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Stabilization of Perturbed Chains of Integrators using Lyapunov-Based Homogeneous Controllers

In this paper, we present a Lyapunov-based homogeneous controller for the stabilization of a perturbed chain of integrators of arbitrary order r ≥ 1. The proposed controller is based on homogeneous controller for stabilization of pure chain of integrators. The control of homogeneity degree is also introduced and various controllers are designed using this concept, namely a bounded-controller with minimum amplitude of discontinuous control and a controller with globally fixed-time convergence. The performance of the controller is validated through simulations.

I. INTRODUCTION

The problem of finite-time stabilization of a perturbed chain of integrators arises in many control applications. For example, electromechanical systems such as motorized actuators or robotic arms are modeled as perturbed double integrators [START_REF] Bhat | Continuous finite-time stabilization of the translational and rotational double integrators[END_REF], [START_REF] Hong | Finite-time control for robot manipulators[END_REF], [START_REF] Orlov | Discontinuous Systems -Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions[END_REF]. Another application is in Higher Order Sliding Mode Control (HOSM) [START_REF] Emel'yanov | High-order sliding modes in control systems[END_REF], which can be formulated as the stabilization of an auxiliary system arising as a perturbed chain of integrators built from the output and its higher time derivatives [START_REF] Dinuzzo | Higher Order Sliding Mode Controllers with Optimal Reaching[END_REF]. The finite-time stability problem was addressed in relation with homogeneous systems in [START_REF] Driver | Methods of a. m. lyapunov and their application (v. i. zubov)[END_REF], [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF], and homogeneity concept was used for stabilization of linear systems in [START_REF] Praly | Generalized weighted homogeneity and state dependent time scale for linear controllable systems[END_REF]. In [9], the link between finite-time stabilization and homogeneity of a system was established, and M. Harmouche is with Actility, Paris, France. mohamed.harmouche@actility.com S. Laghrouche are with OPERA Laboratory, UTBM, Belfort, France. salah.laghrouche@utbm.fr Y. Chitour is with L2S, Univ. Paris XI, CNRS 91192 Gif-sur-Yvette, France. yacine.chitour@lss.supelec.fr M. Hamerlain is with CDTA, Algiers, Algeria. mhamerlain@cdta.dz DRAFT it was shown that a homogeneous system is finite-time stable if and only if it is asymptotically stable and has a negative homogeneity degree. This result has, since then, been used for the development of many controllers for pure and perturbed chain of integrators. A homogeneous nonsmooth proportional-derivative controller for robot manipulators (double integrator system) was developed in [START_REF] Hong | Finite-time control for robot manipulators[END_REF]. This work was generalized for an arbitrary-length of a chain of integrators in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]. In [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF] and [START_REF] Qian | A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems[END_REF], negative homogeneity was used for the finite-time stabilization of a class of nonlinear systems that includes perturbations at each integrator link.

Among Sliding Mode techniques, the homogeneity approach was used in [START_REF] Levant | Higher-order sliding modes, differentiation and output-feedback control[END_REF], [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], to demonstrate finite-time stabilization of the arbitrary order sliding mode controllers for Single Input Single Output (SISO) systems [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF]. A robust Multi Input Multi Output (MIMO) HOSM controller was also presented in [START_REF] Defoort | A novel higher order sliding mode control scheme[END_REF], using a constructive algorithm with geometric homogeneity based finite-time stabilization of a chain of integrators. A controller, which stabilizes a perturbed chain of integrators of arbitrary length using only the signs of state variables, was presented in [START_REF] Kryachkov | Finite-time stabilization of an integrator chain using only signs of the state variables[END_REF]. A Lyapunov-based approach for arbitrary HOSMC controller design was first presented in [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF]. In these works, it was shown that a class of homogeneous controllers that satisfies certain conditions, could be used to stabilize perturbed chain of integrators.

In this paper, we present a continuation of [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], and develop a Lyapunov-based robust controller for the finite-time stabilization of a perturbed chain of integrators of arbitrary order, with bounded uncertainty. The main focus of this paper is to obtain various properties in the controller by controlling the degree of homogeneity. The homogeneous controller for perturbed chain of integrators is developed from a discontinuous Lyapunov-based controller for pure chain of integrators. It is then demonstrated that the homogeneity degree can be controlled in the neighborhood of zero, such that the amplitude of discontinuous control is kept to its minimum possible value when the states have converged. It is also shown that the recently developed "Fixed-Time" stability notion can be achieved by changing the homogeneity degree. Globally fixed-time stability was first introduced in [START_REF] Andrieu | Homogeneous approximation, recursive observer and output feedback[END_REF]; this term refers to the finite-time stabilization of systems with uniform convergence, i.e. the convergence time is bounded and independent of the system's initial state. In [START_REF] Cruz-Zavala | Second-order uniform exact sliding mode control with uniform sliding surface[END_REF] and [START_REF] Cruz-Zavala | Uniform sliding mode controllers and uniform sliding surfaces[END_REF], uniform convergence to a neighborhood of the origin was demonstrated for second order systems and arbitrary order respectively. In [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems. Automatic Control[END_REF], globally fixedtime convergence controllers were developed for linear systems, insuring guaranteed convergence DRAFT exactly to zero. Based on the control of homogeneity degree, the controller presented in this paper ensures globally fixed-time convergence to zero of a perturbed chain of integrators.

