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Higher order super-twisting for perturbed chains of integrators

In this paper, we present a generalization of the supertwisting algorithm for perturbed chains of integrators of arbitrary order. This Higher Order Super-Twisting (HOST) controller is homogeneous with respect to a family of dilations and is continuous. It is built as a dynamic controller (with respect to the state variable of the chain of integrators) and the convergence analysis is performed by the use of a homogeneous strict Lyapunov function which is explicitly constructed. The effectiveness of the controller is finally illustrated with simulations for a chain of integrators of order four, first pure then perturbed, where we compare the performances of two HOST controllers.

I. INTRODUCTION

Many HOSMC algorithms exist in contemporary literature for control of nonlinear systems with bounded uncertainty. These algorithms are robust, they preserve the insensitivity of classical sliding mode, and maintain the performance characteristics of the closed loop system. Levant for example, has presented a method of designing arbitrary order sliding mode controllers for Single Input Single Output (SISO) systems in [START_REF] Levant | Universal single-input-single-output (siso) slidingmode controllers with finite-time convergence[END_REF]. Laghrouche et al. [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF] have proposed a two part integral sliding mode based control to deal with the finite time stabilization problem and uncertainty rejection problem separately. Dinuzzo et al. have proposed another method in [START_REF] Dinuzzo | Higher order sliding mode controllers with optimal reaching[END_REF], where the problem of HOSMC has been treated as Robust Fuller's problem. Defoort et al. [START_REF] Defoort | A novel higher order sliding mode control scheme[END_REF] have developed a robust multi-input multi-output HOSMC controller, using a constructive algorithm with weighted homogeneity based finite time stabilization of an integrator chain. Harmouche et al. have presented their homogeneous controller in [START_REF] Harmouche | Robust homogeneous higher order sliding mode control[END_REF] based on the work of Hong [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]. Sliding mode with homogeneity approach was also used in [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF], [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF], to demonstrate finite time stabilization of the arbitrary order sliding mode controllers for SISO systems [START_REF] Levant | Universal single-input-single-output (siso) slidingmode controllers with finite-time convergence[END_REF]. A Lyapunovbased approach for arbitrary HOSMC controller design was presented in [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], [START_REF] Laghrouche | Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control[END_REF]. In this work, it was shown that a class of homogeneous controllers that satisfies certain conditions, could be used to stabilize perturbed integrator chains.

The main drawback of these controllers is that they produce a discontinuous control signal [START_REF] Kamal | Higher order super-twisting algorithm[END_REF], at least at the origin. In order to build continuous controllers and still have finite time convergence, a standard trick consists in using a relative degree extension as advocated for instance in [START_REF] Levant | Finite-Time Stability and High Relative Degrees in Sliding-Mode Control[END_REF], namely to consider the extra equation u = v, where u is a control and v is a virtual HOSM discontinuous control input. This controller should use the output and its the first r derivatives, where r is the sliding mode order. However, to complete that procedure, it is necessary to know the bounds of the uncertainties and their first derivatives and, more restrictively, to suppose that the time integral of v is uniformly bounded for all initial conditions (see Remark 2).

To overcome this problem and to also get finite time convergence, Kamal et al. [START_REF] Kamal | Higher order super-twisting algorithm[END_REF] propose a generalization of the well-known continuous super-twisting algorithm for high order relative degree system with respect to the output (cf. [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]), ensuring finite time convergence of the sliding variable and its r first derivatives to zero, by using a continuous control signal and only information about the sliding variables and its r -1 derivatives [START_REF] Kamal | Continuous terminal sliding-mode controller[END_REF], [START_REF] Fridman | Continuous Nested Algorithms : The Fifth Generation of Sliding Mode Controllers[END_REF]. The convergence conditions and Lyapunov analysis have been only given up to order three and a higher order controller is just suggested without proof. Other results solving this problem were proposed in [START_REF] Basin | A nonhomogeneous super-twisting algorithm for systems of relative degree more than one[END_REF] and [START_REF] Edwards | Adaptive continuous higher order sliding mode control[END_REF]. These algorithms are not homogeneous and thus they can not achieve the r-th order of sliding precision with respect to the sliding variable [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF].

