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Abstract

In this paper, we consider a smooth connected finite-dimensional manifold M , an
affine connection ∇ with holonomy group H

∇ and ∆ a smooth completely non integrable
distribution. We define the ∆-horizontal holonomy group H

∇
∆ as the subgroup of H∇

obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set
elementary properties of H ∇

∆ and show how to study it using the rolling formalism ([9]).
In particular, it is shown that H ∇

∆
is a Lie group. Moreover, we study an explicit example

where M is a free step-two homogeneous Carnot group and ∇ is the Levi-Civita connec-
tion associated to a Riemannian metric on M , and show that in this particular case the
connected component of the identity of H ∇

∆
is compact and strictly included in H

∇.

1 Introduction

The purpose of this paper consists of extending the concept of horizontal holonomy of an affine
connection in the context of distributions on a manifold i.e., subbundles of the tangent bundle of
a manifold. More precisely, consider the triple (M,∇,∆) where M is an n-dimensional smooth
connected manifold, ∇ is an affine connection on M (one says then that (M,∇) is an affine
manifold) and ∆ is a smooth distribution onM . One furthermore assumes that ∆ is completely
controllable, i.e., every pair of points inM can be connected by an absolutely continuous tangent
to the distribution ∆. Recall that the holonomy group H∇ of ∇ as the subgroup of GL(n)
obtained (up to conjugation) by ∇-parallel transporting frames along absolutely continuous (or
piecewise smooth) loops of M .

For every point x ∈ M , we define the subset H∇∆∣x of H∇∣x, the holonomy group of ∇ at x,
obtained by parallel transporting, with respect to ∇, frames of M along a restricted set of
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absolutely continuous ∆-horizontal loops based at x, namely along loops which are tangent
(almost everywhere) to the distribution ∆. Thanks to the hypotheses of connectedness of M
and complete controllability of ∆, one can deduce that the sets H∇∆∣x, x ∈M are all conjugate
to a Lie-subgroup H∇∆ of H∇ that we call ∆-horizontal (or simply horizontal) holonomy group
of ∇. In the case where ∇ is the Levi-Civita connection associated to some Riemannian metric
g on M , one can take both H∇∆ and H∇ as subgroups of O(n) and even SO(n) if in addition
M is assumed to be oriented. Understanding the relationships between H∇ and H∇∆ appears
to be an interesting challenge. For instance, given an affine manifold (M,∇), determining
necessary and (or) sufficient conditions on a completely controllable distribution ∆ of M so
that the H∇∆ equals H∇ is not an obvious question, besides trivial cases. Another issue to be
addressed consists of fixing the pair manifold and distribution i.e., (M,∆) and then make the
connection ∇ vary. One question could be to undestand if there are connections ”more adapted
or intrinsic” than others (in a sense to be defined) for the pair (M,∆). Moreover, one could
also study the mapping g ↦ H∇

g

∆ where g is a complete Riemannian metric on M and ∇g the
corresponding Levi-Civita connection, for instance describing the range of this mapping. Note
that such issues have been already addressed in [13] where the authors consider the case of
manifolds of contact type with a distribution arising from an adapted connection.

In this paper, we essentially start this program by defining precisely the ∆-horizontal holonomy
group associated to a given admissible triple (M,∇,∆). Our first main result besides elementary
ones is the following: we prove that if ∆ is a constant rank completely controllable distribution,
then H∇∆ is a connected Lie subgroup of GL(n) (or O(n) if ∇ is the Levi-Civita connection of
some Riemannian metric on M). This enables us to study H∇∆ via its differentiable structure.
Moreover, we also propose to study ∆-horizontal holonomy groups by recasting them within
the framework of rolling manifolds. Indeed, recall that E. Cartan defines holonomy groups
in [6] as what is called now affine holonomy group by “developing” a manifold its tangent
space at any point. This procedure has been generalized in [9, 14, 29] to an arbitrary pair of
Riemannian manifolds of same dimension and it is also called as “rolling a Riemannian manifold
onto another one without slipping nor spinning”. Yet, that type of rolling was extended in [24]
to the case where both manifolds do not have necessarily the same dimension. See also [8] for
a historical account as well as applications of the rolling of manifolds.