The paper is organized as follows: the problem formulation as well as the motivation and contributions of the paper are discussed in Section 2. The controller design is presented in Section 3 and its special cases are demonstrated in Section 4. Simulation results are shown in Section 5 and concluding remarks are given in Section 6.

II. PROBLEM FORMULATION, MOTIVATION AND CONTRIBUTION

The mathematical formulation of the perturbed chain of integrators problem is developed first.

Then, the motivation behind using homogeneity based controllers and the contribution of this paper are presented.

A. Problem Formulation

Let us consider an uncertain nonlinear system:

   ẋ(t) = f (x,t) + g(x,t)u, y(t) = s(x,t), (1) 
where x ∈ R n is the state vector and u ∈ R is the input control. The sliding variable s is a measured smooth output-feedback function and f (x,t) and g(x,t) are uncertain smooth functions.

It is assumed that the relative degree, r of the system [START_REF] Isidori | Nonlinear control systems: An introduction[END_REF] is globally well defined, uniform and time invariant [START_REF] Dinuzzo | Higher Order Sliding Mode Controllers with Optimal Reaching[END_REF] and the associated zero dynamics are asymptotically stable. For autonomous systems, r is the minimum order of time derivatives of the output y(t) in which the control input u appears explicitly. This means that, for suitable functions φ(x,t) and γ(x,t), we obtain

y (r) (t) = φ(x(t),t) + γ(x(t),t)u(t).
(

) 2 
The functions γ(x,t) and φ(x,t) are assumed to be bounded by positive constants γ m ≤ γ M and φ, such that, for every x ∈ R n and t ≥ 0,

0 < γ m ≤ γ(x,t) ≤ γ M , | φ(x,t)| ≤ φ. (3) 
Defining s (i) := d i dt i y; the goal of r th order sliding mode control is to arrive at, and keep the following manifold in finite-time:

DRAFT s (0) (x,t) = s (1) (x,t) = • • • = s (r-1) (x,t) = 0. (4) 
To be more precise, let us introduce z = [z 1 z 2 ...z r ] T := [s ṡ... s (r-1) ] T . Then (4) is equivalent to z = 0. Since the only available information on φ(x,t) and γ(x,t) are the bounds (3), it is natural to consider a more general control system instead of System (2), such as

żi = z i+1 , i = 1, • • • , r -1, żr = ϕ(t) + γ(t)u, (5) 
where the new functions ϕ and γ are arbitrary measurable functions that verify the condition

(H1) ϕ(t) ∈ [-φ, φ] , γ(t) ∈ [γ m , γ M ] . (6) 
The objective of this paper is to design controllers which stabilize System (5) to the origin in finite-time . Since these controllers are to be discontinuous feedback laws u = U(z), solutions of ( 5) with u = U(z) will fall in the realm of differential inclusions and need to be understood here in Filippov sense, i.e. the right hand vector set is enlarged at the discontinuity points of (5) to the convex hull of the set of velocity vectors obtained by approaching z from all the directions in R r , while avoiding zero-measure sets [START_REF] Filippov | Differential Equations with Discontinuous Right-Hand Side[END_REF].

B. Definitions and technical results

We need the following definitions to state our results.

Definition 1. [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], [START_REF] Zhang | Homogeneous feedback design of differential inclusions based on control lyapunov functions[END_REF] The family of dilations ζ p ε , ε > 0, are the linear maps defined on R r given by

ζ p ε (z 1 , • • • , z r ) = (ε p 1 z 1 , • • • , ε p r z r ),
where p = (p 1 , • • • , p r ) with the homogeneity weights p i > 0,

for i = 1, • • • , r.
A function Ω(z) is homogeneous of degree a > 0 with respect to the family of dilations ζ p ε where a is a positive real number if, for every z ∈ R r and ε > 0, Ω(ε

p 1 z 1 , • • • , ε p r z r ) = ε a Ω(z 1 , • • • , z r ).
A set function F : R r ⇒ R r is said to be a homogeneous differential inclusion of degree κ ∈ R with respect to the family of dilation

ζ p ε if it satisfies F(ζ p ε (z)) = ε κ ζ p ε (F(z)). DRAFT A differential equation ż = f (z) (a differential inclusion ż ∈ F(z)
) is said to be homogeneous of degree κ ∈ R with respect to the family of dilations ζ ε (z) if the vector field f : R r → R r (the set function F : R r ⇒ R r is). Then, for a, b ∈ R and α > 0, it holds sign( a αb α ) = sign(ab).

