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ROLLING AGAINST A SPHERE: THE NON TRANSITIVE CASE

YACINE CHITOUR
MAURICIO GODOY MOLINA

PETRI KOKKONEN
IRINA MARKINA

Abstract. We study the control system of a Riemannian manifold M of dimension
n rolling on the sphere Sn. The controllability of this system is described in terms
of the holonomy of a vector bundle connection which, we prove, is isomorphic to the
Riemannian holonomy group of the cone C(M) of M .

Using Berger’s list, we reduce the possible holonomies to a few families. In par-
ticular, we focus on the cases where the holonomy is the unitary and the symplectic
group. In the first case, using the rolling formalism, we construct explicitly a Sasakian
structure on M ; and in the second case, we construct a 3-Sasakian structure on M .

1. Introduction

It is well known, that modern control theory began mostly as a linear theory, having
its roots in electrical engineering by making use of linear algebra, complex and func-
tional analysis as its main tools. Nonlinear control theory relies to a large extend on
differential geometry. In the present paper we deal with a generalization of the classical
nonlinear mechanical problem: rolling of rigid bodies. More precisely, we consider an
n-dimensional Riemannian manifold M rolling on a space form of positive curvature
without slipping and twisting. Our main interest is to relate the controllability of this
system with the geometric properties of the rolling manifold M . The kinematic con-
straints of no-slipping and no-spinning have nonholonomic nature. Core concepts for
studying the control and geometry of nonholonomic systems are the notions of fiber
bundle and associated connections. The bundle point of view not only gives us a way
of organizing variables in a physically meaningful way, but reveals the basic idea of the
relation between geometric properties of the two rolling manifolds. A bundle connection
relates base and fiber variables in the system, and in this sense one can take a gauge
theoretical point of view of nonholonomic control systems.
Thus the rolling system of the manifold M over the space form of positive curvature,

that is, the n-dimensional sphere of some radius, constrained by the no-slipping and
no-twisting conditions, leads to the principal SO(n + 1)-bundle Q → M , where Q is
the configuration space of the rolling system. The rolling distribution, encoding the
no-slipping and no-twisting conditions, is an Ehresmann connection. We associate a
vector bundle to the SO(n+1)-bundle Q → M , by making use of representation theory.
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This allows us to use a metric connection related to the vector bundle, that is naturally
called the rolling connection. In the next step we show that the holonomy group of
this rolling connection is isomorphic to the Riemannian holonomy of the Riemannian
cone C(M) over the original manifold M . The details are presented in Sections 2 and
3. There we also reveal the relation between the properties of the holonomy group
of the Riemannian cone C(M) and the geometry of the manifold M . We would like
to stress that the holonomy group of the rolling connection completely determines the
controllability of the rolling system. Section 4 shows that if the holonomy group of
the rolling connection for an odd dimensional manifold M is a subgroup of the unitary
group, then the rolling system is not controllable and moreover the manifold M itself
inherits the Sasakian structure of odd dimensional sphere over which the manifold M is
rolled. We restore all the Sasakian structure on M , starting from the holonomy group
of the rolling connection. The Heisenberg group gives an example of the manifold M
whose rolling holonomy group is isomorphic to the unitary group. The last Section 5
consider the case of the symplectic holonomy groups and their relation to the 3-Sasakian
structure of the rolling manifold M .

2. Preliminaries

We assume that all the Riemannian manifolds we will be working with are connected,
simply connected, oriented and complete.

2.1. The rolling system. The higher dimensional (intrinsic) rolling system has been
introduced in [5, 9]. Intuitively, this abstract mechanical system consists of two n

dimensional Riemannian manifolds (M, g) and (M̂, ĝ) rolling one on the other. More
precisely, we can construct the state space

Q = Q(M, M̂) = {A : TxM → Tx̂M̂ |A ∈ SO(TxM,Tx̂M̂), x ∈ M, x̂ ∈ M̂}.

An absolutely continuous curve q : [0, τ ] → Q is called a rolling curve if q(t) = (x(t), x̂(t);A(t))
satisfies the conditions

(NS) ˙̂x(t) = A(t)ẋ(t), for almost all t ∈ [0, τ ].
(NT) q(t)D

dt
Z(t) = D

dt
q(t)Z(t) for any tangent vector field Z(t) along x(t), for almost

all t ∈ [0, τ ], where D
dt

denotes the covariant derivative on M or M̂ .

The restriction (NS) is often called the no-slip condition, and (NT) the no-twist condi-
tion.
The rolling curves determine a rank n subbundle DR →֒ TQ, called the rolling dis-

tribution defined as

DR|q = {q̇(0) | q is a rolling curve s.t. q(0) = q}, q ∈ Q.

Alternatively, we can define this distribution by means of the rolling lift LR(X)|q ∈ TqQ
of a tangent vector X ∈ TxM , given by

LR(X)|q =
d

dt

∣∣∣∣
t=0

(
P t
0(γ̂) ◦ A ◦ P 0

t (γ)
)
,

where q = (x, x̂;A), and (γ, γ̂) is any pair of curves satisfying

(γ(0), γ̂(0)) = (x, x̂), (γ̇(0), ˙̂γ(0)) = (X,AX).
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As usual P b
a(γ) (resp. P

b
a(γ̂)) denotes the parallel transport in M along γ from γ(a) to

γ(b) (resp. M̂ along γ̂ from γ̂(a) to γ̂(b)). In this terms we have that

DR|q = LR(TxM)|q,

and a curve q : [0, τ ] → Q is a rolling curve if and only if q̇(t) ∈ DR|q(t) for almost
all t ∈ [0, τ ]. For more details regarding the rolling lift, see [11], and for a coordinate
description of DR, see [9].
The controllability question for the rolling system asks whether for any two given

points q0, q1 ∈ Q there exists a rolling curve q : [0, τ ] → Q such that q(0) = q0 and
q(τ) = q1. This question is in general very hard to answer, and thus we focus on the

special case when the manifold M̂ has some simpler geometry.

