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Abstract

An accurate state of charge (SoC) estimation by the battery management system (BMS) is crucial for efficient and non-

destructive battery operation in automotive applications. The model identification of these batteries has consistently

been the critical point to meet good accuracy. To that extent, a fractional order model (FOM) is derived, which

provides a more meaningful insight into the battery physical phenomena without increasing the number of parameters

as opposed to electrochemical models. This paper proposes FOM identification for Li-ion batteries in both frequency

domain based on recorded impedance spectroscopy (EIS) data and time domain using a recursive least squares (RLS)

algorithm. Fractional derivatives are overly sensitive to the value of their fractional order. A straightforward and

efficient way to identify the fractional orders based on recorded EIS data is proposed in this paper. Furthermore,

an extended Kalman filter (EKF) is also designed based on the derived model to estimate the SoC. The designed

fractionasl order filter provides a higher accuracy level in comparison to the classical equivalent electric circuit (EEC).

Various results at several temperatures and driving profiles for both PHEV and EV batteries confirm that the FOM

provides better accuracy and robustness compared to the classical integer order model.

Keywords: Li-ion battery; Fractional order model; Electrochemical impedance spectroscopy; EKF; SoC estimation;

Recursive identification.

1. Introduction

Electrified vehicles (EV, PHEV and HEV) are promising technologies to overcome CO2 emission issues. These

green vehicles rely on a core component which is the battery. In order to make these electrified vehicles widespread in

the global market, car users need to be comforted in terms of security and benefit such as autonomy and rechargeability.

Despite of Lithium-ion (Li-ion) cells are the most commonly used, due to their high energy, power densities and

their longer lifespan[1], recently, deep researches are animated on battery technologies to ameliorate their global cells

electrochemical performances compared to today NMC lithium-ion like recent studies on solid-state battery [2, 3, 4].
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The fact that battery packs are made of numerous electrochemical cells makes the control of such complex system

mandatory. The battery management system BMS [5] represents a key point to ensure exploring these new emerging

technologies with optimized functional and safety aspects. The BMS is dedicated to ensuring not only diagnosis (fault

detection from communication for example) and battery safety (prevent overvoltage, undervoltage, overcurrent and

overtemperature) but also handle battery state estimators and balancing. This paper precisely considers chemistry

algorithms part in the BMS software. Predominantly battery model improvement and SoC estimation are discussed.

Efficient and cautious use of Li-ion batteries typically requires the monitoring of numerous variables like the state

of charge (SoC), the state of health (SoH), the acceptable/available power when charging/discharging, the charge

capacity and the internal resistance [6, 7, 8]. Unfortunately, these variables are not directly measurable. The BMS

has to estimate each of them, thanks to measured data such as current, voltages, temperatures and state observers

[9]. Besides, these parameters change over time and charge-discharge cycles. These changes have to be taken into

account to ensure a maximal level of performance, throughout the life of the battery [10]. The lifetime of the battery

is maximized by facilitating an ideal operating condition [11, 12].

The accuracy of estimations provided by the BMS depends on the chosen battery model. Given that batteries

have complex electrochemical mechanisms and highly non-linear behaviour, it is challenging to accurately design

easily implementable models. Several models are considered in the literature, such as equivalent electric circuit

(EEC), electrochemical model (EM), fractional order model (FOM) and neural network models (NN). EEC models

are made of a few resistor-capacitor (RC) networks in series with a voltage source corresponding to the open circuit

voltage (OCV) of the battery. These models are the most commonly used and are easy to operate, but they produce

an insufficient level of accuracy. A detailed framework of EEC models for Li-ion batteries SoC estimation is given

in [13, 9, 14]. Electrochemical models, however, are based on a set of partial differential equations (PDEs) that

describe the electrochemical reactions that take place inside the battery [15]. Several parameters are to be identified

involving sometimes destructive tests for the battery. In addition, the uncertainty from parameter identification makes

these models hard to operate. These models are frequently utilized for design purposes and are unsuitable for on-

line applications. There were several attempts to simplify these models leading to single particle models (SP) [16,

17]. Nevertheless to the best of our knowledge, there is no electrochemical operated BMS. Black box approaches

such as neural network models [18, 19] or adaptive neuro-fuzzy inference system (ANFIS) [20] produce satisfying

results if enough training data are available. On several occasions this approach lacks robustness and demands high

computational resources.

Latterly, it has been reasoned that solving SP models leads to fractional order equations [21, 22]. Also, the

impedance frequency response of a Li-ion battery displays at low frequencies behaviours that are easily captured by

constant phase or Warburg elements (CPE). The use of CPEs leads to fractional order model. Moreover, FOM may

improve SoC estimation accuracy while involving fewer parameters than the classical n-RC equivalent circuit models.

This observation has led to a growing number of attempts to build FOM for Li-ion battery monitoring [23, 24, 25].

In [24] a continuous time state-variable filter was used to estimate parameters for a Li-ion battery. The author argued
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that using instrumental variable helped to improve the accuracy of the output of the least square algorithm used. The

fractional order in his study was achieved by fitting the output voltage of his identified model to the measured voltage

of the battery. In [26] a multi-swarm cooperative particle swarm optimization (MCPSO) is used to identify fractional

order parameters for a Li-ion battery based on federal city driving schedule experimental data. In [27] a FOM was

designed based on frequency domain identification using particle swarm optimization (PSO). A hybrid multi-swarm

particle swarm optimization (HMPSO) was used in [25] to identify a FOM based on training data of eight Li-ion cells.

All these approaches are based on classical optimization used on time domain or frequency domain data. Fractional

derivatives are overly sensitive to the value of their fractional order. Therefore, time domain identification is extremely

sensitive to the initialization and noise level. The frequency domain approaches in the literature do not take advantage

of the structure of the studied model. This paper presents a swift, straightforward and efficient way to identify the

fractional orders based on recorded EIS data for Li-ion batteries.

