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Higher order super-twisting for perturbed chains of integrators
Salah Laghrouche, Mohamed Harmouche, Yacine Chitour

Abstract—In this paper, we present a generalization of the super-
twisting algorithm for perturbed chains of integrators of arbitrary
order. This Higher Order Super-Twisting (HOST) controller is ho-
mogeneous with respect to a family of dilations and is continuous. It
is built as a dynamic controller (with respect to the state variable of
the chain of integrators) and the convergence analysis is performed
by the use of a homogeneous strict Lyapunov function which is
explicitly constructed. The effectiveness of the controller is finally
illustrated with simulations for a chain of integrators of order four,
first pure then perturbed, where we compare the performances of
two HOST controllers.

I. INTRODUCTION

Many HOSMC algorithms exist in contemporary literature
for control of nonlinear systems with bounded uncertainty.
These algorithms are robust, they preserve the insensitivity of
classical sliding mode, and maintain the performance charac-
teristics of the closed loop system. Levant for example, has
presented a method of designing arbitrary order sliding mode
controllers for Single Input Single Output (SISO) systems in
[1]. Laghrouche et al. [2] have proposed a two part integral
sliding mode based control to deal with the finite time stabi-
lization problem and uncertainty rejection problem separately.
Dinuzzo et al. have proposed another method in [3], where
the problem of HOSMC has been treated as Robust Fuller’s
problem. Defoort et al. [4] have developed a robust multi-input
multi-output HOSMC controller, using a constructive algorithm
with weighted homogeneity based finite time stabilization of
an integrator chain. Harmouche et al. have presented their
homogeneous controller in [5] based on the work of Hong [6].
Sliding mode with homogeneity approach was also used in [7],
[8], to demonstrate finite time stabilization of the arbitrary order
sliding mode controllers for SISO systems [1]. A Lyapunov-
based approach for arbitrary HOSMC controller design was
presented in [9], [10]. In this work, it was shown that a class of
homogeneous controllers that satisfies certain conditions, could
be used to stabilize perturbed integrator chains.

The main drawback of these controllers is that they produce
a discontinuous control signal [11], at least at the origin. In
order to build continuous controllers and still have finite time
convergence, a standard trick consists in using a relative degree
extension as advocated for instance in [12], namely to consider
the extra equation u̇ = v, where u is a control and v is
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a virtual HOSM discontinuous control input. This controller
should use the output and its the first r derivatives, where r is
the sliding mode order. However, to complete that procedure, it
is necessary to know the bounds of the uncertainties and their
first derivatives and, more restrictively, to suppose that the time
integral of v is uniformly bounded for all initial conditions (see
Remark 2).

To overcome this problem and to also get finite time con-
vergence, Kamal et al. [11] propose a generalization of the
well-known continuous super-twisting algorithm for high order
relative degree system with respect to the output (cf. [13]),
ensuring finite time convergence of the sliding variable and
its r first derivatives to zero, by using a continuous control
signal and only information about the sliding variables and its
r − 1 derivatives [14], [15]. The convergence conditions and
Lyapunov analysis have been only given up to order three and
a higher order controller is just suggested without proof. Other
results solving this problem were proposed in [16] and [17].
These algorithms are not homogeneous and thus they can not
achieve the r-th order of sliding precision with respect to the
sliding variable [7].

In the present paper, we provide a homogenous HOST
controller for arbitrary order with a complete argument as well
as other HOST controllers with the following properties :

• finite time convergence of the sliding variable and its r first
derivatives to zero, by using a continuous control signal
and only information about the sliding variables and its
r − 1 derivatives;

• it provides finite-time convergence to r−order sliding-
mode set, and therefore provides sliding accuracy of order
r with respect to sliding variable.

• it compensates Lipschitz uncertainties/perturbations.

Our analysis is based on the use of a homogeneous strict
Lyapunov function for an extended system. The resulting HOST
controllers are continuous at the origin and both ensure finite-
time stabilization, first for a pure chain of integrators and then
for a perturbed one.