Proposition 1 ([26]).

Let Ω be a positive definite C 1 function, homogeneous of degree a with

respect to ζ p ε . Then, for all i = 1, • • • , r; ∂ Ω/∂ z i is homogeneous of degree (a -p i ).
Consider the differential system

ż = f (t, z), (7) 
where z ∈ R r is the vector system states, f : R + × R r → R r is a time-varying vector field. Definition 3. [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems. Automatic Control[END_REF], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], [START_REF] Polyakov | Stability notions and lyapunov functions for sliding mode control systems[END_REF] Assume that f (•, 0) ≡ 0, i.e., the point z = 0 is an equilibrium point of System [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF]. Then z = 0 is said to be locally finite-time stable in a neighborhood Û ⊂ R r of 0 if (i) it is asymptotically stable in Û; (ii) it is finite-time convergent in Û, i.e., there exists a settling function T : R r → R >0 called the settling-time function such that, for any initial condition z 0 , z(t, z 0 ) = 0, ∀t ≥ T (z 0 ). The equilibrium point z = 0 is globally finite-time stable if Û = R r and it is globally fixed-time stable if (i) it is globally finite-time stable; (ii) the settling-time function is bounded by a constant T max , i.e. ∃T max > 0 :

∀z 0 ∈ R r , T (z 0 ) ≤ T max .
Definition 4. [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems. Automatic Control[END_REF], [START_REF] Polyakov | Stability notions and lyapunov functions for sliding mode control systems[END_REF] The set S is said to be globally finite-time attractive for [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF], if for any initial condition z 0 , the corresponding trajectory starting at z 0 achieves S in finite-time T (z 0 ). Moreover, the set S is said to be globally fixed-time attractive for [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF], if (i) it is globally finite-time stable; (ii) the settling-time function is bounded by a constant T max .

Lemma 1.

[9], [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] Suppose there exists a positive definite C 1 function V defined on a neighborhood Û ⊂ R r of the equilibrium point z = 0 and real numbers C > 0 and α ≥ 0, such that the following condition is true for every non trivial trajectory z of System (7),

V +CV α (z(t)) 0, if z(t) ∈ Û, (8) 
DRAFT where V is the time derivative of V (z(t)). (Here for α = 0, Equation (8

) means V ≤ -C if z(t) ∈ Û \ {0}.
) Then all trajectories of System (7) which stay in Û converge to zero. If Û = R r and V is radially unbounded, then System (7) is globally stable with respect to the equilibrium point z = 0.

Depending on the value α, we have different types of convergence: if 0 ≤ α < 1, the equilibrium point z = 0 is finite-time stable ( [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]), if α = 1, it is exponentially stable and if α > 1 the equilibrium point z = 0 is asymptotically stable equilibrium and, for every ε > 0, the set

B(0, ε) = {z ∈ Û : V (z) < ε} is fixed-time attractive.
Proof. The argument is obvious (cf. [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] for 0 < α < 1). Let us just note that for α > 1 with initial condition V (z(0)) = V 0 , an integration of V +CV α ≤ 0 shows that every trajectory enters the neighborhood defined by V (z) ≤ ε in a fixed time less than or equal to 1 C(α-1)ε α-1 for any initial condition.

The following lemmas are used in the course of some subsequent arguments. . In particular, for every β > 0, the function g β is uniformly bounded over R 2 \ {(0, 0}.

Proof. The only fact non trivial to establish is that g is well-defined on R 2 \ {(0, 0}. One can assume with no loss of generality that both a and b are positive real numbers. Set B := b/a. Then g(b, a) = g(B, 1) and we are left to prove that g(B, 1) is continuous at B = 1. It is immediate to see that the latter fact hold true by taking the Taylor's expansions of both W (B, 1) and w(B, 1) in a neighborhood of B = 1.