In the present situation, the rolling framework amounts to define an n-dimensional smooth
distribution DR, called the rolling distribution, on the state space Q defined as the fiber bundle
over the product of (M,∇) and (Rn, ∇̂n) where ∇̂n is the Euclidean connection on Rn and the
typical fiber over (x, x̂) ∈ M × Rn is identified with the set of endomorphisms of TxM . For
every q ∈ Q, let ODR

(q), be the DR-orbit through q, i.e., the set of endpoints of the absolutely
continuous curves starting at q and tangent to DR. Then, for every q ∈ Q and x′ ∈M , the fiber
of ODR

(q) over x′ (if non-empty) is conjugate to a subgroup of Rn ⋊GL(n) whose GL(n)-part
is exactly H∇. Moreover, since ODR

(q) is an immersed manifold in Q whose tangent space at
every q′ ∈ ODR

(q) contains the (evaluation at q′ of the) Lie algebra generated by vector fields
tangent to DR (cf. [1, 18, 19]), it is possible to determine elements of the Lie algebra of H∇ as
Lie brackets of vector fields tangent to DR. Given now a completely controllable distribution
∆, one can define a subdistribution ∆R of DR on Q so that, for every q ∈ Q and x′ ∈ M the
fiber over x′ of O∆R

(q) is conjugate to a subgroup of Rn ⋊GL(n) whose GL(n)-part is now
equal to H∇∆. Since the latter has been proved to be a Lie group, one can determine elements
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of its Lie algebra by computing Lie brackets of vector fields tangent to ∆R. Note that, as also
mentioned above, GL(n) can be replaced by O(n) (SO(n) respectively) if ∇ is the Levi-Civita
connection of some Riemannian metric on M (if in addition M is oriented).

We use that approach to provide our second main result, namely an explicit example for a
strict inequality in dim(H∇∆) ≤ dim(H∇). More precisely, we consider the triple (M,∇,∆)
where M is a free step-two homogeneous Carnot group of m ≥ 2 generators (Xi)1≤i≤m, ∇ is the
Levi-Civita associated with the Riemannian metric on M defined in such a way that the Xi’s,
1 ≤ i ≤ m and the Lie brackets [Xi,Xj], 1 ≤ i < j ≤ m form an orthonormal basis and ∆ is the
distribution defined by the span of the Xi’s, 1 ≤ i ≤ m. In this case M is of dimension m + n
with n =m(m−1)/2. Then we prove that (M,∇) has full holonomy i.e., H∇ = SO(n), and that
the connected component of the identity of H∇∆ is a closed Lie subgroup of SO(n) of dimension
m + n.
We close this introduction by describing the structure of the paper. We gather in the second
section most of the required notations and we precisely define the (∇,∆)-holonomy group first
using classical concepts and secondly by relying on the rolling framework. In the fourth section,
we consider in details the example of the free step-two homogeneous Carnot group of m ≥ 2
generators and we conclude with an appendix containing a technical result needed in the third
section.

Acknowledgement. The authors thank F. Jean and M. Sigalotti for fruitful discussions and
insights regarding the proof of Proposition 5.7.

2 Notations

Let M be an n-dimensional smooth connected manifold where n is a positive integer. LetX(M) be the set of smooth vector fields on M . An affine connection ∇ on M is a R-bilinear
map

X(M) × X(M)→ X(M); (X,Y )↦ ∇XY,
which is C∞(M)-linear in the first variable and verifies the Leibniz rule over C∞(M) in the
second variable. The pair (M,∇) is said to be an affine manifold. If, moreover, the exponential
map exp∇x of (M,∇) is defined on the whole tangent space TxM for all x ∈M , then (M,∇) is
said to be a (geodesically) complete affine manifold. We use ∇n and ∇g respectively to denote
the Euclidean connection on Rn and the Levi-Civita connection of a Riemannian manifold(M,g). The notation [⋅, ⋅] stands for the Lie bracket operation in TM .