In the present paper, we provide a homogenous HOST controller for arbitrary order with a complete argument as well as other HOST controllers with the following properties :

• finite time convergence of the sliding variable and its r first derivatives to zero, by using a continuous control signal and only information about the sliding variables and its r -1 derivatives; • it provides finite-time convergence to r-order slidingmode set, and therefore provides sliding accuracy of order r with respect to sliding variable. • it compensates Lipschitz uncertainties/perturbations. Our analysis is based on the use of a homogeneous strict Lyapunov function for an extended system. The resulting HOST controllers are continuous at the origin and both ensure finitetime stabilization, first for a pure chain of integrators and then for a perturbed one.

To describe our results, recall that a perturbed chain of integrators of length r reads żi = zi+1 for 1 ≤ i ≤ r -1 and żr = γu + ϕ where γ is a positive measurable signal lower and upper bounded with known positive constants and both γ and φ are bounded by known positive constants. Note that we do not assume yet that the additive perturbation ϕ is bounded.

We first provide a HOST controller for a pure chain of integrators (i.e., γ is constant and ϕ is equal to zero) based on standard controllers for a pure chain of integrators verifying in addition a geometric condition. The convergence proof using the HOST controller relies on the existence of a homogeneous strict Lyapunov function W associated with an extended system. The construction of W is explicit once the standard controllers for the pure chain of integrators are given.

We then prove these HOST controllers can be used for perturbed chains of integrators. In the case γ constant (let say equal to one), one must recall that one can stabilize in finite time such a perturbed chain of integrators without using HOST controllers. Indeed, by setting zr+1 := u + ϕ and v := u, one gets żr+1 = v + φ and a perturbed chain of length r + 1 is stabilized with the control v and the bounded uncertainty φ. This can be done at the price of increasing the length of the chain of integrators (i.e., the relative degree of the output), which can be a serious drawback in some applications. This technics is referred to as extension of relative degree, cf. [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], [START_REF] Levant | Finite-Time Stability and High Relative Degrees in Sliding-Mode Control[END_REF]. One should therefore see our HOST solution as an alternative to the increase of the length of the chain of integrators. In the case of non constant γ and assuming that 0 ≤ γm ≤ |γ| ≤ γM , we provide a solution for arbitrary length under a smallness condition on γM /γm -1 and the extra assumption that ϕ is bounded. Notice that we are able to tune the parameters of our controller in the general case of non constant γ in terms of the homogeneous Lyapunov function W .

The paper is organized as follows. In Section II, we present our results for the general case, first addressing the stabilization by HOST of a pure chain of integrators of arbitrary order and then explaining how to generalize to a perturbed chain by means of homogeneity arguments. We prove two results, one in the case of constant γ and the second one for non constant γ. In Section III-A, we provide explicit examples of standard controllers for pure chains of integrators which do verify the required geometric condition. We finally demonstrate in Section III-B the efficiency of our HOST algorithm for a perturbed chain of integrators of order four.

Notations and definitions. In this paper, we use R and | • | to denote the set of real numbers and a fixed norm on R r respectively, where r is a positive integer. For λ > 0, let D λ be the r × r matrix defined by diag(λ r , • • • , λ). For m positive integer, let e1, • • • , em and Jm denote the canonical basis of R m and the m-th Jordan block as (Jm)ij = δi,j+1, 1 ≤ i, j ≤ m, respectively. If M is a subset of R r , we use M to denote its closure. If x ∈ R, we denote by [x] the integer part of x i.e., the smallest integer not greater than x. We define the function sign as the multivalued function defined on R by sign(x) = x/|x| for x = 0 and sign(0) = [-1, 1]. Similarly, for every a ≥ 0 and x ∈ R, we use x a to denote |x| a sign(x). Note that

• a is a continuous function for a > 0 and is of class

C 1 with derivative equal to a |•| a-1 for a ≥ 1. If V : R r → R p
is a differentiable mapping, we use ∂jV to denote the partial derivative of V with respect to the j-th coordinate zj and more generally ∂ ξ V if V depends on a scalar coordinate ξ.