2.2. Rolling against a space form. In [6, 8], the authors study the rolling system

when (M̂, ĝ) is a space form, that is, a complete and simply connected Riemannian
manifold of constant sectional curvature c ∈ R. In this case, the natural projection
πQ,M : Q → M is a principal bundle of a special form, which we proceed to explain.
Recall that on a G-principal bundle π : P → M a G-invariant subbundle D ⊂ TP is

a horizontal distribution if it satisfies TpP = Dp ⊕ ker dpπ for any p ∈ P .

Theorem 2.1. The projection πQ,M : Q → M admits a G-principal bundle structure

with horizontal distribution DR, for some Lie group G, if and only if M̂ is a space form
(under some genericity assumptions, see [8, Theorem 4.10]). In this situation, the Lie
group G is given by

G =





SO(n+ 1), c > 0,

SE(n), c = 0,

SO0(n, 1), c < 0,

where c is the curvature of M̂ .

According to [10, Proposition 2.3.7], it is possible to associate to a principal bundle
a vector bundle via a representation of its structure group. In the non-Euclidean case
c 6= 0, using Theorem 2.1 and the canonical representation of G on R

n+1, we obtain the
so-called rolling connection on the vector bundle π : TM ⊕ R → M .

Definition 2.2. The rolling connection ∇R,c, is a connection for the vector bundle
π : TM ⊕ R → M , given by

∇R,c
Y (X, r) =

(
∇YX + r(x)Y, Y (r)− cg(Xx, Y )

)
,

where x ∈ M , Y ∈ TxM , X ∈ VF(M) and r ∈ C∞(M).

We therefore obtain a holonomy H∇R,c

⊂ GL(n + 1) called the rolling holonomy
group. Moreover, this connection is metric with respect to the fiber inner products

(1) hc

(
(X, r), (Y, s)

)
= g(X, Y ) + c−1rs.

If c < 0, then H∇R,c

⊂ SO0(n, 1), and H∇R,c

⊂ SO(n+ 1) when c > 0.
In what follows, we will normalize the value of the curvature c ∈ R to c ∈ {−1, 1}.

With this extra geometric information of the rolling system in the case M̂ is a space
form, it is possible to give general answers to the controllability question. Using The-
orem 2.1 and [10, Proposition 2.3.7], it is not difficult to see that the rolling system
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being controllable is equivalent to determining whether the system has full rolling ho-
lonomy group, that is, whether H∇R,c

= G in the theorem above. For the hyperbolic
case c = −1, a full answer was given in [7] by means of the following result

Theorem 2.3. For c = −1, the rolling system is not controllable if and only if there
exists a complete simply connected Riemannian manifold (M1, g1) such that (M, g) is a
warped product either of the form

(WP1) (R×M1, ds
2 ⊕e−s g1), or

(WP2) (Hk × M1, g
k ⊕cosh(d) g1), where 1 ≤ k ≤ n, gk is the usual hyperbolic metric

and for each x ∈ H
k, d(x) is the distance between x and an arbitrary fixed point

x0 ∈ H
k.

In the spherical case, that is c = 1, the situation is more complicated due to the non-
trivial topology of spheres, see [6]. In fact, there is an almost complete answer in the

case of even dimensional spheres. Recall that since H∇R,1

is a subgroup of SO(n + 1),

there is a natural action ofH∇R,1

on the unit sphere Sn. In this framework, the following
result holds, see [6].

Theorem 2.4. Assume that the action of H∇R,1

on the unit sphere is not transitive,
then (M, g) admits the unit sphere as its universal covering space. In particular, in this
situation the rolling distribution DR is involutive and, thus, the rolling system is not
controllable.

Therefore, in order to understand the controllability of the system, one needs to have
a complete knowledge of the subgroups of SO(n + 1) acting transitively on the unit
sphere. The following is a classical result answering this question.

Theorem 2.5 (Montgomery-Samelson [13]). Let H be a connected (compact) subgroup
of SO(n + 1) which acts transitively on the unit sphere Sn ⊂ R

n+1. Then H is one of
the following groups:

(1) SO(n + 1),
(2) U(m), if n = 2m− 1,
(3) SU(m), if n = 2m− 1,
(4) Sp(k), if n = 4k − 1,
(5) Sp(k) · Sp(1), if n = 4k − 1,
(6) Sp(k) · U(1), if n = 4k − 1,
(7) G2, n = 6,
(8) Spin(7), n = 7,
(9) Spin(9), n = 15.

As is usual in the holonomy literature, the notation A · B stands for (A × B)/Z2.
In both cases above where this notation appears, the subgroup Z2 can be seen in the
standard real matrix representation simply as {±Id}.
As a consequence of Theorems 2.4 and 2.5, we have a characterization of the control-

lability of the system of M rolling on Sn in terms of the geometry of M , for almost all
n even, which improves the result [6, Corollary 4.7].

Corollary 2.6. If n is even and n 6= 6, then the rolling system is completely controllable
if and only if (M, g) is not of constant curvature 1.
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Therefore, to complete the picture for the case of M̂ a space form, it remains to study
the controllability problem in the following situations:

(Even): The manifold M (and thus the sphere) has dimension 6.
(Odd): The manifold M is odd dimensional.