Lemma 3. For every θ > 0, positive integer i and non negative real numbers a 1 ,

• • • , a i , one has that (∑ i j=1 a j ) θ ≤ max(1, i θ -1 ) ∑ i j=1 a θ j .
Proof. The result is immediate for either i = 1 or θ ≥ 1, since it follows from the convexity of the function x → x θ defined on R + . Assume now that i > 1 and θ < 1. Let

∆ i := {a = (a 1 , • • • , a i ) ∈ (R + ) i , ∑ i j=1 a j = 1}
, f i be the real-valued function given by f i (a) = ∑ i j=1 a θ j and C i be the minimum of f i over ∆ i , which is well defined since ∆ i is compact and f i is continuous.

We want to prove that C i = 1 for every i ≥ 1. Since ∆ i can be seen as a face of ∆ i+1 , one gets that DRAFT C i+1 ≤ C i ≤ C 1 = 1. We now prove the resullt by induction on i. If C i+1 is reached at an interior point ā of ∆ i+1 , then a trivial application of Lagrange's theorem shows that all the coordinates of ā are equal to 1/i + 1 implying that C i+1 = i + 1 1-θ > 1, which is not possible. Then, C i+1 is reached at a boundary point ā of ∆ i+1 , i.e., C i+1 = C i = 1.

C. Motivation behind Homogeneity based control

The main motivation behind this paper is to develop a Lyapunov-based universal homogeneous controller for an arbitrary order perturbed chain of integrators represented by System [START_REF] Dinuzzo | Higher Order Sliding Mode Controllers with Optimal Reaching[END_REF]. The insistence upon homogeneity based control is due to the fact that varying the controller's homogeneity degree produces different interesting results.

Let us present some observations that were made in [START_REF] Andrieu | Homogeneous approximation, recursive observer and output feedback[END_REF]. Considering the following one-

dimensional differential equation ż = ω(z) = -c z α , (9) 
where α ≥ 0, c > 0. This system is stable for all c > 0 and α ≥ 0. However, different characteristics can be obtained in the system, depending upon the value of α:

• α = 0: the convergence to zero occurs in finite-time. The controller ω(z) is uniformly bounded for z ∈ R but discontinuous at z = 0;

• 0 < α < 1: the convergence to zero occurs in finite-time. The controller ω(z) is unbounded and tends to zero as |z| → 0;

• α > 1: the convergence to zero is asymptotic, however the convergence time to the sphere

B(0, 1) = {z ∈ R : z < 1} is uniformly bounded by a constant. The controller ω(z) is unbounded. the set B(0, ε) = {z ∈ Û : V (z) < ε} is fixed-time attractive.
Let us now consider a perturbed integrator, i.e. ( 9) is replaced by the following differential inclusion:

ż ∈ [-φ, + φ] + u(z) [γ m , γ M ] , (10) 
where γ m ≤ γ M and φ are arbitrary positive constants. The observations mentioned above can be extended to System [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] by applying a control of the form u = 1 γ m (ω(z) + φsign(ω(z))) [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF]. In addition, manipulation of homogeneity degree κ leads us to controllers with the following properties: DRAFT • globally fixed-time unbounded controller: switch from κ 1 > 0 to κ 2 < 0 when z reaches the sphere B(0, 1).

• uniformly bounded controller, with reduced amplitude of discontinuous control as z converges to zero: switch from κ 1 = -1 to -1 < κ 2 < 0.

D. Contribution

In this work, we extend the above observations related to homogeneous controllers for a single integrator to the stabilization of perturbed chain of integrators of arbitrary order r ≥ 1, based on a controller which stabilizes pure chain of integrators. It is shown that, for particular choice of homogeneity degree, a bounded Lyapunov-based arbitrary order controller can be designed, which is similar in structure to Levant's well-known homogeneous controller [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF].

The existence of the Lyapunov function provides the added advantage of analytical tuning of controller parameters. It is also demonstrated that a bounded controller is synthesized using a change of homogeneity degree, such that the controller has a reduced amplitude at z = 0. Then a globally fixed-time controller is obtained, also by controlling the homogeneity degree.

III. CONTROLLER DESIGN

We will now develop the controller in two steps. The stabilization of a pure chain of integrators will be considered first. Then the study is extended to the case of a perturbed chain of integrators.

A. Stabilization of a pure chain of integrators

For r a positive integer, consider the following pure chain of integrators:

żi = z i+1 , i = 1, ..., r -1, żr = u. (11) 
The following Hong's controller guarantees the stabilization of (11).

Theorem 1.

[10] Let r be the order of the pure chain of integrators given in [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF].