We define the curvature tensor R∇ and the torsion tensor T∇ of a affine connection ∇ as

R∇(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,
T∇(X,Y ) = ∇XY −∇YX − [X,Y ],

respectively, for smooth vector fields X,Y,Z on M .

If γ ∶ I →M is any absolutely continuous (a.c. for short) curve in M defined on a real interval
I containing 0, we use (P∇)t0(γ)T0, t ∈ I, to denote the ∇-parallel transport along γ of a tensor
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T0 of rank (m,k) at γ(0). It is the unique solution for T (t) (in terms of tensor fields of rank(m,k) defined along γ) to the Cauchy problem

∇γ̇(t)T (t) = 0, for a.e. t ∈ I, T (0) = T0.
Let (M̂, ∇̂) be another affine manifold and f ∶ M → M̂ be a smooth map. we say that f is
affine if for any a.c. curve γ ∶ [0,1]→M , one has

f⋆∣γ(1) ○ (P∇)10(γ) = (P ∇̂)10(f ○ γ) ○ f⋆∣γ(0). (1)

An a.c. curve γ ∶ [a, b] → M is a loop based at x ∈ M if γ(a) = γ(b) = x. We denote by
ΩM(x) the space of all a.c. loops [0,1] → M based at some given point x ∈ M . Moreover, if
γ ∶ [0,1] →M and δ ∶ [0,1] →M are two a.c. curves on M such that γ(0) = x, γ(1) = δ(0) = y
and δ(1) = z where x, y, z ∈M , the concatenation δ ⋅ γ is the a.c. curve defined by

δ ⋅ γ ∶ [0,1]→M, (δ ⋅ γ)(t) = { γ(2t) t ∈ [0, 1
2
],

δ(2t − 1) t ∈ [1
2
,1]. (2)

The previous definitions allow us to state the subsequent definition of holonomy group.

Definition 2.1. For every x ∈M , the holonomy group H∇∣x at x is defined by

H∇∣x = {(P∇)10(γ) ∣ γ ∈ ΩM(x)}.
For every x ∈M , H∇∣x is a subgroup of GL(TxM), the group of isomorphisms of TxM , which is
clearly isomorphic to GL(n) the group of n × n invertible matrices with real entries. Since M
is connected, it is well-known that, for any two points x, y ∈M , H∇∣x and H∇∣y are conjugate
subgroups of GL(TxM) and thus one can define H∇ ⊂ GL(n) the holonomy group of the affine
connection ∇ (cf. [20]).

We also recall that a smooth distribution ∆ on M is a smooth subbundle of TM The flag
of ∆ is the collection of the distributions ∆j, j ≥ 1, where, for every x ∈ M , ∆1∣x ∶= ∆∣x and
∆s+1∣x ∶= ∆s∣x + [∆1,∆s]∣x for s ≥ 1. We say that the distribution ∆ on M is of constant rank
m ≤ n if dim(∆∣x) = m for every x ∈ M and verifies the Lie algebraic rank condition (LARC)
if, for any x ∈M , there exists an integer r = r(x) such that ∆r ∣x = TxM . The number r(x) is
called the step of ∆∣x (cf. [18] for more details).

