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Stabilization of Perturbed Chains of Integrators

using Lyapunov-Based Homogeneous

Controllers

Mohamed Harmouche, Salah Laghrouche, Yacine Chitour, and Mustapha

Hamerlain

Abstract

In this paper, we present a Lyapunov-based homogeneous controller for the stabilization of a perturbed

chain of integrators of arbitrary order r≥ 1. The proposed controller is based on homogeneous controller

for stabilization of pure chain of integrators. The control of homogeneity degree is also introduced and

various controllers are designed using this concept, namely a bounded-controller with minimum ampli-

tude of discontinuous control and a controller with globally fixed-time convergence. The performance

of the controller is validated through simulations.

I. INTRODUCTION

The problem of finite-time stabilization of a perturbed chain of integrators arises in many control

applications. For example, electromechanical systems such as motorized actuators or robotic arms

are modeled as perturbed double integrators [1], [2], [3]. Another application is in Higher Order

Sliding Mode Control (HOSM) [4], which can be formulated as the stabilization of an auxiliary

system arising as a perturbed chain of integrators built from the output and its higher time

derivatives [5]. The finite-time stability problem was addressed in relation with homogeneous

systems in [6], [7], and homogeneity concept was used for stabilization of linear systems in [8]. In

[9], the link between finite-time stabilization and homogeneity of a system was established, and
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it was shown that a homogeneous system is finite-time stable if and only if it is asymptotically

stable and has a negative homogeneity degree. This result has, since then, been used for the

development of many controllers for pure and perturbed chain of integrators. A homogeneous

nonsmooth proportional-derivative controller for robot manipulators (double integrator system)

was developed in [2]. This work was generalized for an arbitrary-length of a chain of integrators

in [10]. In [11] and [12], negative homogeneity was used for the finite-time stabilization of a

class of nonlinear systems that includes perturbations at each integrator link.

Among Sliding Mode techniques, the homogeneity approach was used in [13], [14], to demon-

strate finite-time stabilization of the arbitrary order sliding mode controllers for Single Input

Single Output (SISO) systems [15]. A robust Multi Input Multi Output (MIMO) HOSM controller

was also presented in [16], using a constructive algorithm with geometric homogeneity based

finite-time stabilization of a chain of integrators. A controller, which stabilizes a perturbed chain

of integrators of arbitrary length using only the signs of state variables, was presented in [17]. A

Lyapunov-based approach for arbitrary HOSMC controller design was first presented in [18]. In

these works, it was shown that a class of homogeneous controllers that satisfies certain conditions,

could be used to stabilize perturbed chain of integrators.

In this paper, we present a continuation of [18], and develop a Lyapunov-based robust controller

for the finite-time stabilization of a perturbed chain of integrators of arbitrary order, with bounded

uncertainty. The main focus of this paper is to obtain various properties in the controller

by controlling the degree of homogeneity. The homogeneous controller for perturbed chain

of integrators is developed from a discontinuous Lyapunov-based controller for pure chain

of integrators. It is then demonstrated that the homogeneity degree can be controlled in the

neighborhood of zero, such that the amplitude of discontinuous control is kept to its minimum

possible value when the states have converged. It is also shown that the recently developed

“Fixed-Time” stability notion can be achieved by changing the homogeneity degree. Globally

fixed-time stability was first introduced in [19]; this term refers to the finite-time stabilization of

systems with uniform convergence, i.e. the convergence time is bounded and independent of the

system’s initial state. In [20] and [21], uniform convergence to a neighborhood of the origin was

demonstrated for second order systems and arbitrary order respectively. In [22], globally fixed-

time convergence controllers were developed for linear systems, insuring guaranteed convergence
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exactly to zero. Based on the control of homogeneity degree, the controller presented in this

paper ensures globally fixed-time convergence to zero of a perturbed chain of integrators.

The paper is organized as follows: the problem formulation as well as the motivation and

contributions of the paper are discussed in Section 2. The controller design is presented in

Section 3 and its special cases are demonstrated in Section 4. Simulation results are shown in

Section 5 and concluding remarks are given in Section 6.

II. PROBLEM FORMULATION, MOTIVATION AND CONTRIBUTION

The mathematical formulation of the perturbed chain of integrators problem is developed first.

Then, the motivation behind using homogeneity based controllers and the contribution of this

paper are presented.

A. Problem Formulation

Let us consider an uncertain nonlinear system: ẋ(t) = f (x, t)+g(x, t)u,

y(t) = s(x, t),
(1)

where x ∈ Rn is the state vector and u ∈ R is the input control. The sliding variable s is a

measured smooth output-feedback function and f (x, t) and g(x, t) are uncertain smooth functions.