The aim of this paper is to start the study of the case (Odd), when the action of

the rolling holonomy group H∇R,c

on Sn is transitive.

3. Holonomy of cones and rolling holonomy

3.1. Sasakian, Einstein-Sasakian and 3-Sasakian manifolds. The aim of this
subsection is to present the definition of the manifolds of our concern. For a full and
detailed study of the geometry and topology of these manifolds, we refer the interested
reader to [2]. We will employ the canonical identification of (1, 1)-tensor fields with
fields of endomorphisms.
An almost contact structure on a manifold M is a triplet (ξ, η,Φ), where η ∈ Ω1(M)

is a one-form, ξ ∈ VF(M) is a vector field, and Φ is a (1, 1)-tensor field satisfying

η(ξ) = 1 and Φ2 = −idTM + ξ ⊗ η.

An almost contact structure (ξ, η,Φ) on a manifold M is a contact structure if the one
form dη(ξ, ·) vanishes identically. In this situation, ξ is called Reeb vector field and η is
called contact form.
A contact metric structure on a manifold M is a quadruplet (ξ, η,Φ, g), where the

triplet (ξ, η,Φ) is a contact structure and g is a Riemannian metric satisfying the
condition

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X, Y ∈ VF(M). We say that the tensor field Φ is compatible with
respect to the metric g.
Recall that the cone (C(M), g̃) of a Riemannian manifold (M, g) is the warped prod-

uct
C(M) = M × R+, g̃ = r2g + dr2.

It is well-known, see [2, Proposition 6.5.2], that there is a one-to-one correspondence be-
tween the set of almost contact structures (ξ, η,Φ) on M and almost complex structures
I on C(M) satisfying some natural conditions.
A Sasakian structure on a manifold M is a contact metric structure (ξ, η,Φ, g) on

M , where the corresponding almost complex structure I on C(M) is integrable.

Definition 3.1. A Riemannian manifold (M, g) with a Sasakian structure (ξ, η,Φ, g)
is called a Sasakian manifold, and the Reeb vector field ξ is called the characteristic
vector field.

A Sasaki-Einstein manifold M is a Sasakian manifold which is also Einstein, that
is, its Ricci tensor Ricg is a constant multiple of the metric g. It follows from some
general considerations, see [15], that in the case that the dimension of M is 2m+1, the
Einstein equation takes the form

Ricg = 2mg.

In a similar form to the definition of Sasakian structure, we can define a “quater-
nionic” analogue, based on [3, Proposition 1.2.2].
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Definition 3.2. A manifold M is 3-Sasakian if it admits three Sasakian structures with
characteristic vector fields ξ1, ξ2, ξ3 which are orthonormal and satisfy [ξa, ξb] = 2ǫa,b,cξc

for {a, b, c} = {1, 2, 3}, where ǫa,b,c is the sign of the permutation

(
1 2 3
a b c

)
.

3.2. Comparison of holonomies. The following table contains the equivalent formu-
lation of several geometric structures over a Riemannian manifold N of dimension n in
terms of its Riemannian holonomy H∇. Some of these are classic, and the reader can
consult [1, 2] for details.

Table 1. Geometric structures in terms of holonomy.

Dimension of N Name Riemannian Holonomy

n = 2k Kähler H∇ ⊂ U(k)
n = 2k Calabi-Yau H∇ ⊂ SU(k)
n = 4k Hyper-Kähler H∇ ⊂ Sp(k)
n = 4k Quaternionic Kähler H∇ ⊂ Sp(k) · Sp(1)

It is well-known that the holonomy of (C(M), g̃) encodes important geometric infor-
mation about the manifold M . Let us briefly recall some well-known equivalences that
can be found, for instance, in [2].

Theorem 3.3. The following equivalences hold:

• (M, g) is a Sasakian manifold if, and only if, (C(M), g̃) is Kähler.
• (M, g) is a Sasaki-Einstein manifold if, and only if, (C(M), g̃) is Calabi-Yau.
• (M, g) is a 3-Sasakian manifold if, and only if, (C(M), g̃) is hyper-Kähler.

Before proceeding with one of the main results of the present paper, let us state a
technical lemma.

Lemma 3.4. Let X, Y ∈ VF(M), b ∈ C∞(M) and (x, s) ∈ C(M) = M × R+. Then

∇̃X |(x,s)(Y + b∂s) = ∇X |xY +
b(x)

s
X +

(
X|x(b)− sg(X|x, Y |x)

)
∂s|(x,s),

∇̃∂s|(x,s)(Y + b∂s) =
1

s
Y |x,

where ∇̃ and ∇ denote the Levi-Civita connection on the cone (C(M), g̃) and on (M, g),
respectively.

Proof. As noted in [12, p.206], from the Koszul formula it follows that on a warped
product of the form (C(M), g̃) we have that

∇̃X |(x,s)∂s = ∇̃∂s |(x,s)X =
1

s
∂s|(x,s),

∇̃X |(x,s)Y = ∇X |xY − sg(X|x, Y |x)∂s|(x,s),

∇̃∂s |(x,s)∂s = 0.

The formulas in the statement follow from these and the standard calculation rules for
affine connections. �
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The following result relates the Riemannian holonomy H∇̃ of (C(M), g̃) with the
rolling holonomy obtained by rolling M over the unit sphere. We denote the rolling
connection ∇R,1 by ∇R, and the corresponding holonomy by H∇R

.