We refer to [START_REF] Levant | Finite-Time Stability and High Relative Degrees in Sliding-Mode Control[END_REF], [START_REF] Bernuau | On an extension of homogeneity notion for differential inclusions[END_REF] for the definitions of Filippov differential inclusion and Asymptotic and Finite time stability.

Definition 1: (Homogeneity. cf. [START_REF] Levant | Finite-Time Stability and High Relative Degrees in Sliding-Mode Control[END_REF].) Let r be a positive integer. A function f : R r → R (a vector field f : R r → R r or a vector-set function F : R r ⇒ R r respectively) is said to be homogeneous of degree q ∈ R with respect to the family of dilations δε(z), ε > 0, defined by

δε(z) = (z1, • • • , zr) → (ε p 1 z1, • • • , ε pr zr),
where p1 • • • , pr are positive real numbers (the weights), if for every positive ε and z ∈ R r , one has

f (δε(z)) = ε q f (z) f (δε(z)) = ε q δε(f (z)) or F (δε(z)) = ε q δε(F (z)) respectively . A differential equation ẋ = f (x) (A differential inclusion ẋ ∈ F (x)
) is said to be homogeneous of degree q ∈ R with respect to the family of dilations δε(z) if the vector field f : R r → R r (vector-set function F : R r ⇒ R r is).

II. HIGHER ORDER SUPER-TWISTING CONTINUOUS FEEDBACK FOR A CHAIN OF INTEGRATOR

The strategy consists first in building an appropriate feedback for a pure chain of integrator and then in tackling the perturbed case by a homogeneity argument.

A. Stabilization of a pure chain of integrator of arbitrarily order

Let r be a positive integer. The r-th order chain of integrator (CI)r is the single-input control system given by

(CI)r ż = Jrz + uer, z = (z1, • • • , zr) T ∈ R r , u ∈ R.
For κ < 0 and p > 0 with p + (r + 1)κ ≥ 0, set pi := p + (i -1)κ, 1 ≤ i ≤ r + 1. For ε > 0, let δε : R r → R r and ψε : R r+1 → R r+1 be the family of dilations associated with

(p1, • • • , pr) and (p1, • • • , pr+1) respectively.
The next proposition gathers a standard result on the stabilization in finite time of (CI)r (cf. [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]) as well as a geometric condition on the homogeneous stabilizing feedback, in the spirit of [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], [START_REF] Laghrouche | Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control[END_REF].

Proposition 1: [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], [START_REF] Laghrouche | Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control[END_REF] Let r be a positive integer. There exists a feedback law u0 : R r → R, homogeneous of degree pr+1 with respect to (δε)ε>0 such that the closed-loop system (CI)r with u0 is finite time stable and the following conditions hold true:

(i) the function z → Jrz + u0(z)er is homogeneous of degree κ with respect to (δε)ε>0 and there exists a continuous positive definite function V1 : R r → R+, C 1 except at the origin, homogeneous with respect to (δε)ε>0 of degree 2pr+1 such that there exists c > 0 and α ∈ (0, 1) for which the time derivative of V1 along non trivial trajectories of (CI)r verifies V1 ≤ -cV α 1 . (ii) z → ∂rV1(z) is homogeneous of non positive degree with respect to (δε)ε>0 and z → ∂rV1(z)u0(z) is non negative over R r . First of all, notice that α must be equal to 1 + κ/(2pr+1) ≥ 1/2 and ∂rV1 is homogeneous with respect to (δε)ε>0 of degree p + (r + 1)κ ≥ 0. In [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] (and also see below Subsection III-A1), a feedback law u0 : R r → R satisfying Condition (i) is explicitly built and it has been noticed in [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], [START_REF] Laghrouche | Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control[END_REF] that the very same feedback satisfies Condition (ii). The latter is instrumental for building a super-twisting feedback law as shown in the following theorem.