To describe our results, recall that a perturbed chain of
integrators of length r reads żi = zi+1 for 1 ≤ i ≤ r − 1
and żr = γu + ϕ where γ is a positive measurable signal
lower and upper bounded with known positive constants and
both γ̇ and ϕ̇ are bounded by known positive constants. Note
that we do not assume yet that the additive perturbation ϕ is
bounded.

We first provide a HOST controller for a pure chain of
integrators (i.e., γ is constant and ϕ is equal to zero) based on
standard controllers for a pure chain of integrators verifying in
addition a geometric condition. The convergence proof using
the HOST controller relies on the existence of a homoge-
neous strict Lyapunov function W associated with an extended
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system. The construction of W is explicit once the standard
controllers for the pure chain of integrators are given.

We then prove these HOST controllers can be used for
perturbed chains of integrators. In the case γ constant (let
say equal to one), one must recall that one can stabilize in
finite time such a perturbed chain of integrators without using
HOST controllers. Indeed, by setting zr+1 := u + ϕ and
v := u̇, one gets żr+1 = v + ϕ̇ and a perturbed chain of
length r + 1 is stabilized with the control v and the bounded
uncertainty ϕ̇. This can be done at the price of increasing the
length of the chain of integrators (i.e., the relative degree of the
output), which can be a serious drawback in some applications.
This technics is referred to as extension of relative degree,
cf. [2], [12]. One should therefore see our HOST solution as
an alternative to the increase of the length of the chain of
integrators. In the case of non constant γ and assuming that
0 ≤ γm ≤ |γ| ≤ γM , we provide a solution for arbitrary
length under a smallness condition on γM/γm − 1 and the
extra assumption that ϕ is bounded. Notice that we are able to
tune the parameters of our controller in the general case of non
constant γ in terms of the homogeneous Lyapunov function W .

The paper is organized as follows. In Section II, we present
our results for the general case, first addressing the stabilization
by HOST of a pure chain of integrators of arbitrary order
and then explaining how to generalize to a perturbed chain
by means of homogeneity arguments. We prove two results,
one in the case of constant γ and the second one for non
constant γ. In Section III-A, we provide explicit examples of
standard controllers for pure chains of integrators which do
verify the required geometric condition. We finally demonstrate
in Section III-B the efficiency of our HOST algorithm for a
perturbed chain of integrators of order four.

Notations and definitions. In this paper, we use R and | · |
to denote the set of real numbers and a fixed norm on Rr

respectively, where r is a positive integer. For λ > 0, let Dλ
be the r×r matrix defined by diag(λr, · · · , λ). For m positive
integer, let e1, · · · , em and Jm denote the canonical basis of
Rm and the m-th Jordan block as (Jm)ij = δi,j+1, 1 ≤ i, j ≤
m, respectively. If M is a subset of Rr , we use M to denote its
closure. If x ∈ R, we denote by [x] the integer part of x i.e., the
smallest integer not greater than x. We define the function sign
as the multivalued function defined on R by sign(x) = x/|x|
for x 6= 0 and sign(0) = [−1, 1]. Similarly, for every a ≥ 0
and x ∈ R, we use bxea to denote |x|a sign(x). Note that
b·ea is a continuous function for a > 0 and is of class C1

with derivative equal to a |·|a−1 for a ≥ 1. If V : Rr → Rp

is a differentiable mapping, we use ∂jV to denote the partial
derivative of V with respect to the j-th coordinate zj and more
generally ∂ξV if V depends on a scalar coordinate ξ.

We refer to [12], [18] for the definitions of Filippov differ-
ential inclusion and Asymptotic and Finite time stability.