It is assumed that the relative degree, r of the system [23] is globally well defined, uniform and

time invariant [5] and the associated zero dynamics are asymptotically stable. For autonomous

systems, r is the minimum order of time derivatives of the output y(t) in which the control input

u appears explicitly. This means that, for suitable functions ϕ̃(x, t) and γ̃(x, t), we obtain

y(r)(t) = ϕ̃(x(t), t)+ γ̃(x(t), t)u(t). (2)

The functions γ̃(x, t) and ϕ̃(x, t) are assumed to be bounded by positive constants γm ≤ γM and

ϕ̄ , such that, for every x ∈ Rn and t ≥ 0,

0 < γm ≤ γ̃(x, t)≤ γM, |ϕ̃(x, t)| ≤ ϕ̄. (3)

Defining s(i) := di

dt i y; the goal of rth order sliding mode control is to arrive at, and keep the

following manifold in finite-time:

DRAFT



4

s(0)(x, t) = s(1)(x, t) = · · ·= s(r−1)(x, t) = 0. (4)

To be more precise, let us introduce z = [z1 z2 ...zr]
T := [s ṡ... s(r−1)]T . Then (4) is equivalent to

z = 0. Since the only available information on ϕ̃(x, t) and γ̃(x, t) are the bounds (3), it is natural

to consider a more general control system instead of System (2), such as

żi = zi+1, i = 1, · · · ,r−1, żr = ϕ(t)+ γ(t)u, (5)

where the new functions ϕ and γ are arbitrary measurable functions that verify the condition

(H1) ϕ(t) ∈ [−ϕ̄, ϕ̄] , γ(t) ∈ [γm,γM] . (6)

The objective of this paper is to design controllers which stabilize System (5) to the origin in

finite-time . Since these controllers are to be discontinuous feedback laws u =U(z), solutions of

(5) with u =U(z) will fall in the realm of differential inclusions and need to be understood here

in Filippov sense, i.e. the right hand vector set is enlarged at the discontinuity points of (5) to

the convex hull of the set of velocity vectors obtained by approaching z from all the directions

in Rr, while avoiding zero-measure sets [24].

B. Definitions and technical results

We need the following definitions to state our results.

Definition 1. [10], [25] The family of dilations ζ
p
ε , ε > 0, are the linear maps defined on Rr

given by

ζ
p
ε (z1, · · · ,zr) = (ε p1z1, · · · ,ε przr),

where p = (p1, · · · , pr) with the homogeneity weights pi > 0, for i = 1, · · · ,r.

A function Ω(z) is homogeneous of degree a > 0 with respect to the family of dilations ζ
p
ε where

a is a positive real number if, for every z ∈Rr and ε > 0, Ω(ε p1z1, · · · ,ε przr) = εaΩ(z1, · · · ,zr).

A set function F : Rr⇒ Rr is said to be a homogeneous differential inclusion of degree κ ∈ R

with respect to the family of dilation ζ
p
ε if it satisfies F(ζ p

ε (z)) = εκζ
p
ε (F(z)).
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A differential equation ż = f (z) (a differential inclusion ż ∈ F(z)) is said to be homogeneous of

degree κ ∈R with respect to the family of dilations ζε(z) if the vector field f : Rr→Rr (the set

function F : Rr⇒ Rr is).

Definition 2. The sign function is a multi-valued function defined on R by sign(z) = z/ |z| if

z 6= 0 and sign(0) = [−1,1]. Moreover, if α ≥ 0 and a ∈ R, we use baeα to denote |a|α sign(a).

Then, for a,b ∈ R and α > 0, it holds sign(baeα −bbeα) = sign(a−b).

Proposition 1 ([26]). Let Ω be a positive definite C1 function, homogeneous of degree a with

respect to ζ
p
ε . Then, for all i = 1, · · · ,r; ∂Ω/∂ zi is homogeneous of degree (a− pi).

Consider the differential system

ż = f (t,z), (7)

where z ∈ Rr is the vector system states, f : R+×Rr→ Rr is a time-varying vector field.

Definition 3. [22], [27], [28] Assume that f (·,0)≡ 0, i.e., the point z= 0 is an equilibrium point

of System (7). Then z = 0 is said to be locally finite-time stable in a neighborhood Û ⊂Rr of 0 if

(i) it is asymptotically stable in Û; (ii) it is finite-time convergent in Û, i.e., there exists a settling

function T : Rr → R>0 called the settling-time function such that, for any initial condition z0,

z(t,z0) = 0,∀t ≥ T (z0). The equilibrium point z = 0 is globally finite-time stable if Û = Rr and

it is globally fixed-time stable if (i) it is globally finite-time stable; (ii) the settling-time function

is bounded by a constant Tmax, i.e. ∃Tmax > 0 : ∀z0 ∈ Rr,T (z0)≤ Tmax.

Definition 4. [22], [28] The set S is said to be globally finite-time attractive for (7), if for

any initial condition z0, the corresponding trajectory starting at z0 achieves S in finite-time

T (z0). Moreover, the set S is said to be globally fixed-time attractive for (7), if (i) it is globally

finite-time stable; (ii) the settling-time function is bounded by a constant Tmax.

Lemma 1. [9], [27] Suppose there exists a positive definite C1 function V defined on a neigh-

borhood Û ⊂ Rr of the equilibrium point z = 0 and real numbers C > 0 and α ≥ 0, such that

the following condition is true for every non trivial trajectory z of System (7),

V̇ +CV α(z(t))6 0, if z(t) ∈ Û , (8)
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where V̇ is the time derivative of V (z(t)). (Here for α = 0, Equation (8) means V̇ ≤ −C if

z(t) ∈ Û \{0}.) Then all trajectories of System (7) which stay in Û converge to zero. If Û = Rr

and V is radially unbounded, then System (7) is globally stable with respect to the equilibrium

point z = 0.