Theorem 3.5. Let (M, g) be a Riemannian manifold. We have for every (x, s) ∈ C(M)

that H∇̃|(x,s) is isomorphic to H∇R

|x. More precisely, defining

I(x,s) : T(x,s)C(M) → TxM × R

X + b∂s|(x,s) 7→ (sX, b)

then for all loops Γ(t) = (γ(t), a(t)) of C(M) based at (x, s) one has

I(x,s) ◦
(
P ∇̃

)1
0
(Γ) =

(
P∇R)1

0
(γ) ◦ I(x,s).

Proof. Let Y (t)+ b(t)∂s|Γ(t) be a vector field on C(M) along a curve Γ(t) = (γ(t), a(t)).

By definition Y (t) is a vector field on M along γ, and Γ̇(t) =
(
γ̇(t), ȧ(t)∂s|Γ(t)

)
. Using

the formulas in Lemma 3.4, we see that

∇̃Γ̇(t)(Y (t) + b(t)∂s) = ∇γ̇(t)Y (t) +
b(t)

a(t)
γ̇(t)+

+
(
ḃ(t)− a(t)g(γ̇(t), Y (t))

)
∂s|Γ(t) +

ȧ(t)

a(t)
Y (t)

=
1

a(t)

(
∇γ̇(t)(a(t)Y (t)) + b(t)γ̇(t)

)
+

+
(
ḃ(t)− g(γ̇(t), a(t)Y (t))

)
∂s|Γ(t)

)

= I−1
Γ(t)

(
∇R

γ̇(t)(aY, b)
)
= I−1

Γ(t)

(
∇R

γ̇(t)(IΓ(·)(Y + b∂s))
)
.

Suppose now that Y (t) + b(t)∂s|Γ(t) is a parallel vector field along Γ. We obtain the
following equations from the discussion above

Y (t) + b(t)∂s|Γ(t) =
(
P ∇̃

)t
0
(Γ)

(
Y (0) + b(0)∂s|Γ(0)

)

IΓ(t)

(
Y (t) + b(t)∂s|Γ(t)

)
=

(
P∇R)t

0
(γ)

(
a(0)Y (0), b(0)

)
.

Therefore
(
IΓ(t) ◦

(
P ∇̃

)t
0
(Γ)

)(
Y (0) + b(0)∂s|Γ(0)

)
=

(
P∇R)t

0
(γ)

(
a(0)Y (0), b(0)

)

=
((

P∇R)t
0
(γ) ◦ IΓ(0)

)(
Y (0) + b(0)∂s|Γ(0)

)
.

Since Y (0) and b(0) are arbitrary, we have that the equality

IΓ(t) ◦
(
P ∇̃

)t
0
(Γ) =

(
P∇R)t

0
(γ) ◦ IΓ(0)

holds for all t ∈ [0, 1]. Finally, assuming that Γ(t) is a loop in C(M) and taking t = 1
in the formula above, we obtain the desired result. �

Two rather immediate consequences of Theorems 3.3 and 3.5 that are relevant for
the rolling system are the following.

Corollary 3.6. Let (M, g) be a connected, simply connected, oriented Riemannian
manifold of dimension n = 2m+ 1 rolling on S2m+1. The following implications hold:

• if H∇R

⊂ U(m+ 1), then (M, g) is a Sasakian manifold,
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• if H∇R

⊂ SU(m+ 1), then (M, g) is a Sasaki-Einstein manifold, and

• if H∇R

⊂ Sp(k + 1), if n = 4k + 3, then (M, g) is a 3-Sasakian manifold.

From Theorem 3.5 it follows that the list in Theorem 2.5 can be reduced using the
classical Berger list of holonomy groups and dimension arguments. More precisely,

Corollary 3.7. Let (M, g) be a connected, simply connected, oriented Riemannian

manifold of dimension n = 2m+ 1 rolling on S2m+1. The only possibilities of H∇R

are
the following

(1) SO(n + 1),
(2) U(m+ 1),
(3) SU(m+ 1),
(4) Sp(k + 1), if n = 4k + 3,
(5) Sp(k + 1) · Sp(1), if n = 4k + 3,
(6) Spin(7), n = 7.

Proof. From Theorem 3.5, we know that H∇R ∼= H∇̃. The groups Sp(k) · U(1) and
Spin(9), from the Montgomery-Samelson list do not appear in Berger’s list of possi-
ble holonomy groups, and therefore can be removed. The group G2 is removed by
dimensionality reasons. �

In case (1), the rolling system is completely controllable. It follows from Table 1 and
Theorem 3.3 that in cases (2), (3) and (4) the Riemannian manifold (M, g) is Sasakian,
Sasaki-Einstein and 3-Sasakian, respectively. The cases (5) and (6) do not seem to have
well-known names.

4. Unitary rolling holonomy

Let us start with the first non-trivial case in Corollary 3.7, that is when H∇R

⊂
U(m+ 1). As was mentioned in Corollary 3.6 in this case the manifold M is Sasakian.
We want to show how the Sasakian structure on M is inherited by rolling over the
Sasakian unit sphere S2m+1 by making use of the rolling connection instead of the
Kähler structure of the Riemannian cone C(M).
Before stating and proving the main theorem in this section, let us recall equivalent

definitions of Sasakian manifolds. See, for instance [3, 14, 15].