Definition 1: (Homogeneity. cf. [12].) Let r be a positive
integer. A function f : Rr → R (a vector field f : Rr → Rr

or a vector-set function F : Rr ⇒ Rr respectively) is said to
be homogeneous of degree q ∈ R with respect to the family of
dilations δε(z), ε > 0, defined by

δε(z) = (z1, · · · , zr) 7→ (εp1z1, · · · , εprzr),

where p1 · · · , pr are positive real numbers (the weights), if for
every positive ε and z ∈ Rr , one has

f(δε(z)) = εqf(z)
(
f(δε(z)) = εqδε(f(z)) or

F (δε(z)) = εqδε(F (z)) respectively
)
.

A differential equation ẋ = f(x) (A differential inclusion ẋ ∈
F (x)) is said to be homogeneous of degree q ∈ R with respect
to the family of dilations δε(z) if the vector field f : Rr → Rr

(vector-set function F : Rr ⇒ Rr is).

II. HIGHER ORDER SUPER-TWISTING CONTINUOUS

FEEDBACK FOR A CHAIN OF INTEGRATOR

The strategy consists first in building an appropriate feedback
for a pure chain of integrator and then in tackling the perturbed
case by a homogeneity argument.

A. Stabilization of a pure chain of integrator of arbitrarily
order

Let r be a positive integer. The r-th order chain of integrator
(CI)r is the single-input control system given by

(CI)r ż = Jrz + uer, z = (z1, · · · , zr)T ∈ Rr, u ∈ R.

For κ < 0 and p > 0 with p + (r + 1)κ ≥ 0, set pi :=
p+ (i− 1)κ, 1 ≤ i ≤ r+ 1. For ε > 0, let δε : Rr → Rr and
ψε : Rr+1 → Rr+1 be the family of dilations associated with
(p1, · · · , pr) and (p1, · · · , pr+1) respectively.

The next proposition gathers a standard result on the stabi-
lization in finite time of (CI)r (cf. [6]) as well as a geometric
condition on the homogeneous stabilizing feedback, in the spirit
of [9], [10].

Proposition 1: [6], [9], [10]
Let r be a positive integer. There exists a feedback law u0 :

Rr → R, homogeneous of degree pr+1 with respect to (δε)ε>0

such that the closed-loop system (CI)r with u0 is finite time
stable and the following conditions hold true:

(i) the function z 7→ Jrz + u0(z)er is homogeneous of
degree κ with respect to (δε)ε>0 and there exists a
continuous positive definite function V1 : Rr → R+,
C1 except at the origin, homogeneous with respect to
(δε)ε>0 of degree 2pr+1 such that there exists c > 0
and α ∈ (0, 1) for which the time derivative of V1

along non trivial trajectories of (CI)r verifies V̇1 ≤
−cV α1 .

(ii) z 7→ ∂rV1(z) is homogeneous of non positive degree
with respect to (δε)ε>0 and z 7→ ∂rV1(z)u0(z) is
non negative over Rr .

First of all, notice that α must be equal to 1 +κ/(2pr+1) ≥
1/2 and ∂rV1 is homogeneous with respect to (δε)ε>0 of
degree p + (r + 1)κ ≥ 0. In [6] (and also see below
Subsection III-A1), a feedback law u0 : Rr → R satisfying
Condition (i) is explicitly built and it has been noticed in [9],
[10] that the very same feedback satisfies Condition (ii). The
latter is instrumental for building a super-twisting feedback law
as shown in the following theorem.

Theorem 1: Consider the homogeneous mapping u0 : Rr →
R and the continuous positive definite function V1 : Rr → R+
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provided by Proposition 1. For every kP ≥ 1 and kI > 0, let
uST (·) be the the dynamic state-feedback controller defined by

ξ̇(t) = −kI∂rV1(z(t)), ξ(0) = 0,
uST (t) = kPu0(z(t)) + kIξ(t),

(1)

and we refer to uST as the HOST controller. The feedback
connection between (CI)r and (1) gives rise to the dynamical
system over Rr+1 given by

ż(t) = Jrz(t) + (kPu0(z(t)) + kIξ(t))er,

ξ̇(t) = −kI∂rV1(z(t)), ξ(0) = 0.
(2)

There exist A, d > 0 so that, if W : Rr+1 → R is defined
by

W (z, ξ) =
(
V1(z) + ξ2/2

)2−α −Azrξ, (3)

then W is positive definite, C1 except at the origin, ho-
mogeneous with respect to (ψε)ε>0 and the time derivative
of W along non trivial trajectories of (2) verifies Ẇ ≤
−dW 1/(2−α). As a consequence, trajectories of (2) converge
to zero in finite time, i.e., uST stabilizes (CI)r in finite time.