The present paper aims to propose a complete framework for a high fidelity EKF SoC estimator based on iden-

tified fractional order model parameters in the frequency domain for Li-ion batteries. The remainder of this paper is

organized as follows. The following section describes fractional order derivatives. Section 3 displays FOM models for

Li-ion batteries with a presentation of a new frequency domain identification procedure, a time domain identification

and their numerical approximation. A fractional order EKF based on the identified model is designed and discussed

in Section 4. Ultimately, conclusions are presented in Section 5.

2. Fractional derivatives

Fractional-order calculus (FOC) is an extension of the classic integer-order derivative. The idea of fractional

calculus emerged in the development of integer-order calculus. The first literature reference is associated with a letter,

from Leibniz to l’Hospital in 1695 [28]. FOC are broadly used at present for diverse topics such as diffusive systems,

electrical systems, control, etc [29]. Several fractional derivatives and integrals exist [30], but the most commonly

used fractional derivatives in the literature are: the Riemann-Liouville (RL) definition, the Caputo (CP) definition,

and the Grünwald - Letnikov (GL) definition.

RL derivation of a causal function f of time t at order α ∈ R∗+ definition is given as [31, 28]:

Dα
RL f (t) =

1
Γ(n − α)

dn

dtn

∫ t

0

f (τ)
(t − τ)α−n+1 dτ (1)

where n − 1 < α < n, n ∈ N and Γ(.) is Euler’s Gamma function defined in Eq. 2.

Γ(n) =

∫ t

0
tn−1e−tdt (2)

CP derivation of a causal function f of time t at order α ∈ R∗+ definition is given as:

Dα
CP f (t) =

1
Γ(n − α)

∫ t

0

f (n)(τ)
(t − τ)α−n+1 dτ (3)
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where n − 1 < α < n, n ∈ N, Γ(.) is the Gamma function and f (n) is the n-th integer order derivative of the temporal

function f .

GL derivation of a causal function f of time t at order α ∈ R∗+ definition is given as:

Dα
GL f (t) = lim

Ts→0

1
Tα

s

bt/Tsc∑
j=0

(−1) jC j
α f (t − jTs) (4)

where Ts is the sampling time and bt/Tsc the integer part of t/Ts, C j
α the Newton binomial coefficient generalized to

real numbers using Eq. 5.

C j
α =

Γ(α + 1)
Γ( j + 1)Γ(α − j + 1)

=
α(α − 1) . . . (α − n + 1)

n!
(5)

GL fractional derivative is the most used definition for numerical applications in the literature.

Frequency domain representation of a Fractional order transfer (FOT) function can be written as follows [32, 33]:

Hz(s) =
bM sνbM + bM−1sνbM−1 + . . . + b0sνb0

aN sνaN + aN−1sνaN−1 + . . . + a0sνa0
(6)

where s ∈ C is the Laplace variable. One can then derive a fractional-order differential equation of the form [32, 33]:

(7)aND
νaN y(t) + aN−1D

νaN−1 y(t) + . . . + a0D
νa0 y(t) = bMD

νbM u(t) + bM−1D
νbM−1 u(t) + . . . + b0D

νb0 u(t)

whereDν denotes the RL, CP or GL fractional derivative depending on initial conditions and their physical meaning,

and a0 = 1 conventionally. A state-space representation of a fractional-order linear time-invariant system is given as

follows:  D
αx(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(8)

where x ∈ Rn is the state vector, u ∈ Rm the input variable, and y ∈ Rp is the output vector of the system; A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and α = [α1, α2, . . . αn]T are the fractional orders. If α1 = α2 = . . . = αn ≡ α,

the system in Eq. 8 is of commensurate-order, otherwise it is of an incommensurate-order [33, 28, 31]. For fractional

order system stability, one can refer to theories developed in [34, 29] for commensurate-order systems.

3. Fractional-order model for Li-ion batteries

The state of systems with diffusion at a given time depends on their configuration at previous times. Fractional-

order derivatives take into account this history in its definition as a convolution with a function of which the amplitude

decays at earlier times as a power-law of time [28]. Fractional-order transfer functions (FOTs) allow the use of a more

compact representation of a system where the classical integer transfer would demand a high order model [33]. There

is an extensive literature of FOM used for Li-ion batteries modeling. Two alternative approaches exist to justify the

use of fractional-order elements.
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To begin with, one can use the frequency domain representation of the impedance of the battery, based on

impedance spectroscopy data, and derive a transfer function of its internal impedance [35, 36, 37]. The use of con-

stant phase elements to model the frequency domain behaviour of Li-ion batteries leads to FOMs, given that CPEs are

defined using Eq. 9:

CPE( jω) =
1

Cωα
[
cos

(
απ
2

)
+ j sin

(
απ
2

)] (9)

where α ∈ [0, 1] is the fractional exponent and the constant-phase value is −απ2 . In [38] CPEs were used in combination

with a recurrent neural network (RNN) to monitor the behaviour and state of health (SoH) of Li-ion batteries. In [39]

a FOM sliding mode observer for SoC estimation based on frequency domain identification was designed.

Next, one can equally utilize simplified electrochemical models as for instance in [21, 22, 40] where single par-

ticle models (SPMs) were used to design fractional-order transfer functions.This approach is more accurate than the

previous one but requires identification of many parameters that may be destructive for the batteries. In this paper,

the first approach was adopted leading to a second order FOM circuit displayed in Fig. 1.1. This is associated with

the use of two CPEs to reproduce the frequency domain behaviour of the battery. The first CPE represents the charge

transfer phenomenon at the electrodes whereas the second represents lithium diffusion.

R0

R1

I(t)

Vt(t)

Vz(t)

Vocv(t)
+

−

VCPE,1 VCPE,2

R2

CPE1 CPE2

(1.1) 2nd order equivalent circuit using two CPEs. Vt is the measured

terminal voltage and I is the measured input current.

−Im(Z)

Re(Z)
0

Immin

R1/2

ωα = 1
τ1 β = 2

πatan(∂Im(−Z)
∂Re(Z) )

ω →∞

ω → 0

R1

Charge
transfer (HT ) Diffusion (HD)

(1.2) Frequency domain representation of Hz illustration.