Proposition 4.1. Let (M, g) be a Riemannian manifold, with ∇ the Levi-Civita con-
nection of g and R(X, Y ) the Riemannian curvature tensor. Then the following are
equivalent:

a) There exists a Killing vector field Z of unit length such that the tensor field
JX = ∇XZ satisfies

(2) (∇XJ)Y = g(Z, Y )X − g(X,Z)Y, for any X, Y ∈ VF(M).

b) There exists a Killing vector field Z of unit length such that the Riemannian
curvature satisfies

R(X,Z)Y = g(Z, Y )X − g(X,Z)Y, for any X, Y ∈ VF(M).

c) The Riemannian cone C(M) = (M×R+, g̃) is Kähler, i.e., (M, g) is a Sasakian
manifold.
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4.1. Unitary holonomy implies Sasakian. With all of these at hand, we have the
following result.

Theorem 4.2. Let (M, g) be a Riemannian manifold of dimension 2m + 1. Suppose

that H∇R

⊂ U(m + 1). Then there exists a Killing vector field Z of unit length and a
(1, 1) tensor field J satisfying

(3) JX = ∇XZ, (∇XJ)Y = g(Z, Y )X − g(X,Z)Y,

for any vectors X, Y tangent to M . Moreover, the one form α = g(Z, ·) is contact with
Reeb vector field Z, the distribution D = kerα is the contact distribution and J |D is a
compatible almost complex structure on D. Thus (Z, α, J, g) is a Sasakian structure on
M .

Proof. The scheme of the proof is as follows. Using the complex structure of TM ⊕ R

determined by the action of the group U(m+1), we define the (1, 1) tensor field J and
the vector field Z, and show that they satisfy conditions (3). With these, it is possible
to prove the rest of the theorem. For notational simplicity, in this proof we denote by
(X, r) the vector X + r∂s|(x,s) ∈ T(x,s)C(M).

Let us fix an arbitrary point x0 ∈ M . Since H∇R

|x0
is a subgroup of the unitary group

U(Tx0
M ⊕R), with respect to the metric h = h1 defined in equation (1), it follows that

there exists an H∇R

|x0
-invariant almost complex structure

JR
0 : Tx0

M ⊕ R → Tx0
M ⊕ R.

Specifically, the map JR
0 satisfies

‖JR
0 (X, r)‖h = ‖(X, r)‖h, for all (X, r) ∈ Tx0

M ⊕ R,

(JR
0 )

2 = −id,

BJR
0 = JR

0 B, for all B ∈ H∇R

|x0
⊂ U(Tx0

M ⊕ R).

The parallel transport
(
P∇R

)1
0
(γ)JR

0 is independent of the curve γ joining x0 to x, and
therefore the map

JR
x :=

(
P∇R)1

0
(γ)JR

0 , γ(0) = x0, γ(1) = x

is a well-defined (1, 1)-tensor field on TM ⊕ R → M satisfying

‖JR(X, r)‖h = ‖(X, r)‖h, for all (X, r) sections of TM ⊕ R,

(JR)2 = −id,

∇RJR = 0.

Let us define a (1, 1)-tensor field J on M , a one form β ∈ Ω1(M) and a vector field
Z ∈ VF(M) as follows

(JxX, βx(X)) := JR
x (X, 0), X ∈ TxM,

(Zx, 0) := JR
x (0, 1),

for all x ∈ M . To see that JR
x (0, 1) has second component identically zero, we simply

notice that

h(JR
x (0, 1), (0, 1)) = 0,
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for all x ∈ M . Let us check the properties of the (1, 1) tensor J . Let X, Y be sections
of D. Then

g(JX, JY ) = h
(
(JX, 0), (JY, 0)

)
= h

(
JR(X, 0), JR(Y, 0)

)

= h
(
(X, 0), (Y, 0)

)
= g(X, Y ).

(4)

We also see that

(5) (−X, 0) = (JR)2(X, 0) = JR(JX, 0) = (J2X, 0).

An important fact to have in mind is that JZ = 0, as can be seen directly

(6) (0,−1) = (JR)2(0, 1) = JR(Z, 0) = (JZ, β(Z)).

Let X = XD + aZ and Y = YD + bZ, where XD, YD are tangent vectors to D, and
a, b ∈ R. Combining the last two results we obtain

g(X, JY ) = g(XD + aZ, J(YD + bZ)) = g(XD, J(YD))(7)

= g(JXD, J
2YD) = −g(JXD, YD)

= −g(J(XD + aZ), YD + bZ) = −g(JX, Y ).

The next step is to show the property (3). Recall that the covariant derivative of a
(1, 1)-tensor T is given by

(∇Y T )(X) = ∇Y (T (X))− T (∇YX),

thus we can conclude that

0 = (∇R
Y J

R)(X, r) = ∇R
Y (J

R(X, r))− JR∇R
Y (X, r).

Using the formula for ∇R from Definition 2.2 and writing

JR(X, r) = JR(X, 0) + rJR(0, 1) = (JX + rZ, β(X)).

for JR, we see that

JR∇R
Y (X, r) = JR(∇YX + rY, Y (r)− g(X, Y ))

= (J(∇YX + rY ) + (Y (r)− g(X, Y ))Z, β(∇YX + rY )).

and similarly, we obtain

∇R
Y (J

R(X, r)) = (∇Y (JX + rZ) + β(X)Y, Y (β(X))− g(Y, JX + rZ))

= ((∇Y J)(X) + J∇YX + Y (r)Z + r∇YZ + β(X)Y,

Y (β(X))− g(Y, JX + rZ)).