Theorem 1: Consider the homogeneous mapping u0 : R r → R and the continuous positive definite function V1 : R r → R+ provided by Proposition 1. For every kP ≥ 1 and kI > 0, let uST (•) be the the dynamic state-feedback controller defined by

ξ(t) = -kI ∂rV1(z(t)), ξ(0) = 0, uST (t) = kP u0(z(t)) + kI ξ(t), (1) 
and we refer to uST as the HOST controller. The feedback connection between (CI)r and (1) gives rise to the dynamical system over R r+1 given by

ż(t) = Jrz(t) + (kP u0(z(t)) + kI ξ(t))er, ξ(t) = -kI ∂rV1(z(t)), ξ(0) = 0. (2) 
There exist A, d > 0 so that, if W : R r+1 → R is defined by

W (z, ξ) = V1(z) + ξ 2 /2 2-α -Azrξ, (3) 
then W is positive definite, C 1 except at the origin, homogeneous with respect to (ψε)ε>0 and the time derivative of W along non trivial trajectories of (2) verifies Ẇ ≤ -dW 1/(2-α) . As a consequence, trajectories of (2) converge to zero in finite time, i.e., uST stabilizes (CI)r in finite time.

Proof of Theorem 1.

Consider first the positive definite function V := V1 + ξ 2 /2, which is homogeneous with respect to (ψε)ε>0 of degree 2pr+1. Using Items (i) and (ii), the time derivative of V along trajectories of (2) verifies V = V1 +(kP -1)∂rV1u0 ≤ -cV α 1 . For A > 0, the function W defined in (3) is continuous, C 1 except at the origin, homogeneous with respect to (ψε)ε>0 of degree 2(2 -α)pr+1 = pr + pr+1. Since V is positive definite, W is also positive definite for A small enough. The time derivative of W along trajectories of (2) verifies

Ẇ ≤ -c(2 -α)V 1-α V α 1 -AkP u0ξ + AkI zr∂rV1 -AkI ξ 2 .
(4) Since V ≥ V1 and 2 -α ≥ 1, one also has from the previous equation that Ẇ ≤ -cV1 + Ak 2 P u 2 0 /kI + AkI |zr∂rV1| -AkI ξ 2 /2. The function z → -cV1 + Ak 2 P u 2 0 /kI + AkI |zr∂rV1| is homogeneous of degree 2pr+1 with respect to (δε)ε>0 and, since V1 is definite positive, one has for A small enough,

Ẇ ≤ -cV1 + AkI ξ 2 /2. (5) 
Clearly, the right-hand side of the previous inequality is negative definite and smaller than -dW 1/(2-α) for some positive constant d. Therefore, trajectories of (2) converge to zero in finite time and hence (CI)r is stabilized in finite time by the feedback law uST . Remark 1: If p + (r + 1)κ = 0, then ∂rV1 is of zero homogeneity degree with respect to (δε)ε>0 and α = 1/2. In that case, W is homogeneous with respect to (ψε)ε>0 of degree 3pr+1.

Remark 2: In Subsection III-A1, the feedback u0 and the Lyapunov function V1 are explicitly built (as done in [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]) and the constant c in the differential inequality V1 ≤ -cV α 1 is explicitly given. The constant A appearing in Theorem 1 can now be chosen as follows. Let Rp and Np be the unit spheres in R r and R r+1 associated to the weights pi, 1 ≤ i ≤ r and

1 ≤ i ≤ r + 1 respectively. Set Vm = min (z,ξ)∈Np V 2-α , ZM = max (z,ξ)∈Np |zrξ|, Z 1 M = max z∈Rp |zr∂rV1|, Z 2 M = max z∈Rp u 2 0 , V 1 m = min z∈Rp V1.
Since V is positive definite, Vm > 0. By taking A as We next apply the previous results to get finite-time convergence of the perturbed chain of integrators defined next by

A ≤ min Vm 2ZM , ckI V 1 m 2(k 2 P Z 2 M + k 2 I Z 1 M ) , 2c kI , then the inequalities V 2-α /2 ≤ W ≤ 3V 2-α /2, ( 5 
ż = Jrz + (γu + ϕ)er (6) 
where the time-varying functions γ(•) and ϕ(•) are globally Lipschitz over R+ and verify the following: there exist γm, γM > 0 and γ, ϕ ≥ 0 such that, for every t ≥ 0 it holds

0 < γm ≤ γ(t) ≤ γM , | γ(t)| ≤ γ, | φ(t)| ≤ ϕ. (7) 

B. Stabilization of a perturbed chain of integrators: case of γ constant

In this subsection, we consider the case of γ constant and we obtain the following theorem.