Figure 1: 2nd order fractional model representation of a Li-ion battery.

The transfer function corresponding to the displayed circuit in Fig. 1.1 is given by Eq. 10:

Hz(s) = R0 +
R1

1 + τ1sα
+

R2

1 + τ2sβ
(10)

To identify the parameters of this model, both frequency and time domain identifications was conducted. The fre-

quency domain identification results based on recorded EIS data at various SoCs are used as initial guess for the time

domain identification to achieve rapid convergence.
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3.1. Frequency domain identification

The frequency domain identification is conducted using recorded EIS data. The measurement was carried out in

a galvanostatic mode using a Bio-Logic VMP300 with a 20 A booster and EC-Lab R© software package. The EIS data

were collected within the frequency range of 10 mHz to 10 kHz using 10 frequency points per decade. The amplitude

of the applied current was 1 A (RMS), approximatively C/100 for EV cells and of course adapted for PHEV cells

as well. The cells were introduced in a climatic chamber and well thermalized. The measured temperature is around

+/−2 ◦C of the target one.

There are frequency domain FOM identification tools in the literature such as: CRONE toolbox [41], or FOMCON

toolbox [42] based on Hartley [43], Levy’s or Vinagre [44] algorithms for commensurate FOT. This paper takes

advantage of the structure the studied model to propose a novel approach to identify its parameters without using

any of the existing algorithms. One can model the frequency domain response of the transfer function Hz using the

representation in Fig 1.2.

The ohmic resistance R0 is easily retrieved, as one can set its value to the real part of the transfer function Hz when

its imaginary part is equal to zero. The impedance of the charge transfer part is described using Eq. 11:

HT (s) =
R1

1 + τ1sα
=

R1

1 + τ1ωα cos
(
απ
2

)
+ jτ1ωα sin

(
απ
2

) (11)

When Im (HT ( jω)) reaches its maximum value, one can compute the charge transfer resistance R1 and the charge

transfer time constant τ1 using Eq. 12:

τ1 =

(
1

ωmin

)α
(12a)

R1 = 2Re (HT ( jω)) (12b)

where ωmin is the corresponding measurement frequency. Noting the imaginary part for that frequency Immin =

−Im(HT ) one can compute its fractional exponent using Eq. 13:

α =
2
π

arccos

1 − 4Im2
min

R2
1

1 +
4Im2

min

R2
1

 (13)

The impedance of the diffusion part is described using Eq. 15. One has to bear in mind that the separation between

transfer functions HT and HD holds as long as τ1 << τ2. At this stage, the remaining parameters (β, τ2 and R2) are

identified using the frequential data in Eq. 14 :

ĤD(ΩD) = HZ,mes(ΩD) − ĤT (ΩD) (14)

where ΩD =
{
ω1, . . . , ωND

}
is a set of size ND containing the frequencies in the diffusion zone and HZ,mes are the

measured EIS data.

HD(s) =
R2

1 + τ2sβ
=

R2

1 + τ2ωβ cos
(
βπ
2

)
+ jτ2ωβ sin

(
βπ
2

) (15)
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By computing the derivative of the imaginary part of HD(s) with respect to its real part, one gets Eq. 16 from which

the value of the fractional exponent β can be retrieved using Eq. 17:

∂Im(−HD)
∂Re(HD)

=
(τ2

2ω
2β − 1) sin

(
βπ
2

)
(τ2

2ω
2β + 1) cos

(
βπ
2

)
+ 2ωβτ2

(16)

lim
ω→+∞

∂Im(−HD)
∂Re(HD)

= tan
(
βπ

2

)
=⇒ β =

2
π

arctan
(
∂Im(−HD)
∂Re(HD)

)
(17)

The diffusion time constant τ2 and impedance R2 are obtained using the weighted linear least squares algorithm 1

Algorithm 1 Recursive weighted linear least squares.

Initialization:

Θitr =

[
0 0

]
Θ̂ = argmin

τ2,R2

ND∑
n=1

∥∥∥∥∥∥∥∥
A1(ωn) −1

A2(ωn) 0


τ2

R2

 +

Re (HD(ωn))

Im (HD(ωn))


∥∥∥∥∥∥∥∥

2

while
∥∥∥Θitr − Θ̂

∥∥∥ ≤ Tol do

Θitr = Θ̂

Θ̂ = argmin
τ2,R2

ND∑
n=1

∥∥∥∥∥∥∥∥


A1(ωn)
W(ωn)

−1
W(ωn)

A2(ωn)
W(ωn) 0


τ2

R2

 +


Re(HD(ωn))

W(ωn)
Im(HD(ωn))

W(ωn)


∥∥∥∥∥∥∥∥

2

end while

[45], where coefficients A1(ω), A2(ω) and W(ω) are computed as follows:

A1(ω) = Re (HD)ωβ cos
(
πβ
2

)
− Im (HD)ωβ sin

(
πβ
2

)
A2(ω) = Im (HD)ωβ cos

(
πβ
2

)
− Re (HD)ωβ sin

(
πβ
2

)
W(ω) =

∣∣∣∣(1 + τ2ω
β cos

(
πβ
2

))2
+

(
τ2ω

β sin
(
πβ
2

))2∣∣∣∣r
Θ =

[
τ2 R2

] (18)

The parameter r ∈ [0 + ∞[ is a relaxation exponent. The increase of the value of r reduces the impact of high

frequencies, which is useful given that the diffusion phenomenon occurs at low frequencies.

Using the frequency domain identification method beforehand designed designed on recorded spectroscopy data

at 25 ◦C and 0oC, a second order FOM parameters were estimated. Figs. 2.1 and 2.2 are display identified transfer

functions (dotted lines) versus measured spectroscopy data (plain lines) at S oC ∈ {100%, 20%, 10%} and tempera-

tures 25 ◦C and 0 ◦C. The fit is quite satisfying, and this approach provides more insight and understanding of the

identified parameters values as the obtained transfer functions are mathematically fitted transfer functions.