We obtain the equalities

rJY − g(X, Y )Z = (∇Y J)(X) + r∇Y Z + β(X)Y,

β(∇YX) + rβ(Y ) = Y (β(X))− g(Y, JX)− rg(Y, Z),

valid for all X, Y ∈ TxM and all r ∈ R. It follows that

JY = ∇Y Z,(8)

−g(X, Y )Z = (∇Y J)(X) + β(X)Y,(9)

β(∇YX) = Y (β(X))− g(Y, JX),(10)

β(Y ) = −g(Y, Z).(11)
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Equation (8) corresponds to the first part of (3). Combining equations (9) and (11) we
obtain

(∇Y J)(X) = −g(X, Y )Z + g(X,Z)Y,

which corresponds to the second part of (3). From the formulas above it follows easily
that Z is a Killing vector field, since

g(∇XZ, Y ) + g(X,∇YZ) = g(JX, Y ) + g(X, JY ) = 0

by (7).
To finish the first part of the proof we need only to show that Z has the length 1.

Define the one form α(·) = g(Z, ·), which obviously satisfies α = −β from equation (11).
The property α(Z) = 1 from (6) and (11) shows that Z is a vector field of unit length.
Recall that D = kerα from the statement of the theorem. We proceed to prove

that J |D is an endomorphism whose square equals −id|D, and that is an isometry with
respect to g|D. Let X be a section of D, then

JR(X, 0) = (JX,−α(X)) = (JX, 0),

thus, since JR is an isometry of h,

α(JX) = g(Z, JX) = h
(
(Z, 0), (JX, 0)

)

= h
(
JR(0, 1), JR(X, 0)

)
= h

(
(0, 1), (X, 0)

)
= 0.

It follows that J |D is an endomorphism. The property (J |D)
2 = −id and g(JX, JY ) =

g(X, Y ) follows from (4) and (5).
To conclude the proof of Theorem 4.2, we need to show that (M,α) is a contact

manifold with Reeb vector field Z. Since we already showed that α(Z) = 1 in (6), it
suffice to show that dα(Z, ·) = 0. Define the map

ω(X, Y ) = g(JX, Y ), X, Y ∈ TxM.

We want to show that ω is a two form satisfying dα = 2ω, and that ω|D is non-
degenerate. Let X, Y ∈ TxM and set XD = X − α(X)Z, YD = Y − α(Y )Z ∈ Dx,
then

ω(X, Y ) + ω(Y,X) = g(JX, Y ) + g(JY,X)

= g(JXD, YD + α(Y )Z) + g(JYD, XD + α(X)Z)

= g(JXD, YD) + g(JYD, XD) = 0,(12)

which follows from the facts that JZ = 0, the map J |D is an almost complex structure
and an isometry with respect to g|D. We conclude that ω is a two form. From Cartan’s
formula and properties of the Levi-Civita connection, we see that for anyX, Y ∈ VF(M)

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ])

= X(g(Z, Y ))− Y (g(Z,X))− g(Z, [X, Y ])

= g(∇XZ, Y ) + g(Z,∇XY )− g(∇YZ,X)

− g(Z,∇YX)− g(Z, [X, Y ])

= g(JX, Y )− g(JY,X) + g(Z,∇XY −∇YX − [X, Y ])

= 2ω(X, Y ).
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To see that ω is non-degenerate, pick a local orthonormal basis of D

X1, Y1, X2, Y2, . . . , Xm, Ym, 2m+ 1 = n

such that JXi = Yi, i ∈ {1, . . . , m}. Then

ω(Xi, Yj) = δi,j, ω(Xi, Xj) = ω(Yi, Yj) = 0, i, j ∈ {1, . . . , m}.

The non-degeneracy follows, and thus dα is a symplectic form on D. It is well-know
that this is equivalent to α being a contact form.
Finally, we note that

dα(Z, ·) = 2ω(Z, ·) = 2g(JZ, ·) = 0,

and since α(Z) = g(Z,Z) = 1, we conclude that Z is the Reeb vector field of α. �

4.2. A converse result.

Theorem 4.3. Let (M, g) be a Riemannian manifold of dimension 2m + 1. Suppose
there exist a Killing vector field Z ∈ VF(M) of unit length and a (1, 1)-tensor field
J satisfying the conditions in equation (3), JZ = 0, and J |D : D → D an isometric

almost complex structure on D = Z⊥. Then H∇R

⊂ U(m+ 1).

Proof. Define a (1, 1)-tensor field JR on the vector bundle TM ⊕ R → M by

JR(X, r) := (JX + rZ,−g(X,Z)).

We will show that JR is both an isometry with respect to the metric h = h1 in (1), and
an almost complex structure on TM ⊕ R → M which is parallel with respect to the
rolling connection ∇R.
Indeed, if (X, r) is a section of TM ⊕ R, we notice that XD = X − g(X,Z)Z is a

section of D satisfying JX = JXD, and hence

‖JR(X, r)‖2h = ‖(JX + rZ,−g(X,Z))‖2h

= ‖JXD‖
2
g + r2‖Z‖2g + g(X,Z)2

= ‖XD‖
2
g + g(X,Z)2 + r2 = ‖X‖2g + r2 = ‖(X, r)‖2h,

thus JR is an isometry. To see that JR is a complex structure on TM ⊕ R, we notice
that

(
JR

)2
(X, r) = JR(JX + rZ,−g(X,Z))

= (J(JX + rZ)− g(X,Z)Z,−g(JX + rZ, Z))

= (J2XD − g(X,Z)Z,−r) = (−XD − g(X,Z)Z,−r)

= −(X, r).
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To show that JR is a parallel tensor field, we show that ∇R
Y (J

R(X, r)) = JR∇R
Y (X, r).