For κ ∈ [-1/r, 1/r], set p i = 1 + (i -1)κ, i = 1, • • • , r. Then there exist constants l i > 0, i = 1, • • • , r, independent of κ, such that the feedback control law u = ω H κ (z) := v r , (12) 
where ν r is defined inductively by:

v 0 = 0, v i = -l i z i β i-1 -v i-1 β i-1 (p i +κ)/(p i β i-1 ) , (13) 
DRAFT stabilizes System [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF], where β i are defined by

β 0 = p 2 , (β i + 1)p i+1 = β 0 + 1 > 0, i = 1, ..., r -1. ( 14 
)
There also exists a homogeneous Lyapunov function L κ,r (z) for the closed-loop system [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF] with the state-feedback u, that satisfies Lκ,r ≤ -CL

(2+2κ)/(2+κ) κ,r
, for some positive constant C, independent of κ.

Remark 1. Theorem 1 has been proved by Hong [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] for κ ∈ (-1/r, 0), following the same proof the theorem can be extended easily to κ ∈ [-1/r, 1/r].

Remark 2. The remarkable feature of the above result lies in the explicit construction of both the controller and the Lyapunov function that we recall next. For 1 ≤ i ≤ r, define

w i (z 1 , • • • , z i ) = z i β i-1 -v i-1 β i-1 , W i (z 1 , • • • , z i ) = z i v i-1 (z 1 ,...,z i-1 ) w i (z 1 , ..., z i-1 , s) ds, = 1 
β i-1 + 1 |z i | β i-1 +1 -|v i-1 | β i-1 +1 -v i-1 β i-1 (z i -v i-1 ) .
Then the Lyapunov function L κ,r is defined by

L κ,r (z) = ∑ r i=1 W i (z 1 , • • • , z i ). (15) 
We present next a modified version of Hong's controller denoted ω HM κ which also guarantees the stabilization of (11).

Theorem 2. Let r be the order of the pure chain of integrators given in [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF]. For κ ∈ [-1/r, 0], Then there exist constants l i > 0

set p i = 1 + (i -1)κ, i = 1, • • • r,
, i = 1, • • • , r, independent of κ, such that the feedback control law u = ω HM κ (z) := v r , (16) 
where ν r is defined inductively by:

v 0 = 0, v i = -l i N i , i = 1, • • • , r, (17) 
stabilizes System [START_REF] Li | Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback[END_REF], where

N i = z i c/p i -v i-1 c/p i (p i +κ)/c
. There also exists a homogeneous Lyapunov function V κ,r (z) for the closed-loop system (11) under u, that satisfies Vκ,r ≤ -CV

(c+1+κ)/(c+1) κ,r
, for some positive constant C independent of κ.

DRAFT

Proof. The argument largely follows the lines of [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]. For 1 ≤ i ≤ r, we define

w i (z 1 , • • • , z i ) := z i c/p i -v i-1 c/p i , W i (z 1 , • • • , z i ) = z i v i-1 s c p i -v i-1 c p i ds, = |z i | c p i +1 -|v i-1 | c p i +1 c p i +1 -v i-1 c p i (z i -v i-1 ) . (18) 
It can be seen that W i is positive definite function with respect to v i-1z i , homogeneous with respect to ξ ε p of degree (c + p i ). We introduce Wi := W δ i i , where δ i = (c + 1)/(c + p i ), so that all functions Wi are homogeneous of the same homogeneity degree (c + 1). We proceed to prove the theorem by induction on r.

Step 1: Consider ż1 = u. For any l 1 > 0, taking u = ω HM κ (z 1 ) = -l 1 z 1 (p 1 +κ)/p 1 stabilizes the closed-loop system. The Lyapunov function

V κ,1 = W 1 = |z 1 | 1+c /(1 + c) is homogeneous of degree c + 1 and Vκ,1 = -l 1 |z 1 | c+p 2 ≤ -η 1 V (c+1+κ)/(c+1) κ,1
, for some constant η 1 > 0.

Step i: Assume that the conclusion holds true till i -1. Define the Lyapunov function V κ,i by

V κ,i = V κ,i-1 + Wi = i ∑ j=1 Wj . Then, Vκ,i = i-1 ∑ j=1 ∂ Wi ∂ z j z j+1 +w i v i W -(i-1)κ c+p i i + Vκ,i-1 + ∂V κ,i-1 ∂ z i-1 (z i -v i-1 ) , = i-1 ∑ j=1 ∂ Wi ∂ z j z j+1 -l i |w i | c+p i +κ c W -κ(i-1) c+p 1 i + Vκ,i-1 + ∂V κ,i-1 ∂ z i-1 (z i -v i-1 ) . (19) 
Using Lemma 2, one gets firstly that there exists k i > 0 such that for every non zero