An a.c. curve γ ∶ I →M , I bounded interval in R, is said to be ∆-admissible, or ∆-horizontal,
if it is tangent to ∆ a.e. on I, i.e., if for a.e. t ∈ I, γ̇(t) ∈ ∆∣γ(t). For x0 ∈ M , the ∆-orbit
through x0, denoted O∆(x0), is the set of endpoints of the ∆-admissible curves of M starting
at x0, i.e.,

O∆(x0) = {γ(1) ∣ γ ∶ [0,1]→M, a.c. ∆-admissible curve, γ(0) = x0}.
By the Orbit Theorem (cf.[18]), it follows that O∆(x0) is an immersed smooth submanifold of
M containing x0 so that the tangent space TyO∆(x0) for every y ∈ O∆(x0) contains Liey(∆),
the evaluation at y ∈M of the Lie algebra Lie(∆) generated by ∆. Furthermore, if a smooth

4



distribution ∆′ on M is a subdistribution of ∆ (i.e., ∆′ ⊂ ∆), then O∆′(x0) ⊂ O∆(x0) for all
x0 ∈ M . A smooth distribution ∆ is said to be completely controllable if, for every x ∈ M ,O∆(x) =M i.e. any two points of M can be joined by an a.c. ∆-admissible curve. Recall that,
the Lie Algebra Rank Condition (LARC), i.e. Liex(∆) = TxM , is a sufficient condition for the
complete controllability of ∆ (cf. [18]) when M is connected, which is what we assume in this
paper.

3 Affine Holonomy Group of (M,∇,∆)
3.1 Definitions

Consider the triple (M,∇,∆) whereM is a smooth manifold, ∇ a affine connection onM and ∆
a completely controllable smooth distribution on M . In this section, we will restrict Definition
2.1 to the ∆-admissible curves on M . To this end, we will define the set of all ∆-admissible
loop based at points of M .

Definition 3.1. We define Ω∆(x) the set of all a.c. ∆-admissible loops based at x, as

Ω∆(x) ∶= {γ ∣ γ ∶ [a, b] →M a.c., γ(a) = γ(b) = x and γ̇(t) ∈ ∆∣
γ(t)

a.e.}
The following result is immediate from the definitions.

Proposition 3.2. The set Ω∆(x) of all a.c. ∆-admissible loop based at x is not empty and is
closed under the operation ” ⋅ ” given in (2).

We define the holonomy group associated with the distribution ∆ as follows.

Definition 3.3. For every x ∈M , the holonomy group associated with ∆ at x is defined as

H ∇
∆ ∣x ∶= {(P∇)10(γ) ∣ γ ∈ Ω∆(x)}.

Proposition 3.4. For every x, y ∈ M , H ∇
∆ ∣x is a subgroup of H∇∣x and H ∇

∆ ∣x is conjugate to
H ∇

∆ ∣y. One can thus define H∇∆ ⊂H∇ ⊂ GL(n) and we call it the ∆-horizontal holonomy group
associated with ∆ and the affine connection ∇.

Proof. Since Ω∆(x) is a nonempty set for any x ∈ M , then H ∇
∆ ∣x is also a nonempty subset

of H∇∣x. By Definitions 2.2.1 and 2.2.2 of [20], the inverse map of (P∇)10(γ) is (P∇)10(γ−1)
and (P∇)10(δ) ○ (P∇)10(γ) is equal to (P∇)10(δ ⋅ γ), for any γ ∶ [0,1] → M and δ ∶ [0,1] → M

belonging to Ω∆(x). Thus, we get the first statement. Next, taking into account the fact that
∆ is completely controllable, one deduces the rest of the proposition.

Remark 3.5. If g is a Riemannian metric on the smooth manifold M and ∇g is the Levi-
Civita connection associated to g, then the holonomy group H∇

g ∣x with x ∈M is a subgroup of
O(TxM), the set of g-orthogonal transformations of TxM . If, moreover, M is oriented, one can
easily prove that H∇

g ∣x is a subgroup of SO(TxM). One can then define the holonomy group
of ∇g as a subgroup of O(n) (SO(n) respectively) the group of orthogonal transformations of
the euclidean n-dimensional space (the subgroup of O(n) with determinant equal to one if M
is oriented respectively).
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3.2 Holonomy groups associated with distributions using the frame-

work of rolling manifolds

Let M be a smooth n-dimensional manifold and ∇ a connection on M . Set (M̂, ∇̂) ∶= (Rn, ∇̂n)
where ∇̂n is the Euclidean connection on Rn. We associate to (M,∇) the curvature tensor R∇

and to the product manifold (M,∇) × (Rn, ∇̂n) the affine connection ∇.