We have established a global trend of various parameters of the model in Eq. 10 for SoC values ranging from 0%

to 100% and temperature T ∈ {−15, 0, 25, 45 ◦C}. Fig. 2.3 displays a) ohmic resistance R0, b) fractional exponent α,

c) fractional exponent β. One can notice that the ohmic resistance R0 values increase as the S oC and the temperature
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(2.1) Frequency domain identification of Hz at low SoCs at 25 ◦C.

Identified transfer functions (dotted lines - -m- -) versus

measured spectroscopy data (plain lines -H-).

(2.2) Frequency domain identification of Hz at low SoCs at 0 ◦C.

Identified transfer functions (dotted lines- -m- -) versus

measured spectroscopy data (plain lines -H-).

(2.3) Frequency domain identification results at different temperatures

−15, 0, 25 and 45 ◦C: a) ohmic resistance R0, b) fractional

exponent α, c) fractional exponent β.

(2.4) Frequency domain identification results at different temperatures

−15, 0, 25 and 45 ◦C: a) charge transfer resistance R1, b)

diffusion resistance R2, c) charge transfer time constant τ1, d)

Diffusion time constant τ2.

Figure 2: Frequency domain identification results
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values decrease. This observation is expected given that at low temperatures, the oxydo-reduction reactions are slowed

down.

Fig. 2.4 displays a) charge transfer resistance R1, b) diffusion resistance R2, c) charge transfer time constant τ1, d)

diffusion time constant τ2. One can definitely notice that resistance and time constant values tend to diminish as the

temperature increases. On top of that, their values rise to their maximum at low SoCs. These behaviours are expected

for Li-ion batteries under these circumstances.

Neither temperature nor S oC values cause fractional exponents α and β variation. However, at 45 ◦C the displayed

values of the charge transfer fractional exponent are equal to 0. The cause is the decreasing charge transfer phenomena

when the temperature increases. At 45 ◦C, the charge transfer phenomenon vanishes completely and appears only at

lower S oCs. The relative fitting error was computed using Eq. 19, where Ωmes is a set of size N containing all the

measurement frequencies:

FIT (%) = 100 ×

∑
ω ∈ Ωmes

∣∣∣Hz,mes( jω) − Ĥz( jω)
∣∣∣∑

ω ∈ Ωmes

∣∣∣Hz,mes( jω)
∣∣∣ (19)

The corresponding results are displayed in Table 1. At temperatures 0, 25 and 45 ◦C, the FIT values are satisfactory.

S oC at −15 ◦C at 0 ◦C at 25 ◦C at 45 ◦C

100 79.3 93.4 97.8 97.07

97 78.3 93.28 97.8 96.66

95 82.4 93.23 97.6 96.76

92 82.2 93.10 97.7 97.17

90 82 93.11 97.6 97.16

80 83.7 92.77 97.7 97.18

70 83 92.8 97.7 96.81

60 82.6 93.36 97.2 96.53

50 82.1 93.16 97.7 97.41

40 81.3 93.16 97.8 96.86

30 82.2 91.15 97.5 97.25

20 78.7 92.14 97.4 96.26

10 81.8 89.6 97.4 96.70

7 78.8 90.82 96.4 95.86

5 80.8 89.9 94.8 93.52

Table 1: Frequency domain identification FIT values ([%]) at different temperatures.

However, at −15 ◦C, the identification result displays a poor FIT. The frequency domain identified parameters are

initial guesses for the time domain identification. Therefore, there is no urge to aspire to a 100% FIT at the current

stage.
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3.2. Numerical approximation

The simulation of a temporal domain response of a fractional order system requires all the previous output signal

values. This necessity can become an issue as the memory length grows over time. For effective implementation, one

can approximate the Grünwald - Letnikov definition in Eq. 4 using Eq. 20 if Ts is chosen small enough:

Dαx(t) =
1

Tα
s

Lm∑
j=0

(−1) jC j
αx(t − jTs) (20)

where Lm is the ”memory length” to be chosen [46]. For |x(t)|≤ Xmax (the maximal amplitude), the memory length Lm

that satisfies an accuracy ξ forDαx(t) is given as [46, 47]:

Lm ≥

(
Xmax

ξ|Γ(1 − α)|

)1/α

(21)

For EV applications Ts is equal to 1 s, leading to Ts > τ1 with respect to the identified values (see Fig. 2.4-c).

For example, Fig. 3.1 displays a) a one hour urban driving cycle input current I(t) and b) its single-sided amplitude

spectrum |I( f )|. The relevant excited frequencies are inferior to 2Hz. One can recall that the estimated values of τ1

displayed in Fig. 2.4 are less than 0.5 s. As a consequence, one can neglect the charge transfer time response.

(3.1) Spectrum study of an urban driving cycle input current

sampled at Ts = 0.1 s,at temperature 25 ◦C : a) Imput

current I(t), b) Single-sided amplitude spectrum of the

current.

(3.2) Numerical approximation of the identified FOM transfer function

with Ts = 1 s, at 25 ◦C and Lm = 40. Measured spectroscopy

data (plain lines -H-), Identified transfers (dotted lines- -m- -)

and approximation using GL (plain lines -n-).

Figure 3: GL numerical approximation based on input current spectrum.

Let’s consider the fractional transfer function H(s) to be identified from data sampled at Ts > τ1:

Hz(s) = RES R +
R2

1 + τ2sβ
(22)
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where RES R = R0 + R1 is the equivalent series resistance. The discrete transfer function corresponding to Hz(s),

associating z-transforms of I/O data can be written as following using GL derivatives and power series expansion:

Hz,GL(z) = RECR +
R2T β

s

T β
s + τ2

∑Lm
k=0(−1)kCk

βz
−k

(23)

where z is the Z-transform variable. Fig. 3.2 displays various frequency responses, the experimental one Hz,mes, that

of the identified continuous model Hz(s), that of the approximate discrete model Ĥz,GL for different values of S oC ∈

{100%; 20%; 10%}. As expected, the numerical approximation Ĥz,GL reproduces well the diffusion phenomenon

whereas the charge transfer is absent.