(z 1 , • • • , z i ), one has Wi (z 1 , • • • , z i )/ |w i (z 1 , • • • , z i )| (c+1)/c ≤ k i and secondly -l i |w i | c+p i +κ c W -κ(i-1) c+p 1 i ≤ -l i W c+p i +κ c+p 1 i k c+1+κ c+1 i .
The fact that Wi are homogeneous with respect to ζ p ε of degree (c + 1) for each i = 1, • • • , r, implies that V i are homogeneous of degree (c + 1) with respect to ζ p ε as well. In addition, according to Proposition 1, Vi are homogeneous of degree (c + 1κ) with respect to ζ p ε . Then without loss of generality, the study can be restricted to the unit sphere S i,c defined by

S i,c = {z ∈ R i : Γ i,c (z) = 1},
where Γ i,c (z) for z ∈ R i is the homogeneous norm given by

Γ i,c (z) ≡ Γ i,c (z 1 , • • • , z i ) = i ∑ j=1 z j c/p j 1/c . DRAFT Set V 0 i (z 1 , • • • , z i ) := i-1 ∑ j=1 ∂ Wi ∂ z j z j+1 + ∂V κ,i-1 ∂ z i-1 (z i -v i-1 ) ,
and define

S + i = {z ∈ S i,c V 0 i (z 1 , • • • , z i ) ≥ 0}. The key point is that min z∈S + i ,κ∈[-1/r,0] W c+p 2 c+p 1 i > 0.
One can then choose l i > 0 independent of κ ∈ [-1/r, 0] such that, by setting η i := l i /2k

c+p i +κ c+1 i , we get Vi ≤ - i ∑ j=1 η j W c+1+κ c+1 j
. At the final step, all parameters l i are determined, by

V κ,r (z) = r ∑ j=1 Wj and Vκ,r (z) ≤ - i ∑ j=1 η j W c+1+κ c+1 j ≤ -η i ∑ j=1 W c+1+κ c+1 j
, where η := min 1≤i≤r η i . Using Lemma 3, one

gets that i ∑ j=1 W c+1+κ c+1 j ≥ i ∑ j=1 Wj c+1+κ c+1
.

Finally we get Vκ,r ≤ -ηV

(c+1+κ)/(c+1) κ,r
.

Remark 3. The controller ω HM r is only defined for κ ∈ [ -1 r , 0] as one can see from Eq. ( 19).

B. Stabilization of an r-perturbed chain of integrator

From the controllers ω H κ (z) and ω HM κ (z) obtained in Theorem 1 and Theorem 2, we now proceed to the stabilization of the perturbed chain of integrators presented in System [START_REF] Dinuzzo | Higher Order Sliding Mode Controllers with Optimal Reaching[END_REF]. The extension of Theorem 1 to the case of System ( 5) is based on the following result. Theorem 3. Let ω(z) and V (z) be respectively, a state-feedback control law stabilizing System (11) and a Lyapunov function for the closed-loop system, which satisfy Lemma 1 and obey the following additional conditions: for every z ∈ Û,

∂V ∂ z r (z)ω(z) ≤ 0 and ω(z) = 0 ⇒ ∂V ∂ z r (z) = 0. ( 20 
)
Then, for arbitrary constants P, Q ≥ 1, the following control law stabilizes System (5):

u(z) = P(ω(z) + Q φsign(ω(z)))/γ m . (21) 
The function V (z) remains a Lyapunov function for the closed-loop system and satisfies Condition [START_REF] Praly | Generalized weighted homogeneity and state dependent time scale for linear controllable systems[END_REF]. If Û = R r and V (z) is radially unbounded, then the closed-loop system is globally stable with respect to the origin.

DRAFT

Proof. This theorem is a generalization of Theorem 2 of [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], where it has been proven for

P = Q = 1
, and is established in the same way.

Remark 4. The controllers ω H κ (z) and ω HM κ (z) defined in Equation ( 12) and ( 16), satisfy the geometric condition (20) imposed in Theorem 3. Indeed, one gets for z ∈ R r ,

∂ L κ,r ∂ z r ω H κ = -l r |z β i-1 i -v β i-1 i-1 | 2(1+κ)/p i β i-1 , ∂V κ,r ∂ z r ω HM κ = -l r |z c/p j j -v c/p j i-1 | 1+(p i +κ)/c .
Remark 5. The controller u(z) presented in Equation ( 21) is clearly discontinuous. However, its absolute value |u(z)| is equal to P(|ω(z)|+Q φ)γ m . Then lim z →0 |u(z)| takes its minimal value at the origin if ω(z) vanishes there. In particular when P = Q = 1, it has been claimed in Section 2 of [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF] that in order to stabilize the uncertain System (5) by a state-feedback controller u = u(z), it is necessary that the controller be discontinuous at z = 0 and lim z →0 |u(z)| ≥ φ/γ m =: M min .