Proof of Theorem 1.
Consider first the positive definite function V := V1 + ξ2/2,

which is homogeneous with respect to (ψε)ε>0 of degree
2pr+1. Using Items (i) and (ii), the time derivative of V along
trajectories of (2) verifies V̇ = V̇1+(kP −1)∂rV1u0 ≤ −cV α1 .

For A > 0, the function W defined in (3) is continuous,
C1 except at the origin, homogeneous with respect to (ψε)ε>0

of degree 2(2 − α)pr+1 = pr + pr+1. Since V is positive
definite, W is also positive definite for A small enough. The
time derivative of W along trajectories of (2) verifies

Ẇ ≤ −c(2−α)V 1−αV α1 −AkPu0ξ+AkIzr∂rV1−AkIξ2.
(4)

Since V ≥ V1 and 2 − α ≥ 1, one also has from
the previous equation that Ẇ ≤ −cV1 + Ak2Pu

2
0/kI +

AkI |zr∂rV1| − AkIξ
2/2. The function z 7→ −cV1 +

Ak2Pu
2
0/kI + AkI |zr∂rV1| is homogeneous of degree 2pr+1

with respect to (δε)ε>0 and, since V1 is definite positive, one
has for A small enough,

Ẇ ≤ −
(
cV1 +AkIξ

2)/2. (5)

Clearly, the right-hand side of the previous inequality is nega-
tive definite and smaller than −dW 1/(2−α) for some positive
constant d. Therefore, trajectories of (2) converge to zero in
finite time and hence (CI)r is stabilized in finite time by the
feedback law uST . �

Remark 1: If p + (r + 1)κ = 0, then ∂rV1 is of zero
homogeneity degree with respect to (δε)ε>0 and α = 1/2.
In that case, W is homogeneous with respect to (ψε)ε>0 of
degree 3pr+1.

Remark 2: In Subsection III-A1, the feedback u0 and the
Lyapunov function V1 are explicitly built (as done in [6]) and
the constant c in the differential inequality V̇1 ≤ −cV α1 is
explicitly given. The constant A appearing in Theorem 1 can
now be chosen as follows. Let Rp and Np be the unit spheres

in Rr and Rr+1 associated to the weights pi, 1 ≤ i ≤ r and
1 ≤ i ≤ r + 1 respectively. Set

Vm = min
(z,ξ)∈Np

V 2−α, ZM = max
(z,ξ)∈Np

|zrξ|,

Z1
M = max

z∈Rp
|zr∂rV1|, Z2

M = max
z∈Rp

u2
0, V 1

m = min
z∈Rp

V1.

Since V is positive definite, Vm > 0. By taking A as

A ≤ min

(
Vm

2ZM
,

ckIV
1
m

2(k2PZ
2
M + k2IZ

1
M )

,
2c

kI

)
,

then the inequalities V 2−α/2 ≤W ≤ 3V 2−α/2, (5) and Ẇ ≤
−AkIV are deduced. Then one can take d = Ak/4. The next
remark will be used in the proof of Theorem 3.

Remark 3: Note that the constant kP can be replaced by any
continuous function kP : [0,R+) → [km, kM ] where km, kM
are positive constants with km ≥ 1.
We next apply the previous results to get finite-time conver-
gence of the perturbed chain of integrators defined next by

ż = Jrz + (γu+ ϕ)er (6)

where the time-varying functions γ(·) and ϕ(·) are glob-
ally Lipschitz over R+ and verify the following: there exist
γm, γM > 0 and γ, ϕ ≥ 0 such that, for every t ≥ 0 it holds

0 < γm ≤ γ(t) ≤ γM , |γ̇(t)| ≤ γ, |ϕ̇(t)| ≤ ϕ. (7)

B. Stabilization of a perturbed chain of integrators: case of γ
constant

In this subsection, we consider the case of γ constant and
we obtain the following theorem.

