and low false negative rate remains a problem to investigate.

REFERENCES
[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In
13th International Conference on Mining Software Repositories (MSR ’16). ACM,
New York, NY, USA, 468–471. https://doi.org/10.1145/2901739.2903508

[2] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In 21st Annual Network and Distributed System Security
Symposium, Vol. 14. San Diego, CA, USA, 23–26.

[3] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A Taxonomy of
Obfuscating Transformations. Technical Report. University of Auckland.

[4] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao
Xu, Kai Chen, XiaoFeng Wang, and Kehuan Zhang. 2018. Understanding Android
Obfuscation Techniques: A Large-Scale Investigation in the Wild. In Security and
Privacy in Communication Networks. Springer, 172–192. https://doi.org/10.1007/
978-3-030-01701-9_10

[5] Jean-François Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume Hiet,
Wojciech Mazurczyk, Habiba Chaoui, and Pascal Berthomé. 2019. Teaching
Android Mobile Security. SIGCSE 2019. In 50th ACM Technical Symposium on
Computer Science Education. ACM Press, Minneapolis, 232–238. https://doi.org/
10.1145/3287324.3287406

[6] Yibin Liao, Jiakuan Li, Bo Li, Guodong Zhu, Yue Yin, and Ruoyan Cai. 2016.
Automated Detection and Classification for Packed Android Applications. In
International Conference on Mobile Services. IEEE, San Francisco, USA, 200–203.
https://doi.org/10.1109/MobServ.2016.39

[7] Eduardo Novella. 2018. APKiD: "PEiD" for Android Applications. Black Hat
Europe (dec 2018).

[8] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2013. DroidChameleon: Evaluating
Android Anti-malware against Transformation Attacks. In 8th ACM SIGSAC
symposium on Information, computer and communications security. ACM Press,
329–334. https://doi.org/10.1145/2484313.2484355

[9] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2014. Catch Me If You Can:
Evaluating Android Anti-Malware Against Transformation Attacks. IEEE Trans-
actions on Information Forensics and Security 9, 1 (jan 2014), 99–108. https:
//doi.org/10.1109/TIFS.2013.2290431

[10] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. 2015.
SoK: Deep packer inspection: A longitudinal study of the complexity of run-time
packers. In IEEE Symposium on Security and Privacy. IEEE, San Jose, USA, 659–673.
https://doi.org/10.1109/SP.2015.46

[11] V. Viet Triem Tong, C. Herzog, T. ConcepciónMiranda, P. Graux, J.-F. Lalande, and
P. Wilke. 2019. Isolating Malicious Code in Android Malware in the Wild. In 14th
International Conference on Malicious and Unwanted Software. IEEE Computer
Society, Nantucket, MA, USA.

[12] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
ground truth analysis of current android malware. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
252–276. https://doi.org/10.1007/978-3-319-60876-1_12

[13] Lei Xue, Xiapu Luo, Le Yu, Shuai Wang, and Dinghao Wu. 2017. Adaptive
unpacking of Android apps. In International Conference on Software Engineering.
IEEE, Buenos Aires, Argentina, 358–369. https://doi.org/10.1109/ICSE.2017.40

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1007/978-3-030-01701-9_10
https://doi.org/10.1145/3287324.3287406
https://doi.org/10.1145/3287324.3287406
https://doi.org/10.1109/MobServ.2016.39
https://doi.org/10.1145/2484313.2484355
https://doi.org/10.1109/TIFS.2013.2290431
https://doi.org/10.1109/TIFS.2013.2290431
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1109/ICSE.2017.40

	Abstract
	1 Introduction
	2 Related works
	3 Building obfuscated applications
	3.1 String encryption
	3.2 Identifier renaming
	3.3 Reflection
	3.4 Dynamic code loading
	3.5 Native method
	3.6 Packer

	4 Obfuscation usage in datasets
	4.1 Used datasets
	4.2 Packer, native, DCL, reflection
	4.3 String encryption and identifier renaming

	5 Conclusion
	References