IV. DISCUSSION OF SPECIAL CASES

Let us now consider some results that arise for some specific choices of the homogeneity degree. First, a bounded controller with minimum amplitude M min of discontinuous control at z = 0 is designed. Finally, a controller with globally fixed-time convergence is synthesized.

A. Homogeneous controller with minimum amplitude of discontinuous control at z = 0

We first notice that, for κ = -1/r, if ω(z) denotes one of the controllers presented in Theorem 1 or Theorem 2, then ω(z) is bounded and the corresponding controller u defined as

u = 1 γ m (ω(z) + φsign(ω(z))) ≡ l r + φ γ m sign(ω(z)), (22) 
stabilizes System (5) in finite time. Moreover, the above controller is identical to that of Levant [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF] for 1 ≤ r ≤ 2. The advantage of our controller in these cases is that the Lyapunov function provides an analytical method of tuning the controller parameters, whereas the tuning is empiric in Levant's case. Unfortunately this is not the case as soon as r ≥ 3 and one needs the delicate analysis developed in [START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF].

The amplitude of the discontinuous control given in Eq. ( 22) is equal to M = (l r + φ) /γ m .

We shall now see that this amplitude can be reduced to its minimum level M min = φ/γ m when the state z tends to zero, by changing the degree of homogeneity. 

B. Globally fixed-time Homogeneous controller

In certain cases, it is required that the controller converges within a fixed interval of time, irrespectively of its initial condition. This can also be achieved by changing the homogeneity degree.

Theorem 5. For k 1 ∈ (0, 1/r), k 2 ∈ (-1/r, 0) and B > 0, define

E := min V k 2 ,r (z)=B V k 1 ,r (z) > 0, (24) 
and the function U k,B (z Here ω H and ω HM are defined in Equation ( 12) and ( 16) respectively.

) =    ω H k 1 (z) if V k 2 ,r (z) > B, ωk 2 (z) if V k 2 ,r (z) ≤ B,
Then the controller u(z) := U k,B (z) + φsign(U k,B (z)) /γ m stabilizes System (5) in fixed time T ≤ T u + T f where the values of T u and T f are given by

T u = (2 + k 1 )E k 1 2+k 1 / (k 1 C) , T f =    (2 + k 2 )B -k 2 2+k 2 / (-k 2 C) , if ωk 2 (z) = ω H κ (z). (c + 1)B -k 2 c+1 / (-k 2 C) , if ωk 2 (z) = ω HM κ (z).
Proof. The conclusion follows by integrating the differential equation V = -CV α on appropriate time intervals. Consider first the following sets

S 1 = {z ∈ R r : V k 1 ,r (z) ≤ E}, S 2 = {z ∈ R r : Vk 2 ,r (z) ≤ B}.
According to Condition (24), we get that S 1 ⊂ S 2 . Clearly, z will reach S 2 in a fixed-time, bounded by a constant T u , calculated as follows: for α

= 1 + k 1 2+k 1 , +∞ E dV V α = -C T u 0 dt, then T u = (2 + k 1 )E k 1 2+k 1 / (k 1 C).
When z reaches S 2 , i.e. Vk 2 ,r (z) = B, z will converge to zero in a finitetime bounded by T f , which is calculated as follows: for

α = 1 + k 2 2+k 2 , 0 B dV V α = -C T =T u +T f T u dt, then T f = (2 + k 2 )B -k 2 2+k 2 / (-k 2 C). Finally, for α = 1 + k 2 c+1 , 0 B dV V α = -C T =T u +T f T u dt, then T f = (c + 1)B -k 2 c+1 / (-k 2 C) Remark 6.
The rate of convergence can be accelerated via time-rescaling (see Theorem 2 of Hong et al. [START_REF] Hong | Stabilization of uncertain chained form systems within finite settling time[END_REF]). This is done by replacing the controller ω(z

1 , z 2 , • • • , z r ) by ω(z 1 , z 2 , • • • , z r ) = τ r ω(z 1 , z 2 τ , • • • , z r τ r-1
) where τ > 1, and taking u as u = m γ m ( ω + n φsign( ω)). By taking t = τt and zi = τ 1-i z i , we obtain V (z 1 , • • • , zr ) ≤ -τCV (z 1 , • • • , zr ) and the settling time becomes T ≤ (T u + T f )/τ.

V. SIMULATION RESULTS

In this section, we illustrate the performance of our proposed controllers using the following perturbed triple integrator defined by: ż1 = z 2 , ż2 = z 3 , ż3 = ϕ + γu, with ϕ = sin(t) and

γ = 3 + cos(t). Then, we have γ m = 2, γ M = 4, φ = 1.
The parameters of the controller are chosen as follows:

l 1 = 1, l 2 = 3, l 3 = 10.
We start first by fixing the parameter κ for different values {1/4, -1/4, -1/3}.