Theorem 2: Consider the perturbed chain of integrators
defined by (6), where the time-varying function γ(·) and ϕ(·)
verify γ ≡ γm and (7) respectively. Assume that there exists
a continuous homogeneous feedback law u0 and a Lyapunov
function V1 verifying the assumptions (i) and (ii) of Theorem 1
with p+ (r + 1)κ = 0.

Then, for every positive gains kP ≥ 1 and kI > 0, there
exists λ0 > 0 only depending on the gains and ϕ such that, for
λ ≥ λ0, the dynamic state-feedback controller uλST (·) defined
by

ξ̇λ(t) = −λkI∂rV1(Dλz(t)), ξ
λ(0) = 0,

uλST (t) =
(
kPu0(Dλz(t)) + kIξ

λ(t)
)
/γm,

(8)

stabilizes (6) in finite-time. In particular, uλST (·) is continuous.
Proof of Theorem 2. Fix now some kP ≥ 1 and kI > 0. For

every λ > 0, consider the standard time-coordinate change of
variable along trajectories of (6) defined by y(t) = Dλz(t/λ).
Under the hypotheses of the theorem, (6) can be rewritten ẏ =
Jry+ (γmuλ +ϕλ)er , where one has set, for t ≥ 0, uλ(t) :=
u(t/λ) and ϕλ(t) := ϕ(t/λ). Note that, for a. e. t ≥ 0, |ϕ̇λ| ≤
ϕ/λ.

The feedback connection between (6) and (8) can be written
as the time-varying system over Rr+1 given by

ẏ(t) = Jrz(t) + (kPu0(y(t)) + kIξλ(t))er,

ξ̇λ(t) = −kI∂rV1(y(t)) + ϕ̇λ, ξλ(0) = ϕλ(0),
(9)
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where ξλ(t) = ξλ(t/λ) + ϕλ(t).
Clearly, (9) corresponds to the differential inclusion (2)

perturbed by the time-varying vector field over Rr+1 given
by (0, · · · , 0, ϕ̇λ(t))T or, equivalently, by the multifunction
(0, · · · , 0, [−ϕ/λ, ϕ/λ])T taking values in the subsets of
Rr+1. Let W be the Lyapunov function defined in (3). Along
non trivial trajectories of (9), one gets, for every t ≥ 0, that

Ẇ ≤ −dW 2/3 + ∂ξWϕ̇λ(t) ≤ −dW 2/3 + ϕ|∂ξW |/λ.
(10)

According to Remark 1, the homogeneity degree of |∂ξW | is
equal to 3pr+1 − pr+1 = 2pr+1, i.e., the homogeneity degree
of W 2/3. One deduces from Eq. (10) that there exists ϕ∗ > 0
such that Ẇ ≤ −dW 2/3/2, along trajectories of System (9)
if ϕ/λ ≤ ϕ∗, i.e., λ ≥ λ0 = ϕ/ϕ∗. One then concludes as
previously. �

Remark 4: As noticed in Introduction, the contents of
Theorem 2 can be derived without relying on HOST controllers
but rather on extending the relative degree of the original
system, cf. [2], [12]. The latter technics however requires a
longer chain of integrators.

Remark 5: Notice that the choice of λ0 can be made explicit
once u0 and V1 are explicitly given.

Remark 6: We do not know how to extend the above
result to cases where p + (r + 1)κ > 0. Indeed, for the
above homogeneity argument to work, it is necessary that
W 1/(2−α) (with α = 1/2) has the same degree of homegeneity
as ∂ξW since ϕ̇ is simply bounded. On the other hand,
W 1/(2−α) has the same degree of homegeneity as ∂ξWξ̇ and
thus ∂rV1 must necessarily be of degree zero. This occurs only
if p+ (r + 1)κ = 0.