3.3. Time domain identification

The time domain identification requires the use of fractional differential Eq. 7, which one can rewrite for the

studied system as follows:

Vz(t) = −

N∑
n=1

anD
νan Vz(t) +

M∑
m=0

bmD
νbm I(t) (24)

where Vz is the voltage of the internal impedance of the battery Zcell(R0, CPE1, CPE2), I is the input current. Using

a similar approach as in [48, 49, 50], one can write a linear form of the Eq. 24 as follows:

Vz[k] = −

N∑
n=0

a′nV∗n [k] +

M∑
m=0

b′mI∗m[k] (25)

where:

a′n = an

 N∑
i=0

aiT
νan−νai
s

−1

(26a)

b′m = bm

 N∑
i=0

aiT
νbm−νai
s

−1

(26b)

V∗n [k] =

k∑
i=1

(−1)iCi
νan

Vz[k − i] (26c)

I∗m[k] =

k∑
i=0

(−1)iCi
νbm

I[k − i] (26d)

One can then notice that
∑N

n=0 a′n = 1 using Eq. 26. Thus, the number of estimated parameters can be reduced by one,

and the linear Eq. 25 becomes:

V̂z[k, θ̂r] = −V∗0 [k] −
N∑

n=1

â′n(V∗n [k] − V∗0 [k]) +

M∑
m=0

b̂′mI∗m[k] (27)

where θ̂r = [â′1 â′2 . . . â′N b̂′0 b̂′1 . . . b̂′M] is the parameter vector. Noting the estimated output ŷ[k] = V̂z[k, θ̂r] +

V∗0 [k], parameters θ̂r can be estimated using an instrumental variable recursive least square (IV-RLS) algorithm with
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a forgetting factor laid down in Eq. 28:

θ̂r[k] = θ̂r[k − 1] + L[k]
[
y[k] − θ̂T

r [k − 1]φ[k]
]
, (28a)

L[k] =
P[k − 1]φIV [k]

λ + φT [k]P[k − 1]φIV [k]
, (28b)

P[k] =
1
λ

(P[k − 1] − L[k]φ[k]P[k − 1]) (28c)

where 0 << λ ≤ 1 is the forgetting factor, L[k] is the correction gain vector, P[k] the error covariance matrix at time

index k, and the measurement vectors φ, φIV are given in Eq. 29 [24]:

φ =
[
−(V∗1 − V∗0 ) . . . − (V∗N − V∗0 ) I∗0 . . . I∗M

]T
(29a)

φIV =
[
−(V∗1 − V∗0 )IV . . . − (V∗N − V∗0 )IV I∗0 . . . I∗M

]T
(29b)

ΦIV is computed at each iteration using the output obtained by simulating the model with estimated parameters from

the previous iteration. One can retrieve the initial parameters: al and bm using Eqs. 30 and 31 [49, 48]:

[
a′1T

νa0
s . . . a′NT

νa0
s

]T
=M×

[
a1 . . . aN

]T

M =



(1−a′1)

T
νa1
s

−a′1T
−νa2
s . . . −a′1T

−νaN
s

−a′1T
−νa1
s

(1−a′2)

T
νa2
s

. . . −a′1T
−νaN
s

...
...

...
...

−a′NT
−νa1
s −a′NT

−νa2
s . . .

(1−a′N )

T
νaN
s


(30)

bm = b′m
N∑

n=0

anT νbm−νan
s (31)

In the present study case, considering the transfer model in Eq. 22; the set of parameters and equations is given as

following:

a =

[
1 τ2

]
νa =

[
0 β

]
(32a)

b =

[
R2 + RES R τ2RES R

]
νb =

[
0 β

]
(32b)

θr =

[
a′1 b′0 b′1

]
(32c)

â1 =
â′1

(1 − â′1)T−βs

(32d)

b̂0 = b̂′0(â0 + â1T β
s ) b̂1 = b̂′1(â0T β

s + â1) (32e)

To asses the presented method, there are two types of time domain test that were run. First the current pulse excitations

of the battery at various SoCs; and secondly, driving cycle current profile applied to the battery. Those tests are detailed

in the following subsections.
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3.3.1. Current pulse excitation

For this test, an EV Li-ion battery with a charge capacity Qn = 64 Ah is considered. Pulsed currents of 1C

amplitude (64 A) for about 2 mins and an imposed relaxation of about 8 minutes were utilized as inputs. Knowing the

SoC of this cell, one can easily compute its internal impedance voltage using Eq. 33. The transfer Hz(s) between Vz(s)

and I(s) can be identified using an adaptive IV-RLS algorithm with a forgetting factor λ. To enable rapid convergence

of the time domain identification, the initial guess of parameters τ2, R2 and RES R are derived from the frequency

domain identification result using the model in Eq. 22:

Vz[k] = Vt[k] − OCV(S oC[k]) (33)

Fig. 4.1 displays a) the reference SoC, b) the pulsed current, and the internal impedance voltage obtained using Eq.

33.

Knowing that the SoC is near 20%, the initial guess transfer function was obtained using the frequency domain

result at S oC = 20% from section 3.1. A lower bound of the ”memory length” can be computed using Eq. 21. For

example, if Vz,max = 400 mV and β = 0.7; to achieve a 10 mV accuracy : Lm must be superior to 40. For simplicity

the memory length is chosen as Lm = bT/Tsc; where T is a time constant to be chosen at least superior to the response

time of the system. The accuracy of the numerical approach will improve as the value of T increases. Unfortunately,

the memory length required for the computation also increases, consequently increasing the computational time. Fig.

4.2 displays the results for two distinctive values of the time constant T ∈ {120 s, 600 s}.

Similarly at 0 ◦C around S oC = 30% the same test was conducted leading to the result displayed in Fig. 4.3.