3.2.1 Affine Holonomy Group of M

We recall next basic definitions and results stated in [9] and [21].

Definition 3.6. The state space of the development of (M,∇) on (Rn, ∇̂n) is
Q ∶= Q(M,Rn) = {A ∈ T ∗xM ⊗R

n ∣ A ∈ GL(TxM), x ∈M}.
A point q ∈ Q is written as q = (x, x̂;A). Note that the word “development” can also be replaced
by “rolling”.

Definition 3.7. Let γ ∶ [0,1]→M be an a.c. curve on M starting at γ(0) = x0. We define the
development of γ on Tx0M with respect to ∇ as the a.c. curve Λ∇x0(γ) ∶ [0,1]→ Tx0M

Λ∇x0(γ)(t) = ∫ t

0
(P∇)0s(γ)γ̇(s)ds, t ∈ [0,1].

The following result can be found from [23].

Proposition 3.8. Let ∇ be the Levi-Civita connection of a Riemannian metric g. Then for
any a.c. curve Γ ∶ [0,1] → Tx0M there exists a maximal T = T (Γ) such that 0 < T ≤ 1 and an
a.c. curve γ ∶ [0, T ]→M satisfying

Λ∇x0(γ)(t) = Γ(t), ∀t ∈ [0, T ].
Moreover, one can take T = 1 for all such Γs if and only if (M,g) is complete.

By identification of T ∗xM ⊗Rn as the space of all R-linear maps from the tangent space TxM
at x ∈M onto the tangent space of Rn at x̂ ∈ Rn, one gets the following definitions.

Definition 3.9. Let (x0, x̂0) ∈M ×RN , A0 ∈ T ∗x0M ⊗Rn and an a.c. curve γ ∶ [0,1] →M such
that γ(0) = x0. We define the development of γ onto Rn through A0 with respect to ∇ as the

a.c. curve Λ∇A0
(γ) ∶ [0, T ]→M given by

Λ∇A0
(γ)(t) ∶= (Λ∇̂n

x̂0
)−1(A0 ○Λ

∇
x0
(γ))(t), t ∈ [0, T ]

with T = T (γ) as in the previous definition.

We also define the relative parallel transport of A0 along γ with respect to ∇ to be the linear
map

(P∇)t0(γ)A0 ∶ Tγ(t)M → T
Λ∇
A0
(γ)(t)

M̂, such that for t ∈ [0,1],
(P∇)t0(γ)A0 ∶= (P ∇̂n)t0(Λ∇A0

(γ)) ○A0 ○ (P∇)0t (γ) = A0 ○ (P∇)0t (γ).
6



We define the No-Spinning development lift of (X,X̂) ∈ T(x,x̂)(M×Rn), the Rolling development
lift and the Rolling development distribution of X ∈ TxM respectively as follows.

Definition 3.10. Let q = (x, x̂;A) ∈ Q, (X,X̂) ∈ T(x,x̂)(M×Rn) and γ (resp. γ̂) be an a.c. curve

on M (resp. on Rn) starting at x (resp. x̂) with initial velocity X (resp. X̂). The No-Spinning
development lift of (X,X̂) is the unique vector LNS(X,X̂)∣q of TqQ at q = (x, x̂;A) given by

LNS(X,X̂)∣q ∶= d

dt
∣
0
(P ∇̂n)t0(γ̂) ○A ○ (P∇)0t (γ) = d

dt
∣
0
A ○ (P∇)0t (γ).