Depending on the value α , we have different types of convergence: if 0≤ α < 1, the equilibrium

point z = 0 is finite-time stable ([27]), if α = 1, it is exponentially stable and if α > 1 the

equilibrium point z= 0 is asymptotically stable equilibrium and, for every ε > 0, the set B(0,ε)=

{z ∈ Û : V (z)< ε} is fixed-time attractive.

Proof. The argument is obvious (cf. [27] for 0 < α < 1). Let us just note that for α > 1 with

initial condition V (z(0)) =V0, an integration of V̇ +CV α ≤ 0 shows that every trajectory enters

the neighborhood defined by V (z)≤ ε in a fixed time less than or equal to 1
C(α−1)εα−1 for any

initial condition.

The following lemmas are used in the course of some subsequent arguments.

Lemma 2. For α ≥ 1, define on R2 the functions w(b,a)= bbeα−baeα and W (b,a)=
∫ b

a w(s,a)ds.

Then the function g(b,a) = W (b,a)

|w(b,a)|
α+1

α

is continuous on R2 \{(0,0} and homogeneous of degree

zero with respect to ζ
(1,1)
ε . In particular, for every β > 0, the function gβ is uniformly bounded

over R2 \{(0,0}.

Proof. The only fact non trivial to establish is that g is well-defined on R2 \ {(0,0}. One can

assume with no loss of generality that both a and b are positive real numbers. Set B := b/a. Then

g(b,a) = g(B,1) and we are left to prove that g(B,1) is continuous at B = 1. It is immediate to

see that the latter fact hold true by taking the Taylor’s expansions of both W (B,1) and w(B,1)

in a neighborhood of B = 1.

Lemma 3. For every θ > 0, positive integer i and non negative real numbers a1, · · · ,ai, one has

that (∑i
j=1 a j)

θ ≤max(1, iθ−1)∑
i
j=1 aθ

j .

Proof. The result is immediate for either i = 1 or θ ≥ 1, since it follows from the convexity

of the function x 7→ xθ defined on R+. Assume now that i > 1 and θ < 1. Let ∆i := {a =

(a1, · · · ,ai) ∈ (R+)
i, ∑

i
j=1 a j = 1}, fi be the real-valued function given by fi(a) = ∑

i
j=1 aθ

j and

Ci be the minimum of fi over ∆i, which is well defined since ∆i is compact and fi is continuous.

We want to prove that Ci = 1 for every i≥ 1. Since ∆i can be seen as a face of ∆i+1, one gets that
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Ci+1 ≤Ci ≤C1 = 1. We now prove the resullt by induction on i. If Ci+1 is reached at an interior

point ā of ∆i+1, then a trivial application of Lagrange’s theorem shows that all the coordinates

of ā are equal to 1/i+1 implying that Ci+1 = i+11−θ > 1, which is not possible. Then, Ci+1

is reached at a boundary point ā of ∆i+1, i.e., Ci+1 =Ci = 1.

C. Motivation behind Homogeneity based control

The main motivation behind this paper is to develop a Lyapunov-based universal homogeneous

controller for an arbitrary order perturbed chain of integrators represented by System (5). The

insistence upon homogeneity based control is due to the fact that varying the controller’s

homogeneity degree produces different interesting results.

Let us present some observations that were made in [19]. Considering the following one-

dimensional differential equation

ż = ω(z) =−cbzeα , (9)

where α ≥ 0, c > 0. This system is stable for all c > 0 and α ≥ 0. However, different character-

istics can be obtained in the system, depending upon the value of α:

• α = 0: the convergence to zero occurs in finite-time. The controller ω(z) is uniformly

bounded for z ∈ R but discontinuous at z = 0;

• 0 < α < 1: the convergence to zero occurs in finite-time. The controller ω(z) is unbounded

and tends to zero as |z| → 0;

• α > 1: the convergence to zero is asymptotic, however the convergence time to the sphere

B(0,1) = {z ∈ R : ‖z‖ < 1} is uniformly bounded by a constant. The controller ω(z) is

unbounded. the set B(0,ε) = {z ∈ Û : V (z)< ε} is fixed-time attractive.

Let us now consider a perturbed integrator, i.e. (9) is replaced by the following differential

inclusion:

ż ∈ [−ϕ̄,+ϕ̄]+u(z) [γm,γM] , (10)

where γm ≤ γM and ϕ̄ are arbitrary positive constants. The observations mentioned above can be

extended to System (10) by applying a control of the form u = 1
γm
(ω(z)+ ϕ̄sign(ω(z))) [18].

In addition, manipulation of homogeneity degree κ leads us to controllers with the following

properties:
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• globally fixed-time unbounded controller: switch from κ1 > 0 to κ2 < 0 when z reaches the

sphere B(0,1).

• uniformly bounded controller, with reduced amplitude of discontinuous control as z con-

verges to zero: switch from κ1 =−1 to −1 < κ2 < 0.

D. Contribution

In this work, we extend the above observations related to homogeneous controllers for a

single integrator to the stabilization of perturbed chain of integrators of arbitrary order r ≥ 1,

based on a controller which stabilizes pure chain of integrators. It is shown that, for particular

choice of homogeneity degree, a bounded Lyapunov-based arbitrary order controller can be

designed, which is similar in structure to Levant’s well-known homogeneous controller [15].