Theorem 2: Consider the perturbed chain of integrators defined by [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], where the time-varying function γ(•) and ϕ(•) verify γ ≡ γm and (7) respectively. Assume that there exists a continuous homogeneous feedback law u0 and a Lyapunov function V1 verifying the assumptions (i) and (ii) of Theorem 1 with p + (r + 1)κ = 0.

Then, for every positive gains kP ≥ 1 and kI > 0, there exists λ0 > 0 only depending on the gains and ϕ such that, for λ ≥ λ0, the dynamic state-feedback controller u λ ST (•) defined by

ξλ (t) = -λkI ∂rV1(D λ z(t)), ξ λ (0) = 0, u λ ST (t) = kP u0(D λ z(t)) + kI ξ λ (t) /γm, (8) 
stabilizes (6) in finite-time. In particular, u λ ST (•) is continuous. Proof of Theorem 2. Fix now some kP ≥ 1 and kI > 0. For every λ > 0, consider the standard time-coordinate change of variable along trajectories of (6) defined by y(t) = D λ z(t/λ). Under the hypotheses of the theorem, (6) can be rewritten ẏ = Jry + (γmu λ + ϕ λ )er, where one has set, for t ≥ 0, u λ (t) := u(t/λ) and ϕ λ (t) := ϕ(t/λ). Note that, for a. e. t ≥ 0, | φλ | ≤ ϕ/λ.

The feedback connection between ( 6) and ( 8) can be written as the time-varying system over R r+1 given by ẏ(t) = Jrz(t) + (kP u0(y(t)) + kI ξ λ (t))er, ξλ (t) = -kI ∂rV1(y(t)) + φλ , ξ λ (0) = ϕ λ (0),

where ξ λ (t) = ξ λ (t/λ) + ϕ λ (t).

Clearly, (9) corresponds to the differential inclusion (2) perturbed by the time-varying vector field over R r+1 given by (0, • • • , 0, φλ (t)) T or, equivalently, by the multifunction (0, • • • , 0, [-ϕ/λ, ϕ/λ]) T taking values in the subsets of R r+1 . Let W be the Lyapunov function defined in [START_REF] Dinuzzo | Higher order sliding mode controllers with optimal reaching[END_REF]. Along non trivial trajectories of (9), one gets, for every t ≥ 0, that

Ẇ ≤ -dW 2/3 + ∂ ξ W φλ (t) ≤ -dW 2/3 + ϕ|∂ ξ W |/λ. (10) 
According to Remark 1, the homogeneity degree of |∂ ξ W | is equal to 3pr+1 -pr+1 = 2pr+1, i.e., the homogeneity degree of W 2/3 . One deduces from Eq. ( 10) that there exists ϕ * > 0 such that Ẇ ≤ -dW 2/3 /2, along trajectories of System (9) if ϕ/λ ≤ ϕ * , i.e., λ ≥ λ0 = ϕ/ϕ * . One then concludes as previously.

Remark 4: As noticed in Introduction, the contents of Theorem 2 can be derived without relying on HOST controllers but rather on extending the relative degree of the original system, cf. [START_REF] Laghrouche | Higher order sliding mode control based on integral sliding mode[END_REF], [START_REF] Levant | Finite-Time Stability and High Relative Degrees in Sliding-Mode Control[END_REF]. The latter technics however requires a longer chain of integrators.

Remark 5: Notice that the choice of λ0 can be made explicit once u0 and V1 are explicitly given.