This equality follows from

∇R
Y (J

R(X, r)) = ∇R
Y (JX + rZ,−g(X,Z))

= (∇Y (JX + rZ)− g(X,Z)Y,−Y (g(X,Z))− g(Y, JX + rZ))

= ((∇Y J)X + J∇YX + Y (r)Z + r∇Y Z − g(X,Z)Y,

− g(∇YX,Z)− g(X,∇YZ)− g(Y, JX)− rg(Y, Z))

= ((∇Y J)X + J∇YX + Y (r)Z + rJY − g(X,Z)Y,

− g(∇YX,Z)− g(X, JY )− g(Y, JX)− rg(Y, Z))

= (J(∇YX + rY ) + (Y (r)− g(X, Y ))Z,−g(∇YX + rY, Z))

= JR(∇YX + rY, Y (r)− g(X, Y )) = JR∇R
Y (X, r),

where we used the fact that g(X, JY ) = −g(JX, Y ), whose proof is the same as in
equation (7).
To conclude the proof, let us fix x ∈ M . The group U(m + 1) can be identified

with U(TxM ⊕ R) := {B ∈ SO(TxM ⊕ R) | [JR|x, B] = 0}. We know that H∇R

|x ⊂
SO(TxM⊕R), so it is enough to notice that ∇RJR = 0 means exactly that [JR|x, B] = 0

for all B ∈ H∇R

|x. Thus H
∇R

|x ⊂ U(TxM ⊕ R). �

4.3. Example: Rolling the Heisenberg group on the sphere. The 2m+1 dimen-
sional Heisenberg group Hm is the Lie group structure on R

2m+1, whose Lie algebra is
generated by the vector fields

(13) Xi = ∂xi
− yi∂z, Yi = ∂yi + xi∂z , Z = ∂z,

where (x1, y1, . . . , xn, yn, z) are the standard coordinates in R
2m+1. It is easy to see that

[Xi, Yi] = 2Z, i = 1, . . . , m, and all other Lie brackets vanish. We set a Riemannian
metric g onHm for which the vector fields (13) are orthonormal. From Koszul’s formula
for covariant derivatives, we can deduce that for i = 1, . . . , m

∇Xi
Yi = −∇Yi

Xi = Z,(14)

∇Xi
Z = ∇ZXi = −Yi,

∇Yi
Z = ∇ZYi = Xi,

and all other covariant derivatives vanish.
Following the ideas from previous sections, define a contact one form α(V ) = g(V, Z)

and a (1, 1)-tensor JV = ∇ZV , for V ∈ VF(Hm). Note that formulas (14) imply that

JXi = −Yi, JYi = Xi, JZ = 0.

It follows that (Z, α, J, g) is a Sasakian manifold.
It is important to observe that the Riemannian cone (C(Hm), g̃) of Hm is Ricci-flat

if and only if the Ricci tensor of Hm satisfies the Einstein equation

Ricg = 2mg,

see [15, Proposition 1.9]. Recall that, since (C(Hm), g̃) is Kähler, then Ricci-flatness is

equivalent toH∇̃ ⊂ SU(m+1). Since the Ricci tensor forHm in the basis {X1, Y1, . . . , Xm, Ym, Z}
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is given by

Ricg =




−2m 0 0 · · · 0 0
0 −2m 0 · · · 0 0
0 0 −2m · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −2m 0
0 0 0 · · · 0 2m




,

which is not a constant multiple of the identity matrix, we know that C(Hm) is not

Ricci-flat. By Theorem 3.5, it follows that H∇R ∼= H∇̃ is a subgroup of U(m + 1)
in the list of Theorem 2.5 which is not a subgroup of SU(m + 1). We conclude that

H∇R

= U(m+ 1).

4.4. Special unitary rolling holonomy. It is known, see [15], that simply connected
Sasaki-Einstein manifolds are spin manifolds. It follows that a simply connected Sasaki-
Einstein manifold of dimension three must be isometric to the standard 3-sphere. Thus,
in dimension three, the rolling holonomy group SU(2) cannot occur. We conclude that
for M of dimension three, all non-controllable systems of M rolling on S3 have either
trivial or U(2) rolling holonomy.
In a similar way, we can deduce a dichotomy as above for all Sasaki-Einstein manifolds

of dimension 4m+ 1.

Proposition 4.4. Let (M, g) be a Sasaki-Einstein manifold of dimension 4m+1. Then

the rolling holonomy group H∇R

either coincides with SU(2m+ 1) or it is trivial.

Proof. By dimension arguments, we see that the list in Corollary 3.7 reduces to

SO(4m+ 2), U(2m+ 1), SU(2m+ 1).

Since M is Sasaki-Einstein, then H∇R

must be a subgroup of SU(2m+ 1) in the above
list, or trivial. The conclusion follows. �

The classification of Sasaki-Einstein manifolds of arbitrary dimension is still an open
problem in differential geometry. A complete list of these in dimension five can be found
in [4].

5. Symplectic rolling holonomy

Following similar ideas to what was done in Section 4, we can prove with some
modifications analogous results.