C. Stabilization of a perturbed chain of integrators: general
case

In this subsection, we apply Subsection II-A to get finite-time
convergence of (6) where the time-varying functions γ(·) and
ϕ(·) are measurable over R+, verify (7) and assuming an extra
boundedness hypothesis for ϕ(·). Note that this hypothesis can
be explicitelty quantified by using W

Remark 7: Note that the technics of extension of relative
degree can also be applied in this case, cf. [19].

We now want to derive conditions under which the super-
twisting feedback defined in Eq. (1) stabilizes System (6) in
finite time. We obtain the following theorem in case ϕ(·) is
bounded.

Theorem 3: Consider the perturbed chain of integrators
defined by (6), where the time-varying function γ(·) and ϕ(·)
verify (7). Assume that there exists a continuous feedback law
u0 and a Lyapunov function V1 verifying the assumptions of
Theorem 1 with p + (r + 1)κ = 0. Moreover assume that ,
in addition to Hypotheses (7), |ϕ| ≤ ϕM for some known non
negative constant ϕM and set δγ = γM/γm − 1 ≥ 0.

For every kP ≥ 1, kI > 0 and λ > 0, consider the dynamic
state-feedback controller uλST (·) defined by

ξ̇λ(t) = −λkI∂rV1(Dλz(t)), ξλ(0) = 0,

uλST (t) =
(
kPu0(Dλz(t)) + kIξ

λ(t)
)
/γm.

(11)

Then there exist δ0, λ0 > 0 so that if δγ ≤ δ0 and λ ≥ λ0, then
(6) is stabilized in finite-time by the dynamic state-feedback
controller uλST (·) defined in Eq. (11). In particular uλST (·) is
continuous.

Proof of Theorem 3. As in the proof of Theorem 2, fix
kP ≥ 1 and kI > 0. For λ > 0, consider the time-coordinate
transformation y(t) = Dλz(t/λ). Under the hypotheses of the
theorem, (6) can be rewritten ẏ = Jry+(γλuλ+ϕλ)er , where
one has set, for t ≥ 0 uλ(t) = u(t/λ), γλ(t) = γ(t/λ) and
ϕλ(t) = ϕ(t/λ). Then, for a. e. t ≥ 0, |γ̇λ| ≤ γ/λ and
|ϕ̇λ| ≤ ϕ/λ.

For t ≥ 0, define ξλ(t) = −kI
∫ t

0

∂rV1(y(s))ds +

ϕλ(t)/γλ(t). The feedback connection between (6) and (11)
can be written as the time-varying system over Rr+1 given by

ẏ = Jry +
(γλ(t)

γm
kPu0(y) + kIξλ(t)

+ kI
γλ(t)− γm

γm
ξλ(t)

)
er,

ξ̇λ = −kI∂rV1(y) +
ϕ̇λ(t)γλ(t)− γ̇λ(t)ϕλ(t)

γ2
λ(t)

,

ξλ(0) = ϕλ(0).
(12)

Notice that, for t ≥ 0,
|γλ(t)− γm|

γm
≤ δγ . Consider now the

Lyapunov function W defined in (3). By taking into account
Remark 3, one gets along non trivial trajectories of System (12),
for a.e. t ≥ 0, that

Ẇ ≤ −dW 2/3 + δγ |∂rWξλ|+
|∂ξW |
λγ2

m

(ϕγM + γϕM ).

(13)
Exactly as for |∂ξW |, |∂rWξ| is homogeneous with respect
to (ψε)ε>0 of degree 2pr+1. One deduces that there exist δ0
small enough, λ1 > 0 and a positive constant C1 > 0 such
that, if δγ ≤ δ0 and λ ≥ λ1, then one has for a.e. t ≥ 0
Ẇ ≤ −dW 2/3/2. along non trivial trajectories of (12) and
one concludes as in Theorem 2. �

III. EXAMPLES AND SIMULATIONS

A. Feedbacks u0 and Lyapunov functions V1 verifying the
assumptions of Theorems 2 and 3

We next provide examples of controllers u0 and Lyapunov
functions V1 satisfying the conditions of Theorem 2 for r ≥ 2.
We next assume that p = 1 and thus κ = −1/(r + 1).