The existence of the Lyapunov function provides the added advantage of analytical tuning of

controller parameters. It is also demonstrated that a bounded controller is synthesized using a

change of homogeneity degree, such that the controller has a reduced amplitude at z = 0. Then

a globally fixed-time controller is obtained, also by controlling the homogeneity degree.

III. CONTROLLER DESIGN

We will now develop the controller in two steps. The stabilization of a pure chain of integrators

will be considered first. Then the study is extended to the case of a perturbed chain of integrators.

A. Stabilization of a pure chain of integrators

For r a positive integer, consider the following pure chain of integrators:

żi = zi+1, i = 1, ...,r−1, żr = u. (11)

The following Hong’s controller guarantees the stabilization of (11).

Theorem 1. [10] Let r be the order of the pure chain of integrators given in (11). For κ ∈

[−1/r,1/r], set pi = 1+(i− 1)κ, i = 1, · · · ,r. Then there exist constants li > 0, i = 1, · · · ,r,

independent of κ , such that the feedback control law

u = ωH
κ (z) := vr, (12)

where νr is defined inductively by:

v0 = 0, vi =−libbzieβi−1−bvi−1eβi−1e(pi+κ)/(piβi−1), (13)
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stabilizes System (11), where βi are defined by

β0 = p2, (βi +1)pi+1 = β0 +1 > 0, i = 1, ...,r−1. (14)

There also exists a homogeneous Lyapunov function Lκ,r(z) for the closed-loop system (11)

with the state-feedback u, that satisfies L̇κ,r ≤ −CL(2+2κ)/(2+κ)
κ,r , for some positive constant C,

independent of κ .

Remark 1. Theorem 1 has been proved by Hong [10] for κ ∈ (−1/r,0), following the same

proof the theorem can be extended easily to κ ∈ [−1/r,1/r].

Remark 2. The remarkable feature of the above result lies in the explicit construction of both

the controller and the Lyapunov function that we recall next. For 1≤ i≤ r, define

wi(z1, · · · ,zi) = bzieβi−1−bvi−1eβi−1 ,

Wi(z1, · · · ,zi) =
∫ zi

vi−1(z1,...,zi−1)
wi (z1, ...,zi−1,s)ds,

=
1

βi−1 +1

(
|zi|βi−1+1−|vi−1|βi−1+1

)
−bvi−1eβi−1 (zi− vi−1) .

Then the Lyapunov function Lκ,r is defined by

Lκ,r(z) = ∑
r
i=1Wi(z1, · · · ,zi). (15)

We present next a modified version of Hong’s controller denoted ωHM
κ which also guarantees

the stabilization of (11).

Theorem 2. Let r be the order of the pure chain of integrators given in (11). For κ ∈ [−1/r,0],

set pi = 1+(i−1)κ, i = 1, · · ·r, and let c be a positive constant such that c≥max(p1, · · · , pr).

Then there exist constants li > 0, i = 1, · · · ,r, independent of κ , such that the feedback control

law

u = ωHM
κ (z) := vr, (16)

where νr is defined inductively by:

v0 = 0, vi =−liNi, i = 1, · · · ,r, (17)

stabilizes System (11), where Ni =
⌊
bziec/pi−bvi−1ec/pi

⌉(pi+κ)/c
. There also exists a homoge-

neous Lyapunov function Vκ,r(z) for the closed-loop system (11) under u, that satisfies V̇κ,r ≤

−CV (c+1+κ)/(c+1)
κ,r , for some positive constant C independent of κ .
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Proof. The argument largely follows the lines of [10]. For 1≤ i≤ r, we define

wi(z1, · · · ,zi) := bziec/pi−bvi−1ec/pi ,

Wi(z1, · · · ,zi) =
∫ zi

vi−1
bse

c
pi −bvi−1e

c
pi ds,

= |zi|
c
pi

+1−|vi−1|
c
pi

+1

c
pi
+1 −bvi−1e

c
pi (zi− vi−1) .

(18)

It can be seen that Wi is positive definite function with respect to vi−1− zi, homogeneous with

respect to ξ ε
p of degree (c+ pi). We introduce W̄i :=W δi

i , where δi = (c+1)/(c+ pi), so that all

functions W̄i are homogeneous of the same homogeneity degree (c+ 1). We proceed to prove

the theorem by induction on r.

Step 1: Consider ż1 = u. For any l1 > 0, taking u = ωHM
κ (z1) = −l1 bz1e(p1+κ)/p1 stabilizes the

closed-loop system. The Lyapunov function Vκ,1 = W1 = |z1|1+c /(1 + c) is homogeneous of

degree c+1 and V̇κ,1 =−l1 |z1|c+p2 ≤−η1V (c+1+κ)/(c+1)
κ,1 , for some constant η1 > 0.

Step i: Assume that the conclusion holds true till i− 1. Define the Lyapunov function Vκ,i by

Vκ,i =Vκ,i−1 +W̄i =
i

∑
j=1

W̄j. Then,

V̇κ,i =
i−1
∑
j=1

∂W̄i
∂ z j

z j+1+wiviW
−(i−1)κ

c+pi
i +V̇κ,i−1 +

∂Vκ,i−1
∂ zi−1

(zi− vi−1) ,

=
i−1
∑
j=1

∂W̄i
∂ z j

z j+1− li|wi|
c+pi+κ

c W̄
−κ(i−1)

c+p1
i +V̇κ,i−1 +

∂Vκ,i−1
∂ zi−1

(zi− vi−1) .