Remark 6: We do not know how to extend the above result to cases where p + (r + 1)κ > 0. Indeed, for the above homogeneity argument to work, it is necessary that W 1/(2-α) (with α = 1/2) has the same degree of homegeneity as ∂ ξ W since φ is simply bounded. On the other hand, W 1/(2-α) has the same degree of homegeneity as ξ W ξ and thus ∂rV1 must necessarily be of degree zero. This occurs only if p + (r + 1)κ = 0.

C. Stabilization of a perturbed chain of integrators: general case

In this subsection, we apply Subsection II-A to get finite-time convergence of ( 6) where the time-varying functions γ(•) and ϕ(•) are measurable over R+, verify [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF] and assuming an extra boundedness hypothesis for ϕ(•). Note that this hypothesis can be explicitelty quantified by using W Remark 7: Note that the technics of extension of relative degree can also be applied in this case, cf. [START_REF] Levant | Integral high-order sliding modes[END_REF].

We now want to derive conditions under which the supertwisting feedback defined in Eq. ( 1) stabilizes System (6) in finite time. We obtain the following theorem in case ϕ(•) is bounded.

Theorem 3: Consider the perturbed chain of integrators defined by [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF], where the time-varying function γ(•) and ϕ(•) verify [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF]. Assume that there exists a continuous feedback law u0 and a Lyapunov function V1 verifying the assumptions of Theorem 1 with p + (r + 1)κ = 0. Moreover assume that , in addition to Hypotheses [START_REF] Levant | Higher-order sliding modes, differentiation and outputfeedback control[END_REF], |ϕ| ≤ ϕM for some known non negative constant ϕM and set δγ = γM /γm -1 ≥ 0.

For every kP ≥ 1, kI > 0 and λ > 0, consider the dynamic state-feedback controller u λ ST (•) defined by ξλ (t) = -λkI ∂rV1(D λ z(t)), ξλ(0) = 0,

u λ ST (t) = kP u0(D λ z(t)) + kI ξ λ (t) /γm. ( 11 
)
Then there exist δ0, λ0 > 0 so that if δγ ≤ δ0 and λ ≥ λ0, then (6) is stabilized in finite-time by the dynamic state-feedback controller u λ ST (•) defined in Eq. [START_REF] Kamal | Higher order super-twisting algorithm[END_REF]. In particular u λ ST (•) is continuous.

Proof of Theorem 3. As in the proof of Theorem 2, fix kP ≥ 1 and kI > 0. For λ > 0, consider the time-coordinate transformation y(t) = D λ z(t/λ). Under the hypotheses of the theorem, ( 6) can be rewritten ẏ = Jry +(γ λ u λ +ϕ λ )er, where one has set, for t ≥ 0 u λ (t) = u(t/λ), γ λ (t) = γ(t/λ) and ϕ λ (t) = ϕ(t/λ). Then, for a. e. t ≥ 0, | γλ | ≤ γ/λ and

| φλ | ≤ ϕ/λ. For t ≥ 0, define ξ λ (t) = -kI t 0 ∂rV1(y(s))ds + ϕ λ (t)/γ λ (t).
The feedback connection between ( 6) and ( 11) can be written as the time-varying system over R r+1 given by

                 ẏ = Jry + γ λ (t) γm kP u0(y) + kI ξ λ (t) + kI γ λ (t) -γm γm ξ λ (t) er, ξλ = -kI ∂rV1(y) + φλ (t)γ λ (t) -γλ (t)ϕ λ (t) γ 2 λ (t) , ξ λ (0) = ϕ λ (0). (12) 
Notice that, for t ≥ 0, |γ λ (t) -γm| γm ≤ δγ. Consider now the Lyapunov function W defined in [START_REF] Dinuzzo | Higher order sliding mode controllers with optimal reaching[END_REF]. By taking into account Remark 3, one gets along non trivial trajectories of System ( 12), for a.e. t ≥ 0, that

Ẇ ≤ -dW 2/3 + δγ|∂rW ξ λ | + |∂ ξ W | λγ 2 m (ϕγM + γϕM ). (13) 
Exactly as for |∂ ξ W |, |∂rW ξ| is homogeneous with respect to (ψε)ε>0 of degree 2pr+1. One deduces that there exist δ0 small enough, λ1 > 0 and a positive constant C1 > 0 such that, if δγ ≤ δ0 and λ ≥ λ1, then one has for a.e. t ≥ 0 Ẇ ≤ -dW 2/3 /2. along non trivial trajectories of (12) and one concludes as in Theorem 2.