1) Hong’s controller: Such a controller is simply borrowed
from [6]. In that reference, the convergence is proved by using
a Lyapunov function V0 explicitly constructed for that purpose.
The latter function does not match the the assumptions of
Theorem 2 and we have to modify it to get the required
Lyapunov function V1.

Let l1, · · · , lr positive real numbers. We define, for i =
0, ..., r + 1, the functions v0 ≡ 0 and for 1 ≤ i ≤ r − 1,
vi+1 = −li+1bbzi+1eβi − bvieβieαi+1/βi , where β0 = p2
and (βi + 1)pi+1 = β0 + 1, and αi = pi+1/pi, for
i = 1, ..., r. One then takes the controller u0 to be equal to
the continuous function vr . Consider the Lyapunov function

V0 =

r∑
i=1

Wi, where the positive real-valued functions Wi,



5

1 ≤ i ≤ r are given by Wi =

∫ zi

vi−1

wi(z1, · · · , zi−1, s)ds

with wi = bzieβi−1−bvi−1eβi−1 , i = 1, · · · , r. Then, there
exists l, l1, · · · , lr > 0 such that the time derivative of V along
every non trivial trajectory of ż = Jrz + u0er satisfies V̇0 ≤
−lV̄

2+2κ
2+κ

0 . This proves that u0 stabilizes ż = Jrz+uer to the
origin in finite-time. Let λ := 2/(2r−1) < 1. Note that 1−λ =
βr−1/(1 + βr−1). Take now V1 = V λ0 /λ. A simple computa-

tion yields ∂rV1 = (bzreβr−1 − bvr−1eβr−1)/V

βr−1
βr−1+1

0 .
One then checks that ∂rV1 is homogeneous of degree zero

with respect to δε, globally bounded, and continuous except at
the origin.

2) Modified Hong’s Controller: The following controller is
a hybrid form between the continuous controller presented by
Hong [6] and a terminal sliding mode approach also presented
by Hong et al. in [20]. Note that its form is very close
to the controller proposed in [21]. Let κ, the li’s, αi’s and
the βi’s as before. The functions vi are defined as above
for 1 ≤ i ≤ r − 1 but we now set vr = −lrwr with

wr :=
(
|zr|βr−1 + |v̄r−1|βr−1

)αr/βr−1

sign (zr − vr−1).
The controller u0 is then taken equal to vr and it stabilizes
ż = Jrz+uer in finite-time. To see that, consider the positive

definite function V0 =

r∑
i=1

Wi where, for i = 1, ..., r, one

has Wi =

∫ zi

vi−1

wi(z1, · · · , zi−1, s)ds with wi, 1, · · · , r − 1

defined as in Hong’s controller and wr defined just above. One
deduces from an argument entirely similar to that of [6] that
there exists l > 0 such that, one has along trajectories of the

closed-loop system V̇0 ≤ −lV
2+2κ
2+κ

0 . Finite-time convergence
to the origin follows immediately. Finally remark that the feed-
back control law vr is continuous at zero. One can then apply
the results given in Section II. The actual Lyapunov function
V1 is again taken of the form V λ0 /λ with λ = 1/(1 + βr−1).
A simple computation yields ∂rV1 = V λ−1

0 wr which is
homogeneous of degree zero with respect to (δε)ε>0.