Theorem 5.1. Let (M, g) be a Riemannian manifold of dimension 4k+3. Suppose that

H∇R

⊂ Sp(k + 1). Then there exist three orthonormal Killing vector fields Z1, Z2, Z3

and three (1, 1) tensor fields J1, J2, J3 satisfying

(15) JiX = ∇XZi, (∇XJi)Y = g(Zi, Y )X − g(X,Zi)Y,

for any vectors X, Y tangent to M , and [Zi, Zj] = 2ǫi,j,kZk. Moreover, for i ∈ {1, 2, 3},
the one forms αi = g(Zi, ·) are contact with Reeb vector fields Zi, respectively. The
distribution D = kerα1 ∩ kerα2 ∩ kerα3 is the quaternionic contact distribution and
Ji|D is a compatible almost complex structure on D. Thus M is a 3-Sasakian manifold
according to Definition 3.2.
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Proof. The construction of the characteristic vector fields Zi and the one forms αi,
i ∈ {1, 2, 3}, is analogous to the one in Theorem 4.2. For completeness, we briefly recall
this. The main technical concern is to show that

(16) [Zi, Zj] = 2ǫi,j,kZk.

Since H∇R

is a subgroup of the symplectic group Sp(k + 1), with respect to the

metric h = h1 defined in equation (1), there exist three H∇R

-invariant almost complex
structures JR

1 , J
R
2 , J

R
3 , which are well-defined (1, 1)-tensor fields on TM ⊕ R → M

satisfying

‖JR
i (X, r)‖h = ‖(X, r)‖h, for all (X, r) sections of TM ⊕ R,

(JR
i )

2 = −id,

∇RJR
i = 0,

JR
i J

R
j = −ǫi,j,kJ

R
k , {i, j, k} = {1, 2, 3}.

The last condition arises from the action of the symplectic group, see [3, Proposition
1.2.4].
As before, we define three (1, 1)-tensor fields on M , three one forms αi ∈ Ω1(M) and

three vector fields Zi ∈ VF(M) as follows

(JiX,−αi(X)) := JR
i (X, 0), X ∈ VF(M),

(Zi, 0) := JR
i (0, 1).

All properties of these objects are proved in the same way as in Theorem 4.2. Now we
proceed to verify (16). We can easily verify the following relation

(JiZj,−αi(Zj)) = JR
i (Zj , 0) = JR

i J
R
j (0, 1)

= −ǫi,j,kJ
R
k (0, 1) = −ǫi,j,k(Zk, 0).

We conclude that JiZj = −ǫi,j,kZk. Since JiZj = ∇Zj
Zi and the Levi-Civita connection

is torsion free, we have

[Zi, Zj] = ∇Zi
Zj −∇Zj

Zi = 2ǫi,j,kZk. �

And the converse also holds.

Theorem 5.2. Let (M, g) be a Riemannian manifold of dimension 4k+3. Suppose there
exist three orthonormal Killing vector fields Z1, Z2, Z3 ∈ VF(M) such that [Zi, Zj] =
2ǫi,j,kZk and three (1, 1)-tensor fields J1, J2, J3 satisfying the conditions in equation (15),
JiZi = 0, and Ji|Di

: Di → Di are isometric almost complex structures on Di = Z⊥
i .

Then H∇R

⊂ Sp(k + 1).

Proof. From [2, Proposition 1.2.2] and the hypothesis of this theorem, we see that M
has a 3-Sasakian structure with characteristic vector fields Z1, Z2, Z3 ∈ VF(M). We
want to deduce that

(17) JR
i J

R
j = −ǫi,j,kJ

R
k , {i, j, k} = {1, 2, 3}.

for the three (1, 1)-tensor fields JR
i on the vector bundle TM ⊕ R → M given by

JR
i (X, r) := (JiX + rZi,−g(X,Zi)).
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To do this, we first show that JiZj + JjZi = 0. It is easy to compute that

g(JiZj + JjZi, X) = g(JiZj + JjZi, Zi) = g(JiZj + JjZi, Zj) = 0,

for any X a section of D = D1∩D2∩D3. Thus, we only need to compute the following

g(JiZj + JjZi, Zk) = 2ǫi,j,kg(JiZj + JjZi, JjZi − JiZj)

= 2ǫi,j,k
(
g(JjZi, JjZi)− g(JiZj, JiZj)

)
= 0,

because Ji is an isometry on Di. Since [Zi, Zj] = JjZi − JiZj, it follows that

(18) JiZj = −ǫi,j,kZk.

To prove equation (17), we divide the computation in three cases.

Cone vector field: From equation (18) and the definition of JR
i , we have

JR
i J

R
j (0, 1) =JR

i (Zj, 0) = (JiZj,−αi(Zj))

= (−ǫi,j,kZk, 0) = −ǫi,j,kJ
R
k (0, 1).

X section of D: Since M is 3-Sasakian, we know that JiJj = −ǫi,j,kJk on D.
Therefore

JR
i J

R
j (X, 0) = JR

i (JjX,−αj(X)) = (JiJjX, 0) = (−ǫi,j,kJkX, 0) = −ǫi,j,kJ
R
k (X, 0).

X in M orthogonal to D: Let X = aiZi+ajZj+akZk ∈ VF(M) be orthogonal
to D. From equation (18), we have

JR
i J

R
j (X, 0) =

(
JiJjX − αj(X)Zi,−αi(JjX)

)
= (aiZj − ajZi, ǫi,j,kak)

−ǫi,j,kJ
R
k (X, 0) = −ǫi,j,k(−ǫi,j,kaiZj + ǫi,j,kajZi,−ak) = (aiZj − ajZi, ǫi,j,kak).

Recall that for any x ∈ M , the group Sp(k + 1) can be identified with

Sp(TxM ⊕ R) := {B ∈ SO(TxM ⊕ R) | [JR
i |x, B] = 0, i ∈ {1, 2, 3}},

provided the endomorphisms JR
i satisfy equation (17). ThusH∇R

|x ⊂ Sp(TxM⊕R). �
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