III. EXAMPLES AND SIMULATIONS

A. Feedbacks u0 and Lyapunov functions V1 verifying the assumptions of Theorems 2 and 3

We next provide examples of controllers u0 and Lyapunov functions V1 satisfying the conditions of Theorem 2 for r ≥ 2. We next assume that p = 1 and thus κ = -1/(r + 1).

1) Hong's controller: Such a controller is simply borrowed from [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF]. In that reference, the convergence is proved by using a Lyapunov function V0 explicitly constructed for that purpose. The latter function does not match the the assumptions of Theorem 2 and we have to modify it to get the required Lyapunov function V1.

Let l1, • • • , lr positive real numbers. We define, for i = 0, ..., r + 1, the functions v0 ≡ 0 and for 1 ≤ i ≤ r -1, vi+1 = -li+1 zi+1 β i -vi β i α i+1 /β i , where β0 = p2 and (βi + 1)pi+1 = β0 + 1, and αi = pi+1/pi, for i = 1, ..., r. One then takes the controller u0 to be equal to the continuous function vr. Consider the Lyapunov function

V0 = r i=1
Wi, where the positive real-valued functions Wi,

1 ≤ i ≤ r are given by Wi = z i v i-1 wi(z1, • • • , zi-1, s)ds with wi = zi β i-1 -vi-1 β i-1 , i = 1, • • • , r. Then, there exists l, l1, • • • , lr > 0 such that the time derivative of V along every non trivial trajectory of ż = Jrz + u0er satisfies V0 ≤ -l V 2+2κ 2+κ 0
. This proves that u0 stabilizes ż = Jrz + uer to the origin in finite-time. Let λ := 2/(2r-1) < 1. Note that 1-λ = βr-1/(1 + βr-1). Take now V1 = V λ 0 /λ. A simple computa-

tion yields ∂rV1 = ( zr β r-1 -vr-1 β r-1 )/V β r-1 β r-1 +1 0 .
One then checks that ∂rV1 is homogeneous of degree zero with respect to δε, globally bounded, and continuous except at the origin.

2) Modified Hong's Controller: The following controller is a hybrid form between the continuous controller presented by Hong [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] and a terminal sliding mode approach also presented by Hong et al. in [START_REF] Hong | Finite time convergent control using terminal sliding mode[END_REF]. Note that its form is very close to the controller proposed in [START_REF] Hong | A new approach to terminal sliding mode control design[END_REF]. Let κ, the li's, αi's and the βi's as before. The functions vi are defined as above for 1 ≤ i ≤ r -1 but we now set vr = -lrwr with wr := |zr| β r-1 + |vr-1| β r-1 αr /β r-1 sign (zr -vr-1). The controller u0 is then taken equal to vr and it stabilizes ż = Jrz + uer in finite-time. To see that, consider the positive

definite function V0 = r i=1
Wi where, for i = 1, ..., r, one

has Wi = z i v i-1 wi(z1, • • • , zi-1, s)ds with wi, 1, • • • , r -1
defined as in Hong's controller and wr defined just above. One deduces from an argument entirely similar to that of [START_REF] Hong | Finite-time stabilization and stabilizability of a class of controllable systems[END_REF] that exists l > 0 such that, one has along trajectories of the closed-loop system V0 ≤ -lV 2+2κ 2+κ

0

. Finite-time convergence to the origin follows immediately. Finally remark that the feedback control law vr is continuous at zero. One can then apply the results given in Section II. The actual Lyapunov function V1 is again taken of the form V λ 0 /λ with λ = 1/(1 + βr-1). A simple computation yields ∂rV1 = V λ-1 0 wr which is homogeneous of degree zero with respect to (δε)ε>0.