Errors
FOM:

Lm = 120

FOM:

Lm = 600
EEC

RMS , at (S oC = 20%, 25 ◦C) 7.01 3.11 10.02

Max, at (S oC = 20%, 25 ◦C) 11 10.98 14.66

RMS , at (S oC = 30%, 0 ◦C) 15.82 8.8 22.02

Max, at (S oC = 30%, 0 ◦C) 24.51 12.71 30.95

Table 2: Voltage estimation error for pulsed current inputs at 25 ◦C and 0 ◦C

In both of these figures, one can clearly confirm that FOM results are more accurate than first order equivalent

circuit model. Also the increase of the value of T improves the accuracy as displayed in Table 2. However, to limit

the computational burden, the value of T will not be increased too considerably.

3.3.2. Driving cycle excitation

For this test, recorded driving cycle data were used as inputs of the proposed model. Knowing the S oC the same

scheme and Eq. 33 were utilized to retrieve voltage Vz of internal impedance of the battery displayed on Fig. 5.1.

The transfer function Hz(s) between Vz(s) and I(s) can be identified implementing an adaptive RLS algorithm with a

13



(4.1) Input data for a Qn = 64 Ah cell at 25 ◦C a) State of Charge b)

(left) Applied pulsed current and (right) internal impedance

voltage obtained using Eq. 33 (Ts = 1 s).

(4.2) a) Estimated Voltage b) Estimation error for a Qn = 64 Ah

charge capacity cell, around 20% SoC at 25 ◦C (Ts = 1 s,

Lm = bT/Tsc).

(4.3) a) Estimated Voltage b) Estimation error for a Qn = 64 Ah

charge capacity cell, around 30% SoC at 0 ◦C (Ts = 1 s,

Lm = bT/Tsc).

Figure 4: Parameters identification for a pulsed current excitation.

forgetting factor λ. On Fig. 5.2 are displayed the estimated voltages and the estimation errors for both FOM and first

order EEC model.
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(5.1) Input data for a Qn = 64 Ah cell at 25 ◦C for highway driving

cycle a) State of Charge b) (left) Applied pulsed current and (right)

internal impedance voltage obtained using Eq. 33 (Ts = 1 s).

(5.2) a) Estimated Voltage b) Estimation error for a Qn = 64 Ah

charge capacity cell, for SoC ranging from 100% to 87% at

25 ◦C (Ts = 1 s, Lm = bT/Tsc).

Figure 5: Parameters identification for a driving cycle excitation.

As observed for current pulse excitations, when using the FOM, the estimation errors are reduced in comparison

to first order EEC model. Also the increase of the value of T improves the accuracy of the identification. The error

comparison is displayed in table 3. It is essential to notice that in this case, there is no need to increase significantly

the value of Lm. This is cause by the fact that the input current does not excite low frequencies very much.

Errors FOM: Lm = 30 FOM: Lm = 300 EEC

RMS (mV) 8.94 7.59 12.49

Max (mV) 37.99 37.49 39.01

Table 3: Voltage estimation error comparison for a highway driving cycle and SoC ranging from 100% to 87% at 25 ◦C (Ts = 1 s, Lm = bT/Tsc).

4. Fractional-order-EKF for Li-ion batteries

The aim in this section is to design and test an extended Kalman observer based on FOM for Li-ion batteries.

First, a generalized filter for a second order FOM will be designed. Following that, the filter will be adapted to the

presented study case.
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4.1. Filter design

Differential equation describing the evolution of the voltages of the constant phase elements (CPEs) displayed in

Fig. 1.1 is given as:

Dαi VCPE,i(t) = −
1
τi

VCPE,i(t) +
Ri

τi
I(t) (34)

where αi ∈ {α, β}. Eq. 34 leads to the discrete time Eq. 35, using numerical approximation of the Grünwald-Letnikov

fractional derivative displayed in Eq. 20:

(35)Dαi VCPE,i[k + 1] =
1

Tαi
s
{VCPE,i[k + 1] +

Lm∑
j=1

(−1) jC j
αi VCPE,i[k + 1 − j]}

This allows the computation of the CPE voltage at time index k, as linear combination of its previous values and the

input current value I[k]:

(36)VCPE,i[k + 1] =

(
αi −

Tαi
s

τi

)
VCPE,i[k] −

Lm∑
j=2

(−1) jC j
αi VCPE,i[k + 1 − j] +

RiT
αi
s

τi
I[k]

For each CPE, one can consider the state vector to be:

(37)xi[k] =
[
VCPE,i[k], VCPE,i[k − 1], . . . , VCPE,i[k + 1 − Lm]

]T

The state equation of one CPE is computed as follows:

xi[k + 1] = Aixi[k] + BiI[k] (38)

where 

Ai =



αi −
Tαi

s
τi

W2 W3 . . . WLm

1 0 0 . . . 0

0 1 0
. . .

...
...

. . . . . . . . . 0

0 . . . 0 1 0


Bi =

[
RiT

αi
s

τi
0 . . . 0

]T

W j = (−1) j+1C j
αi

(39)

Considering the S oC definition in Eq. 40, one writes the global state equation of the system using Eq. 41:

S oC[k + 1] = S oC[k] +
I[k]Ts

Qn × 3600
(40)

x[k + 1] = Ax[k] + BI[k] (41a)

Vt[k] =

2∑
i=1

VCPE,i[k] + OCV(S oC[k]) + R0I[k] (41b)
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where: 

A =


A1 0Lm×Lm 0Lm×1

0Lm×Lm A2 0Lm×1

01×Lm 01×Lm 1


B =

[
B1 B2 Ts/(3600 × Qn)

]T

x[k] =

[
x1[k] x2[k] S oC[k]

]T

(42)

A ∈ R(2∗Lm+1)×(2∗Lm+1), B ∈ R(2∗Lm+1)×1, B ∈ R1×(2∗Lm+1) and Vt is the terminal voltage of the battery. The function