For κ > 0, Figure 1 shows a fast convergence of the states to a neighborhood of zero by an unbounded controller, otherwise the convergence to zero is asymptotic. For -1/3 < κ < 0, the convergence of the states to zero in finite-time is obtained by an unbounded controller with a DRAFT minimum amplitude of the discontinuous control at z = 0, as shown in Figure 2. The finite-time convergence of the states is also shown in Figure 3 for κ = -1/3, using a bounded controller with a large discontinuous control at z = 0.

The performance of a bounded controller which ensures a minimum discontinuous control amplitude at zero is shown in Figure 4 by switching κ in neighborhood of zero, from -1/3 to -1/4.

The performance of a globally fixed-time controller is shown in Figure 5. 

VI. CONCLUSIONS

In this paper, we presented a Lyapunov-based method for designing finite-time convergent controllers for stabilization of perturbed chain of integrators of arbitrary order. This method consists in appropriate modifications of homogeneous controller stabilizing pure chain of integrators. It was also shown that the properties of minimum discontinuity amplitude of the controller and globally fixed-time convergence can be obtained by changing the homogeneity degree of the controller. 

Definition 2 .

 2 The sign function is a multi-valued function defined on R by sign(z) = z/ |z| if z = 0 and sign(0) = [-1, 1]. Moreover, if α ≥ 0 and a ∈ R, we use a α to denote |a| α sign(a).

Lemma 2 .

 2 For α ≥ 1, define on R 2 the functions w(b, a) = b αa α and W (b, a) = b a w(s, a)ds. Then the function g(b, a) = W (b,a) |w(b,a)| α+1 α is continuous on R 2 \ {(0, 0} and homogeneous of degree zero with respect to ζ (1,1) ε

  and let c be a positive constant such that c ≥ max(p 1 , • • • , p r ).

Theorem 4 .

 4 For k ∈ (-1/r, 0) and A > 0 satisfying max Vk,r (z)≤A | ωk (z)| ≤ l r ,(23)we define the function U k,A (z):=    ω -1/r (z) if Vk,r (z) > A, ωk (z) if Vk,r (z) ≤ A, where ω -1/r (z) is either equal to ω H -1/r or ω HM -1/r , for k ≤ 0, ωk (z) is either equal to ω H k or ω HM kand Vk,r is the Lyapunov function associated with ωk (z). Here ω H and ω HM are defined in Equation (12) and (16) respectively.Then the controller u(z) := U k,A (z) + φsign(U k,A (z)) /γ m stabilizes System (5) in finite time, and u(z) is bounded with minimum amplitude of discontinuous control M min at z = 0.Proof. Consider the following setsS 1 = {z ∈ R r : | ωk (z)| ≤ l r }, S 2 = {z ∈ R r : Vk,r (z) ≤ A}.According to Condition (23), we haveS 2 ⊂ S 1 . As V-1/r,r (z) < 0, ∀z / ∈ S 2 ,then every trajectory of System (5) reaches S 2 in finite-time. Moreover, for z ∈ S 2 , U k,A (z) is equal to ωk (z), with | ωk (z)| ≤ l r . Therefore, as soon as a trajectory reaches S 2 , it will stay in it forever since Vk,r (z) < 0, ∀z / ∈ S 1 , ∀z = 0. One concludes that every trajectory of System (5) converges to zero in finitetime and U k,A (z) tends to zero as z tends to zero. As a result, ∀z ∈ R r , |u(z)| ≤ M min + l r /γ m . and lim z →0 |u(z)| = φ/γ m = M min .

DRAFT where ωk 2 2 and

 22 (z) is either equal to ω H k 2 or ω HM k Vk 2 ,r is the Lyapunov function associated with ωk 2 (z).

  Figure 6 shows convergence time versus several initial conditions: z 1 = z 2 = z 3 = 1, 10, 100, 10 3 , ..... 10 10 . It is shown that the convergence time will not exceed 8.5 sec for any initial condition. Globally fixed-time stability is assumed to be established by the time after which, |z 1 |, |z 2 |, |z 3 | are less than 1 × 10 -4 .
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 1 Fig. 1. test for κ > 0
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 2 Fig. 2. test for -1/r < κ < 0
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 3 Fig.3. test for κ = -1/r (case equivalent of[START_REF] Levant | Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence[END_REF])
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 4 Fig. 4. test for κ switching from -1/r to k ∈ (-1/r, 0)
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 56 Fig.5. test for κ switching from -k to k, k ∈ (-1/r, 0)