(19)

Using Lemma 2, one gets firstly that there exists ki > 0 such that for every non zero (z1, · · · ,zi),

one has W̄i(z1, · · · ,zi)/ |wi(z1, · · · ,zi)|(c+1)/c ≤ ki and secondly

−li|wi|
c+pi+κ

c W̄
−κ(i−1)

c+p1
i ≤−li

W̄
c+pi+κ

c+p1
i

k
c+1+κ

c+1
i

.

The fact that W̄i are homogeneous with respect to ζ
p
ε of degree (c+ 1) for each i = 1, · · · ,r,

implies that Vi are homogeneous of degree (c+ 1) with respect to ζ
p
ε as well. In addition,

according to Proposition 1, V̇i are homogeneous of degree (c+1−κ) with respect to ζ
p
ε . Then

without loss of generality, the study can be restricted to the unit sphere Si,c defined by

Si,c = {z ∈ Ri : Γi,c(z) = 1},

where Γi,c(z) for z ∈ Ri is the homogeneous norm given by

Γi,c(z)≡ Γi,c(z1, · · · ,zi) =

(
i

∑
j=1

∣∣z j
∣∣c/p j

)1/c

.
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Set

V 0
i (z1, · · · ,zi) :=

i−1

∑
j=1

∂W̄i

∂ z j
z j+1 +

∂Vκ,i−1

∂ zi−1
(zi− vi−1) ,

and define S+i = {z ∈ Si,c V 0
i (z1, · · · ,zi)≥ 0}. The key point is that minz∈S+i ,κ∈[−1/r,0]W̄

c+p2
c+p1

i > 0.

One can then choose li > 0 independent of κ ∈ [−1/r,0] such that, by setting ηi := li/2k
c+pi+κ

c+1
i , we

get V̇i ≤−
i

∑
j=1

η jW̄
c+1+κ

c+1
j . At the final step, all parameters li are determined, by Vκ,r(z) =

r
∑
j=1

W̄j

and V̇κ,r(z) ≤ −
i

∑
j=1

η jW̄
c+1+κ

c+1
j ≤ −η

i
∑
j=1

W̄
c+1+κ

c+1
j , where η := min1≤i≤r ηi. Using Lemma 3, one

gets that

i

∑
j=1

W̄
c+1+κ

c+1
j ≥

(
i

∑
j=1

W̄j

) c+1+κ

c+1

.

Finally we get V̇κ,r ≤−ηV (c+1+κ)/(c+1)
κ,r .

Remark 3. The controller ωHM
r is only defined for κ ∈ [−1

r ,0] as one can see from Eq. (19).

B. Stabilization of an r-perturbed chain of integrator

From the controllers ωH
κ (z) and ωHM

κ (z) obtained in Theorem 1 and Theorem 2, we now

proceed to the stabilization of the perturbed chain of integrators presented in System (5). The

extension of Theorem 1 to the case of System (5) is based on the following result.

Theorem 3. Let ω(z) and V (z) be respectively, a state-feedback control law stabilizing System

(11) and a Lyapunov function for the closed-loop system, which satisfy Lemma 1 and obey the

following additional conditions: for every z ∈ Û ,

∂V
∂ zr

(z)ω(z)≤ 0 and ω(z) = 0⇒ ∂V
∂ zr

(z) = 0. (20)

Then, for arbitrary constants P,Q≥ 1, the following control law stabilizes System (5):

u(z) = P(ω(z)+Qϕ̄sign(ω(z)))/γm. (21)

The function V (z) remains a Lyapunov function for the closed-loop system and satisfies Condition

(8). If Û = Rr and V (z) is radially unbounded, then the closed-loop system is globally stable

with respect to the origin.
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Proof. This theorem is a generalization of Theorem 2 of [18], where it has been proven for

P = Q = 1, and is established in the same way.

Remark 4. The controllers ωH
κ (z) and ωHM

κ (z) defined in Equation (12) and (16), satisfy the

geometric condition (20) imposed in Theorem 3. Indeed, one gets for z ∈ Rr,

∂Lκ,r

∂ zr
ω

H
κ =−lr|zβi−1

i − vβi−1
i−1 |

2(1+κ)/piβi−1,
∂Vκ,r

∂ zr
ω

HM
κ =−lr|z

c/p j
j − vc/p j

i−1 |
1+(pi+κ)/c.

Remark 5. The controller u(z) presented in Equation (21) is clearly discontinuous. However, its

absolute value |u(z)| is equal to P(|ω(z)|+Qϕ̄)γm. Then lim‖z‖→0 |u(z)| takes its minimal value at

the origin if ω(z) vanishes there. In particular when P = Q = 1, it has been claimed in Section 2

of [14] that in order to stabilize the uncertain System (5) by a state-feedback controller u = u(z),

it is necessary that the controller be discontinuous at z = 0 and lim‖z‖→0 |u(z)| ≥ ϕ̄/γm =: Mmin.

IV. DISCUSSION OF SPECIAL CASES

Let us now consider some results that arise for some specific choices of the homogeneity

degree. First, a bounded controller with minimum amplitude Mmin of discontinuous control at

z = 0 is designed. Finally, a controller with globally fixed-time convergence is synthesized.