OCV(S oC) is an optimized lookup table provided by the manufacturer of the Li-ion batteries used in this paper. Sim-

ilar solutions were adopted in the literature. For example, in [51] a fractional Kalman filter was derived based on a

simplified electrochemical model. Whereas, in [36] an unscented Kalman filter (UKF) was designed for SoC estima-

tion while the parameters were estimated using a genetic algorithm. In [27] a sliding mode observer was designed

based on frequency domain identification using particle swarm optimization (PSO). A multi-swarm cooperative par-

ticle swarm optimization (MCPSO) is used to identify fractional order parameters while the SoC was estimated using

an EKF in [26]. This paper proposes a simple EKF based SoC estimation with a FOM derived from a new frequency

domain data identification for Li-ion batteries. The EKF algorithm steps are given below:

Prediction:

x̂−[k] = Ax̂[k − 1] + BI[k − 1], (43a)

P−x [k] = AP+
x [k − 1]AT + Qx. (43b)

Update:

Lx[k] = P−x [k]CT
[
CP−x [k]CT + R

]−1
, (43c)

x̂+[k] = x̂−[k] + Lx[k]
[
Vt[k] −Cx̂−[k] − DI[k]

]
, (43d)

P+
x [k] = P+

x [k − 1] − LxCP−x [k]. (43e)

where P−x and P+
x are the predicted and updated state error covariance matrix, Qx and R the state and measurement

noises covariance matrix, Lx the correction gain matrix; C and D are given in the following equation:
C =

[
1 0 . . . 1 0 . . . ∂OCV

∂S oC |S oC[k−1]

]
D = R0

(44)

Using Eq. 41 jointly with the parameter estimator described in Section 3.3, one can estimate the SoC of the Li-ion

cell as displayed Fig. 6.1. It is a dual estimator scheme [9] with an RLS component that estimates the FOM model

parameters using measured currents
[
I[k] I[k − 1]

]
and the estimated state of charge ˆS oC[k−1]. A convergence test

is run to retrieve converged parameters R0,conv, (τ1, R1)conv and (τ2, R2)conv. These converged parameters are then used

by the EKF observer to build matrix A, B, C and D when estimating the state vector: x[k] =

[
x1[k] x2[k] S oC[k]

]T
,

of size 2 × Lm + 1.
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EKF

RLS

R0,conv

Convergence
Test

−+

(FOM)

Vt[k]

I [k]

I [k − 1]

Vt[k]

I [k]

I [k − 1]

SoC[k]SoC[k − 1]

(τ1, R1)conv

(τ2, R2)conv

R0[k]

τ1[k], R1[k]

τ2[k], R2[k]
(FOM)

VCPE,i[k − 1]

VCPE,i[k − Lm]

VCPE,i[k]

VCPE,i[k + 1− Lm]

OCV (SoC[k])

(6.1) Dual filter diagram for SoC and parameters estimation.

(6.2) Highway driving cycle input current at 25 ◦C (Experimental

data).

(6.3) Highway driving cycle output voltage at 25 ◦C. (Experimental

data).

Figure 6: GL numerical approximation based on input current spectrum.

4.2. Experimentation

Considering the model in Eq. 22 where only one CPE is used, the state of the proposed fractional EKF is x[k] =[
x2[k] S oC[k]

]T
of size Lm + 1, and the parameters to be estimated are RES R, R2 and τ2. Using the presented dual

filter scheme and data recorded from a Li-ion cell during highway driving cycle at 25 ◦C, both SoC and parameters of

the first order FOM were estimated for a Li-ion cell. Fig. 6.2 displays the input current whereas Fig. 6.3 displays the

output voltage.

For this test Lm = 40, Ts = 1 s, β = 0.66. Noting bI and bV the additive current and voltage measurement noises

in Eq. 45, one can easily compute the noise covariance matrices using Eq. 46: Vt,mes = Vt + bV

Imes = I + bI

(45)

 Qx = σ2
bI
× BBT

R = σ2
bI
× R2

ES R + σ2
bV

(46)

where σ2
bI

= 10−4A2 and σ2
bV

= 10−7V2 are the current and voltage measurement noise variances. Those noises are

considered to be additive and of zero mean and white.
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Fig. 7.1 displays a) the reference state of charge S oCre f (blue plain line) and the estimated state of charge ˆS oC

(dotted blue line), b) the estimation error ˜S oC (red plain line). Fig. 7.2 displays a) the estimated diffusion time

constant τ2, b) the estimated diffusion resistance R2 (right) and the Equivalent series resistance RES R (left). One can

notice the increase of τ2 and R2 values as the state of charge decreases.

(7.1) State of charge: Reference S oCre f (blue plain line), estimated

ˆS oC (dotted blue line) and the error ˜S oC (red plain line).

(7.2) Estimated parameters: a) Diffusion time constant τ2, b)(right)

Diffusion resistance R2, (left) Equivalent series resistance RES R.

Figure 7: Estimated State of charge and parameters for a highway driving cycle input current at 25 ◦C.

In table 4 are displayed SoC estimation errors using FOM and first-order EEC. As expected, the use of the FOM

model leads to lower SoC estimation error values, justifying the use of FOM for Li-ion batteries. To go even further,

Errors 1//RC (EEC Model) 1R//CPE (FOM)

RMS (%) 0.58 0.41

Max(%) 1.86 1.18

Table 4: SoC estimation error comparison for a highway driving cycle input current at 25oC

several driving profiles were computed, at temperatures 0 ◦C and 25 ◦C using FOM and EEC on not only EV but also a

PHEV battery. The SoC estimation errors comparison is displayed in Tables 5 and 6. For both EV and PHEV profiles

one can notice that all RMS and maximum errors are improved when using FOM models. In addition, the maximum

error improvement at low temperature is more significant. The averaged improvement of the SoC maximum error for

all PHEV profiles at 25 ◦C is about 1% compared to 2.5% at 0 ◦C. This can be explained by a more pronounced

non-linear behaviour of Li-ion batteries at low temperatures. All these improvements justify the use of the FOM for
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SoC estimation. The several driving cycles used as input for the tests in Tables 5 and 6 are displayed in Figs. 8.1, 8.2

Profiles

25 ◦C 0 ◦C

FOM EEC
SoC range

FOM EEC
SoC range

Max (%) RMS (%) Max (%) RMS (%) Max (%) RMS (%) Max (%) RMS (%)

Urban 1.15 1.12 1.35 1.9 90 - 0 0.8 0.43 1.41 0.68 93 - 6

Highway 1.18 0.41 1.86 0.58 94 - 3.5 0.94 0.47 1.82 1.15 90 - 1

Table 5: SoC estimation error comparison for several driving profiles for an EV battery of charge capacity Qn = 64 Ah, Lm = 40.