B. Simulations

In this subsection, we verify the effectiveness of our design through simulations. We deal with a chain of integrator of order four and we show the robustness with respect to perturbations. Consider the fourth order integrator system given by ż = J4z+(γu+ϕ(t))e4. We study in the following subsections two cases: the first one deals with ϕ ≡ 0 and γ ≡ 1, and the second case considers ϕ = 0 and γ = 1, both for the continuous and discontinuous HOST controllers corresponding to the Hong's controller u H 0 and to the modified Hong's controller u M H 0 and respectively. For all subsequent simulations, the control parameters are tuned as follows: l1 = l2 = 1, l3 = 4, l4 = 8 and κ = -1/5 with initial condition z1(0) = -5, z2(0) = 2 and z3(0) = z4(0) = 4.

C. Simulation of pure integrator chain for u = u0

We start by stabilizing the pure integrator chain, (i.e., with ϕ ≡ 0) by the controller u = u0 where u0 represents either the Hong's controller u H 0 or the modified Hong's controller u M H 0 given in Sections III-A1 and III-A2 respectively. Figures 1(a) and 1(c) represents u H 0 and u M H 0 presented in Sections III-A1 and III-A2 respectively. These controllers force the states (z1, z2, z3, z4) to zero in finite time, as shown in Figure 1(b) and Figure 1(d). We now consider the case of a perturbed system with perturbations ϕ and γ defined as ϕ(t) = sin(t), γ(t) = 3 + 1 2 sin(0.5t),

Clearly, ϕ is bounded and globally Lipschitz, as well as γ which is in addition positive. The result is similar to the previous cases. However the controller acts in order to compensate the perturbation and we can see clearly in Figure 4 IV. CONCLUSION

In this paper we propose a general approach to design a continuous controller for a perturbed chain of integrators of arbitrary order generalizing the well-known supertwisting algorithm provided in [START_REF] Kamal | Higher order super-twisting algorithm[END_REF] for integrator chain of length one and two. We have first designed a controller for the pure chain of integrators using a geometric condition inspired from [START_REF] Harmouche | Robust and adaptive higher order sliding mode controllers[END_REF], [START_REF] Laghrouche | Control of PEMFC air-feed system using lyapunov-based robust and adaptive higher order sliding mode control[END_REF] and we have proved convergence in finite time for the corresponding closed-loop system thanks to the explicit construction of strict homogeneous Lyapunov function for an extended system. As for the perturbed chain of integrators, we partially solve the complete problem by using homogeneity arguments applied to an extended differential inclusion. Future work consists of addressing the general case of a perturbed chain of integrators.

3 :

 3 ) and Ẇ ≤ -AkI V are deduced. Then one can take d = Ak/4. The next remark will be used in the proof of Theorem 3.Remark Note that the constant kP can be replaced by any continuous function kP : [0, R + ) → [km, kM ] where km, kM are positive constants with km ≥ 1.

  z 1 , z 2 , z 3 and z 4 Control law u versus time (s) z 1 , z 2 , z 3 and z 4 .

Fig. 1 .

 1 Fig. 1. Pure integrator chain without integration action: (a) and (b) Hong's controller. (c) and (d) Modified Hong's controller

Figure 2 (

 2 a) and Figure3(a) show the control law of Hong's based controller with integral action and the modified Hong's based controller with integral action respectively. Figures2(c) and 3(c) show the continuous integrator action which vanishes to zero as there is no perturbation to compensate.

4 (b) z 1 , z 2 , z 3 and z 4 Fig. 2 .Fig. 3 .

 412423 Fig. 2. Pure integrator chain with integral action (with Hong's controller)

  (a) and Figure 4(c) for the Hong's based controller that u(t) = -ϕ(t) γ(t) after states convergence to zero. Similar results are obtained in the case of the modified Hong's based controller in Figure 5(a) and Figure 5(c).

4 (b) z 1 , z 2 , z 3 and z 4 Fig. 4 .Fig. 5 .

 412445 Fig. 4. Perturbed integrator chain with integral action (with Hong's controller)
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