A. Homogeneous controller with minimum amplitude of discontinuous control at z = 0

We first notice that, for κ =−1/r, if ω(z) denotes one of the controllers presented in Theorem

1 or Theorem 2, then ω(z) is bounded and the corresponding controller u defined as

u = 1
γm
(ω(z)+ ϕ̄sign(ω(z)))≡ lr+ϕ̄

γm
sign(ω(z)), (22)

stabilizes System (5) in finite time. Moreover, the above controller is identical to that of Levant

[15] for 1≤ r ≤ 2. The advantage of our controller in these cases is that the Lyapunov function

provides an analytical method of tuning the controller parameters, whereas the tuning is empiric

in Levant’s case. Unfortunately this is not the case as soon as r ≥ 3 and one needs the delicate

analysis developed in [15].

The amplitude of the discontinuous control given in Eq. (22) is equal to M = (lr + ϕ̄)/γm.

We shall now see that this amplitude can be reduced to its minimum level Mmin = ϕ̄/γm when

the state z tends to zero, by changing the degree of homogeneity.
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Theorem 4. For k ∈ (−1/r,0) and A > 0 satisfying

max
V̄k,r(z)≤A

|ω̄k(z)| ≤ lr, (23)

we define the function Uk,A(z):=

 ω−1/r(z) if V̄k,r(z)> A,

ω̄k(z) if V̄k,r(z)≤ A,
where ω−1/r(z) is either equal to ωH

−1/r or ωHM
−1/r, for k ≤ 0, ω̄k(z) is either equal to ωH

k or

ωHM
k and V̄k,r is the Lyapunov function associated with ω̄k(z). Here ωH and ωHM are defined

in Equation (12) and (16) respectively.

Then the controller u(z) :=
(
Uk,A(z)+ ϕ̄sign(Uk,A(z))

)
/γm stabilizes System (5) in finite time,

and u(z) is bounded with minimum amplitude of discontinuous control Mmin at z = 0.

Proof. Consider the following sets

S1 = {z ∈ Rr : |ω̄k(z)| ≤ lr}, S2 = {z ∈ Rr : V̄k,r(z)≤ A}.

According to Condition (23), we have S2 ⊂ S1. As V̇−1/r,r(z)< 0,∀z /∈ S2, then every trajectory

of System (5) reaches S2 in finite-time. Moreover, for z ∈ S2, Uk,A(z) is equal to ω̄k(z), with

|ω̄k(z)| ≤ lr. Therefore, as soon as a trajectory reaches S2, it will stay in it forever since ˙̄Vk,r(z)<

0,∀z /∈ S1,∀z 6= 0. One concludes that every trajectory of System (5) converges to zero in finite-

time and Uk,A(z) tends to zero as z tends to zero. As a result, ∀z ∈ Rr, |u(z)| ≤Mmin + lr/γm.

and lim‖z‖→0 |u(z)|= ϕ̄/γm = Mmin.

B. Globally fixed-time Homogeneous controller

In certain cases, it is required that the controller converges within a fixed interval of time,

irrespectively of its initial condition. This can also be achieved by changing the homogeneity

degree.

Theorem 5. For k1 ∈ (0,1/r), k2 ∈ (−1/r,0) and B > 0, define

E := min
Vk2,r(z)=B

Vk1,r(z)> 0, (24)

and the function Uk,B(z) =

 ωH
k1
(z) if Vk2,r(z)> B,

ω̄k2(z) if Vk2,r(z)≤ B,
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where ω̄k2(z) is either equal to ωH
k2

or ωHM
k2

and V̄k2,r is the Lyapunov function associated

with ω̄k2(z). Here ωH and ωHM are defined in Equation (12) and (16) respectively.

Then the controller u(z) :=
(
Uk,B(z)+ ϕ̄sign(Uk,B(z))

)
/γm stabilizes System (5) in fixed time

T ≤ Tu +Tf where the values of Tu and Tf are given by

Tu = (2+ k1)E
k1

2+k1 /(k1C) , Tf =

 (2+ k2)B
−k2
2+k2 /(−k2C) , if ω̄k2(z) = ωH

κ (z).

(c+1)B
−k2
c+1 /(−k2C) , if ω̄k2(z) = ωHM

κ (z).

Proof. The conclusion follows by integrating the differential equation V̇ =−CV α on appropriate

time intervals. Consider first the following sets

S1 = {z ∈ Rr : Vk1,r(z)≤ E}, S2 = {z ∈ Rr : V̄k2,r(z)≤ B}.