Profiles

25 ◦C 0 ◦C

FOM EEC
SoC range

FOM EEC
SoC range

Max (%) RMS (%) Max (%) RMS (%) Max (%) RMS (%) Max (%) RMS (%)

NEDC 0.34 0.18 1.44 1 94 - 6 1.8 1.3 4.54 3 94 - 12

Urban 2.1 1.42 3.61 2.27 100 - 40 6.58 3.65 7.27 3.9 92 - 9

Road 1.44 0.71 2.25 1.18 91 - 6 1.92 0.84 5.3 3.2 91 - 7

Highway 0.82 0.397 0.82 0.68 91 - 40 1.07 0.45 3.5 2.27 92 - 4.6

Table 6: SoC estimation error comparison for several driving profiles for a PHEV battery, Lm = 40.

and 8.3 for the convenience of the reader.

In this paper, the proposed method (FOM) is compared to the existing method (EEC) using single cells. Out of the

12 tests performed (8 PHEV tests and 4 EV tests), the execution time ration between FOM and EEC approach is about

1.68 with a standard deviation of 0.066. EVs and PHEVs frequently feature several (up to N = 100) cells organized

in modules (or stacks). Increasing the computational time by 68% can therefore be challenging.

Globally, a compromise should be considered between increasing estimator complexity leading to increased time

and resources consumption, and on the other hand, improving battery state accuracy benefits. Electrified vehicles are

continuously challenged, that’s why more accuracy could be important in extending autonomy range, charging time

optimization and even more precise understanding of battery degradation. That is why the suggested approach must

be considered in a broader framework. In fact, in [52] the ”Bar-Delta” approach was proposed to reduce the CPU

load for battery pack state estimation. It was argued that in the battery pack only the limiting cells (most charged

during charge and least charged during discharge) are relevant. This CPU reduction strategy can be combined with

the proposed FOM for the limiting cells. In doing so, the overall CPU load is reduced in comparison with the direct

approach consisting of N different EEC based EKFs. On top of that, the accuracy is improved for the limiting cells

thanks to the FOM approach, as suggested in the present paper.
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(8.1) Spectrum study of a Highway driving cycle input current

sampled at Ts = 0.1 s,at temperature 25 ◦C : a) input current

I(t), b) Single-sided amplitude spectrum of the current.

(8.2) Spectrum study of a countryside road driving cycle input

current sampled at Ts = 0.1 s,at temperature 25 ◦C : a) input

current I(t), b) Single-sided amplitude spectrum of the

current.

(8.3) Spectrum study of an NEDC driving cycle input current

sampled at Ts = 0.1 s,at temperature 25 ◦C : a) input current

I(t), b) Single-sided amplitude spectrum of the current.

Figure 8: Driving cycle input current used in this paper.
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5. Conclusion

A method to estimate a second order fractional model parameters for Li-ion batteries using recorded EIS data for

an EV and PHEV Li-ion batteries was presented in this paper. The proposed identification approach is original. The

studied FOM parameters are simply and efficiently identified by taking advantage of the structure of the proposed

model. Frequency domain estimation results were used to initialize the time domain estimation for pulsed and driving

cycle current inputs, which enabled fast convergence and good estimation results. The study suggests that FOM is

more suitable than the classical integer order systems for Li-ion batteries SoC estimation. To that extent, a joint

estimator for FOM parameters and the state of charge S oC was then presented. The parameters are estimated using an

IV-RLS while the battery SoC is estimated using a FOM-EKF. The designed fractional-order filter provides a higher

accuracy level in comparison to the classical one based on the integer order model, therefore fulfilling the requirement

of SoC accuracy improvement. The improved model enables a better behaviour understanding and could be helpful

for ageing mechanism investigation. For example, using the identified model parameter, all along the life, ageing law

and SoH could be predicted.

Nomenclature

Abbreviations

BMS Battery management system

CPE Constant phase element

EEC Equivalent electric circuit

EIS Electrochemical impedance spectroscopy

EKF Extended Kalman filter

EV Electric vehicle

FOC Fractional order calculus

FOM Fractional order model

FOT Fractional order transfer

HEV Hybrid electric vehicle

IV-RLS Instrumental variable - recursive least square

NEDC New european driving cycle
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OCV Open circuit voltage

PDE Partial diferential equation

PHEV Plug-in hybrid electric vehicle

RLS Recursive least square

SoC State of charge

Math Symbols

α First CPE fractional exponent ∈ [0, 1]

αi i-th fractional exponent ∈ [0, 1]

β Second CPE fractional exponent ∈ [0, 1]

λ Adaptive forgetting factor ∈]0, 1]

Dα Fractional derivative of order α

ω Angular frequency rad/s

τi Time constant of the i-th CPE s

Hz Transfer function of the internal impedance of the cell

I Current of the cell A

Im(.) Imaginary part of complex number

Lm Memory length

Qn Nominal charge capacity Ah

R0 Ohmic resistance Ω

Ri i-th resistance Ω

RES R Equivalent series resistance Ω

Re(.) Real part of complex number

T Time span s

Ts Sampling time s
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Vz Voltage of the internal impedance of the cell V

VCPE,i Voltage of the i-th CPE V

Vt Terminal voltage of the cell V
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