B. Simulations

In this subsection, we verify the effectiveness of our design
through simulations. We deal with a chain of integrator of order
four and we show the robustness with respect to perturbations.
Consider the fourth order integrator system given by ż =
J4z+(γu+ϕ(t))e4. We study in the following subsections two
cases: the first one deals with ϕ ≡ 0 and γ ≡ 1, and the second
case considers ϕ 6= 0 and γ 6= 1, both for the continuous and
discontinuous HOST controllers corresponding to the Hong’s
controller uH0 and to the modified Hong’s controller uMH

0

and respectively. For all subsequent simulations, the control
parameters are tuned as follows: l1 = l2 = 1, l3 = 4, l4 = 8
and κ = −1/5 with initial condition z1(0) = −5, z2(0) = 2
and z3(0) = z4(0) = 4.

C. Simulation of pure integrator chain for u = u0

We start by stabilizing the pure integrator chain, (i.e., with
ϕ ≡ 0) by the controller u = u0 where u0 represents either

the Hong’s controller uH0 or the modified Hong’s controller
uMH
0 given in Sections III-A1 and III-A2 respectively. Figures

1(a) and 1(c) represents uH0 and uMH
0 presented in Sections

III-A1 and III-A2 respectively. These controllers force the states
(z1, z2, z3, z4) to zero in finite time, as shown in Figure 1(b)
and Figure 1(d).
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(d) z1, z2, z3 and z4.

Fig. 1. Pure integrator chain without integration action: (a) and (b)
Hong’s controller. (c) and (d) Modified Hong’s controller

D. Stabilisation of pure integrator chain by HOST - ϕ ≡ 0

In this subsection, we show the performance of HOST for

the pure integrator chain for u = kPu0 − kI
∫
∂4V1dt. The

simulation parameters related to u0 with the initial condition
are tuned as in the previous subsection. The gains kP and kI
are chosen as kP = kI = 1. The states convergence to zero
is presented in Figure 2(b) and 3(b) for the Hong’s based con-
troller and the modified Hong’s based controller respectively.
Figure 2(a) and Figure 3(a) show the control law of Hong’s
based controller with integral action and the modified Hong’s
based controller with integral action respectively. Figures 2(c)
and 3(c) show the continuous integrator action which vanishes
to zero as there is no perturbation to compensate.
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(c) Integral action
∫

∂4V1dt

Fig. 2. Pure integrator chain with integral action (with Hong’s
controller)
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(c) Integral action I =

∫
∂4V1dt

Fig. 3. Pure integrator chain with integral action (with modified Hong’s
controller)

E. Stabilisation of perturbed integrator chain by HOST - ϕ 6=
0, γ non constant

We now consider the case of a perturbed system with
perturbations ϕ and γ defined as

ϕ(t) = sin(t),

γ(t) = 3 +
1

2
sin(0.5t),

Clearly, ϕ is bounded and globally Lipschitz, as well as γ
which is in addition positive.

The result is similar to the previous cases. However the
controller acts in order to compensate the perturbation and we
can see clearly in Figure 4(a) and Figure 4(c) for the Hong’s

based controller that u(t) = −ϕ(t)

γ(t)
after states convergence to

zero. Similar results are obtained in the case of the modified
Hong’s based controller in Figure 5(a) and Figure 5(c).
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(c) Integral action I =

∫
∂4V1dt

Fig. 4. Perturbed integrator chain with integral action (with Hong’s
controller)
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(c) Integral action I =

∫
∂4V1dt

Fig. 5. Perturbed integrator chain with integral action (Modified Hong’s
controller)

IV. CONCLUSION

In this paper we propose a general approach to design
a continuous controller for a perturbed chain of integrators
of arbitrary order generalizing the well-known supertwisting
algorithm provided in [11] for integrator chain of length one
and two. We have first designed a controller for the pure
chain of integrators using a geometric condition inspired from
[9], [10] and we have proved convergence in finite time for
the corresponding closed-loop system thanks to the explicit
construction of strict homogeneous Lyapunov function for an
extended system. As for the perturbed chain of integrators, we
partially solve the complete problem by using homogeneity
arguments applied to an extended differential inclusion. Future
work consists of addressing the general case of a perturbed
chain of integrators.
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