According to Condition (24), we get that S1 ⊂ S2. Clearly, z will reach S2 in a fixed-time,

bounded by a constant Tu, calculated as follows: for α = 1+ k1
2+k1

,
∫+∞

E
dV
V α =−C

∫ Tu
0 dt, then

Tu = (2+ k1)E
k1

2+k1 /(k1C). When z reaches S2, i.e. V̄k2,r(z) =B, z will converge to zero in a finite-

time bounded by Tf , which is calculated as follows: for α = 1+ k2
2+k2

,
∫ 0

B
dV
V α =−C

∫ T=Tu+Tf
Tu

dt,

then Tf = (2+ k2)B
−k2

2+k2 /(−k2C). Finally, for α = 1+ k2
c+1 ,

∫ 0
B

dV
V α =−C

∫ T=Tu+Tf
Tu

dt, then Tf =

(c+1)B
−k2
c+1 /(−k2C)

Remark 6. The rate of convergence can be accelerated via time-rescaling (see Theorem 2 of

Hong et al. [29]). This is done by replacing the controller ω(z1,z2, · · · ,zr) by ω̄(z1,z2, · · · ,zr) =

τrω(z1,
z2
τ
, · · · , zr

τr−1 ) where τ > 1, and taking u as u = m
γm
(ω̄ + nϕ̄sign(ω̄)). By taking t̄ = τt

and z̄i = τ1−izi, we obtain V̇ (z̄1, · · · , z̄r)≤−τCV (z̄1, · · · , z̄r) and the settling time becomes T̄ ≤

(Tu +Tf )/τ .

V. SIMULATION RESULTS

In this section, we illustrate the performance of our proposed controllers using the following

perturbed triple integrator defined by: ż1 = z2, ż2 = z3, ż3 = ϕ + γu, with ϕ = sin(t) and

γ = 3+ cos(t). Then, we have γm = 2, γM = 4, ϕ̄ = 1.

The parameters of the controller are chosen as follows: l1 = 1, l2 = 3, l3 = 10.

We start first by fixing the parameter κ for different values {1/4,−1/4,−1/3}.

For κ > 0, Figure 1 shows a fast convergence of the states to a neighborhood of zero by an

unbounded controller, otherwise the convergence to zero is asymptotic. For −1/3 < κ < 0, the

convergence of the states to zero in finite-time is obtained by an unbounded controller with a

DRAFT



15

minimum amplitude of the discontinuous control at z = 0, as shown in Figure 2. The finite-time

convergence of the states is also shown in Figure 3 for κ = −1/3, using a bounded controller

with a large discontinuous control at z = 0.

The performance of a bounded controller which ensures a minimum discontinuous control

amplitude at zero is shown in Figure 4 by switching κ in neighborhood of zero, from −1/3 to

−1/4.

The performance of a globally fixed-time controller is shown in Figure 5. Figure 6 shows

convergence time versus several initial conditions: z1 = z2 = z3 = 1, 10, 100, 103, ..... 1010.

It is shown that the convergence time will not exceed 8.5 sec for any initial condition. Globally

fixed-time stability is assumed to be established by the time after which, |z1|, |z2|, |z3| are less

than 1×10−4.

VI. CONCLUSIONS

In this paper, we presented a Lyapunov-based method for designing finite-time convergent con-

trollers for stabilization of perturbed chain of integrators of arbitrary order. This method consists

in appropriate modifications of homogeneous controller stabilizing pure chain of integrators. It

was also shown that the properties of minimum discontinuity amplitude of the controller and

globally fixed-time convergence can be obtained by changing the homogeneity degree of the

controller.

REFERENCES

[1] S. Bhat and D.S. Bernstein. Continuous finite-time stabilization of the translational and rotational double integrators.

Automatic Control, IEEE Transactions on, 43(5):678–682, 1998.

[2] Y. Hong, Y. Xu, and J. Huang. Finite-time control for robot manipulators. Systems and Control Letters, 46(4):243 – 253,

2002.

[3] Y. Orlov. Discontinuous Systems - Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. London, U.K.:

Springer-Verlag, 2009.

[4] S.V. Emel’yanov, S.K. Korovin, and A. Levant. High-order sliding modes in control systems. Computational Mathematics

and Modeling, 7(3):294–318, 1996.

[5] F. Dinuzzo and A. Fererra. Higher Order Sliding Mode Controllers with Optimal Reaching. IEEE Transactions on

Automatic Control, 54(9):2126–2136, 2009.

[6] Rodney D. Driver. Methods of a. m. lyapunov and their application (v. i. zubov). SIAM Review, 7(4):570–571, 1965.

[7] S. Bhat and D.S. Bernstein. Finite-time stability of homogeneous systems. In American Control Conference, 1997.

Proceedings of the 1997, volume 4, pages 2513–2514.

[8] L. Praly. Generalized weighted homogeneity and state dependent time scale for linear controllable systems. In Decision

and Control, 1997., Proceedings of the 36th IEEE Conference on, volume 5, pages 4342–4347.

DRAFT



16

0 5 10 15 20 25 30
−150

−100

−50

0

50

100

Time (sec.)

 

 

5 10 15 20 25 30
−1

−0.5

0

0.5

1

Control u

(a) control law u versus time (s).

0 5 10 15 20 25 30
−60

−40

−20

0

20

Time (sec.)

 

 

5 10 15 20 25 30
−0.1

0

0.1

 

 

z
1

z
2

z
3

(b) z1, z2 and z3 versus time (s).

Fig. 1. test for κ > 0

0 5 10 15 20 25 30
−10

0

10

20

30

Time (sec.)

 

 

Control u

5 10 15 20 25 30
−2

0

2

 

 

(a) control law u versus time (s).

0 5 10 15 20 25 30
−30

−20

−10

0

10

Time (sec.)

 

 

z
1

z
2

z
3

(b) z1, z2 and z3 versus time (s).

Fig. 2. test for −1/r < κ < 0

0 5 10 15 20 25 30
−10

−5

0

5

10

Time (sec.)