If, moreover, the initial velocity of γ̂ is AX , then we define the Rolling lift LR at q = (x, x̂;A) ∈ Q
to be the injective map from TxM onto TqQ, such that for every X ∈ TxM ,

LR(X)∣q ∶=LNS(X,AX)∣q = d

dt
∣
0
(P ∇̂n)t0(γ̂) ○A ○ (P∇)0t (γ) = d

dt
∣
0
A ○ (P∇)0t (γ).

The Rolling distribution DR at q = (x, x̂;A) ∈ Q is an n-dimensional smooth distribution defined
by

DR∣q ∶=LR(TxM)∣q.
We say that an a.c. curve t ↦ q(t) = (γ(t), γ̂(t);A(t)) on Q, is a rolling curve if and only
if it is tangent to DR for a.e. t ∈ I, where I is a bounded interval of R, i.e. if and only if
q̇(t) =LR(γ̇(t))∣q(t) for a.e. t ∈ I. For the proof of next proposition, see [9, 23].

Proposition 3.11. For any q0 ∶= (x0, x̂0;A0) ∈ Q and any a.c. curve γ ∶ [0,1] → M starting

at x0, there exist unique a.c. curves γ̂(t) ∶= Λ∇A0
(γ)(t) and A(t) ∶= (P∇)t0(γ)A0 such that

A(t)γ̇(t) = ˙̂γ(t) and ∇(γ̇(t), ˙̂γ(t))A(t) = 0, for all t ∈ [0, T ], for a maximal T = T (γ) such that
0 < T ≤ 1. We refer to t ↦ qDR

(γ, q0) ∶= (γ(t), γ̂(t);A(t)) as the rolling curve along γ with
initial position q0.

Moreover, if (M̂, ĝ) is a complete Riemannian manifold and ∇̂ is the corresponding Levi-Civita
connection, then one may take above T = 1 for all γ’s.

Consider the smooth bundle πQ ∶ Q → M ×Rn and q ∈ Q. We define V ∣q(πQ) to be the set of
all B ∈ T ∣qQ such that the tangent application (πQ)∗(B) = 0. The collection of spaces V ∣q(πQ),
q ∈ Q defines a smooth submanifold V (πQ) of TQ. We will write an element of V ∣q(πQ) at
q = (x, x̂;A) ∈ Q as ν(B)∣q where B ∈ T ∗xM ⊗Rn verifies B ∈ A so(TxM). Intrinsically, to know
what it means to take the derivative with respect to ν(B)∣q. Then, for all smooth maps f
defined on (an open subset of) Q with values in the manifold of (m,k)-tensors of M , we define

ν(B) ∣q (f) ∶= d
dt
∣0f(q + tB),

that we call the vertical derivative of f at q in the direction of B.

We next present the main computation tools obtained in Proposition 3.7, Lemma 3.18, Propo-
sition 3.24, Proposition 3.26, Proposition 4.1, Proposition 4.6 [22].

Proposition 3.12. Let O ⊂ T ∗M ⊗Rn be an immersed submanifold, Z = (Z, Ẑ), S = (S, Ŝ) ∈
C∞(πO, πT ∗M⊗Rn) be such that for all q = (x, x̂;A) ∈ O, LNS(Z(q))∣q, LNS(S(q))∣q ∈ TqO and

7



U , V ∈ C∞(πO, πT ∗M⊗Rn), be such that for all q = (x, x̂;A) ∈ O, ν(U(q))∣q, ν(V (q))∣q ∈ TqO.
Then, one has

LNS(Z(A))∣qS(⋅) ∶= ∇Z(A)(S(A)), (3)

[LNS(Z(⋅)),LNS(S(⋅))]∣q = LNS(LNS(Z(A))∣qS(⋅) −LNS(S(A))∣qZ(⋅))∣q
− LNS(T∇(Z,S))∣q + ν(AR∇(Z,S))∣q,

(4)

[LR(Z),LR(S)]∣q =LR([Z,S])∣q +LNS(AT∇(Z,S))∣q + ν(AR∇(Z(q), S(q)))∣q , (5)