 

 

Control u

(a) control law u versus time (s).

0 5 10 15 20 25 30
−40

−20

0

20

Time (sec.)

 

 

z
1

z
2

z
3

(b) z1, z2 and z3 versus time (s).

Fig. 3. test for κ =−1/r (case equivalent of [15])

0 5 10 15 20 25 30
−10

−5

0

5

10

Time (sec.)

 

 

Control u

(a) control law u versus time (s).

0 5 10 15 20 25 30
−40

−20

0

20

Time (sec.)

 

 

z
1

z
2

z
3

(b) z1, z2 and z3 versus time (s).

Fig. 4. test for κ switching from −1/r to k ∈ (−1/r,0)

0 5 10 15 20
−1500

−1000

−500

0

500

Time (sec.)

 

 

Control u

5 10 15 20
−1

0

1

 

 

(a) control law u versus time (s).

0 5 10 15 20
−50

0

50

100

Time (sec.)

 

 

z
1

z
2

z
3

5 10 15 20
−0.02

−0.01

0

0.01

 

 

(b) z1, z2 and z3 versus time (s)

Fig. 5. test for κ switching from −k to k, k ∈ (−1/r,0)

DRAFT



17

10
0

10
2

10
4

10
6

10
8

10
10

5

5.5

6

6.5

7

7.5

8

8.5

initial condition (z
1
=z

2
=z

3
)

c
o

n
v
e

rg
e

n
c
e

 t
im

e

 

 

measurements

interpolation

Fig. 6. Convergence time versus initial condition.

[9] S.P. Bhat and D.S. Bernstein. Geometric homogeneity with applications to finite-time stability. Math. Control Signals

Systems, 17:101 – 127, 2005.

[10] Y. Hong. Finite-time stabilization and stabilizability of a class of controllable systems. Systems and Control Letters,

46(4):231–236, 2002.

[11] J. Li and C. Qian. Global finite-time stabilization of a class of uncertain nonlinear systems using output feedback. In

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05. 44th IEEE Conference on, pages

2652–2657.

[12] C. Qian. A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems.

In American Control Conference, 2005. Proceedings of the 2005, pages 4708–4715, 2005.

[13] A. Levant. Higher-order sliding modes, differentiation and output-feedback control. International Journal of Control,

76(9/10):924 – 941, 2003.

[14] A. Levant. Homogeneity approach to high-order sliding mode design. Automatica, 41(5):823 – 830, 2005.

[15] A. Levant. Universal Single-InputSingle-Output (SISO) Sliding-Mode Controllers With Finite-Time Convergence. IEEE

Transactions on Automatic Control, 46(9):1447 – 1451, 2001.

[16] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti. A novel higher order sliding mode control scheme. Systems and

Control Letters, 58(2):102 – 108, 2009.

[17] M. Kryachkov, A. Polyakov, and V. Strygin. Finite-time stabilization of an integrator chain using only signs of the state

variables. In Variable Structure Systems (VSS), 2010 11th International Workshop on, pages 510–515.

[18] M. Harmouche, S. Laghrouche, and Y. Chitour. Robust and adaptive higher order sliding mode controllers. In Decision

and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 6436–6441.

[19] V. Andrieu, L. Praly, and A. Astolfi. Homogeneous approximation, recursive observer and output feedback. SIAM Journal

of Control and Optimization, 47(4):1814–1850, 2008.

[20] E. Cruz-Zavala, J.A. Moreno, and L. Fridman. Second-order uniform exact sliding mode control with uniform sliding

surface. In Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pages

4616–4621.

[21] E. Cruz-Zavala, J.A. Moreno, and L. Fridman. Uniform sliding mode controllers and uniform sliding surfaces. IMA Journal

of Mathematical Control and Information, 39(4):491 – 505, 2012.

[22] A. Polyakov. Nonlinear feedback design for fixed-time stabilization of linear control systems. Automatic Control, IEEE

DRAFT



18

Transactions on, 57(8):2106 –2110, 2012.

[23] A. Isidori. Nonlinear control systems: An introduction (3rd ed.). Springer, Berlin, 1995.

[24] A.F. Filippov. Differential Equations with Discontinuous Right-Hand Side. Kluwer, Dordrecht, The Netherlands, 1988.

[25] J. Zhang, Z. Han, and J. Huang. Homogeneous feedback design of differential inclusions based on control lyapunov

functions. Communications in Nonlinear Science and Numerical Simulation, 18(10):2790 – 2800, 2013.

[26] L. Rosier. Homogeneous lyapunov function for homogeneous continuous vector field. Systems and Control Letters,

19(6):467 – 473, 1992.

[27] S.P. Bhat and D.S. Bernstein. Finite-time stability of continuous autonomous systems. SIAM Journal of Control and

Optimization, 38(3):751 – 766, 2000.

[28] A. Polyakov and L. Fridman. Stability notions and lyapunov functions for sliding mode control systems. Journal of the

Franklin Institute, 351(4):1831 – 1865, 2014. Special Issue on 2010-2012 Advances in Variable Structure Systems and

Sliding Mode Algorithms.

[29] Y. Hong, J. Wang, and Z. Xi. Stabilization of uncertain chained form systems within finite settling time. IEEE Transactions

on Automatic Control, 50(9):1379–1384, 2005.

DRAFT