[LNS(Z(⋅)), ν(U(⋅))]∣q = −LNS(ν(U(A))∣qZ(⋅))∣q + ν(LNS(Z(A))∣qU(⋅))∣q, (6)

[ν(U(⋅)), ν(V (⋅))]∣q = ν(ν(U(A))∣qV − ν(V (A))∣qU)∣q. (7)

Both sides of the equalities in (3), (4), (5), (6) and (7) are tangent to O.
We use Aff(M) to denote the affine group of all invertible affine transformations from the affine
manifold M onto itself. In particular, the affine group of Rn is denoted by Aff(n). One can
extend readily Proposition 3.10 of [11] to get the following result.

Proposition 3.13. For any f ∈ Aff(M), f̂ ∈ Aff(n) and any q0 = (x0, x̂0;A0) ∈ Q, define the
following smooth right and left actions of Aff(M) and Aff(n) on Q

q0 ⋅ f ∶= (f−1(x0), x̂0;A0 ○ f⋆∣f−1(x0)), f̂ ⋅ q0 ∶= (x0, f̂(x̂0); f̂⋆∣x̂0 ○A0).
Then, for any a.c. curve γ ∶ [0,1]→M starting at x0, one has for a.e. t ∈ [0,1]

f̂ ⋅ qDR
(γ, q0)(t) ⋅ f = qDR

(f−1 ○ γ, f̂ ⋅ q0 ⋅ f)(t).
Proof. By the definition of an affine transformation f onM , we have Eq. (1) for any a.c. curve
γ ∶ [0,1]→M . This implies that, for a.e. t ∈ [0,1]

f⋆∣γ(t) ○ (P∇)t0(γ) = (P∇)t0(f ○ γ) ○ f⋆∣γ(0).
We have the same conclusion for affine transformations f̂ on Rn. Then, since Aff(n) is a Lie
group and by what precedes, one can repeat the steps of the proof of Proposition 3.10 in [11]
with the group Aff(n) instead of isometry groups on M and Rn to get the claim.

Recall that if G is a Lie group, then a smooth bundle π ∶ E →M is a principal G-bundle over
M if there exists a smooth and free action of G on E which preserves the fibers of π, cf. [20].
Furthermore, we recall that the affine group Aff(n) is equal to Rn ⋊ GL(n) and its product
group ◇ is given by (v,L) ◇ (u,K) ∶= (Lu + v,L ○K).
Using the previous proposition, one can extend immediately the simple but crucial Proposition
4.1 in [11] to derive the next result.
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Proposition 3.14. The bundle πQ,M ∶ Q →M is a principal Aff(n)-bundle with the left action
µ ∶ Aff(n) ×Q→ Q;

µ((ŷ,C), (x, x̂;A)) = (x,Cx̂ + ŷ;C ○A).
The action µ preserves DR, i.e. for any q ∈ Q and B ∈ Aff(n), we have (µB)∗DR∣q = DR∣µB(q)
where µB ∶ Q → Q; q ↦ µ(B,q). Moreover, for any q = (x, x̂;A) ∈ Q, there exists a unique
subgroup H∇q of Aff(n), called the affine holonomy group of (M,∇) verifying

µ(H∇q × {q}) = ODR
(q) ∩ π−1Q,M(x).

If q′ = (x, x̂′;A′) ∈ Q belongs to the same πQ,M -fiber as q, then H∇q and H∇q′ are conjugate in

Aff(n) and all conjugacy classes of H∇q are of the form H∇q′. This conjugacy class is denoted byH∇ and its projection in GL(n) is equal to H∇ the holonomy group of the affine connection ∇.

Proof. Let q = (x, x̂;A) ∈ Q and B = (ŷ,C) ∈ Aff(n). Since C ○A is in GL(n), then µ(B,q) ∈ Q.
In order to prove that µ is transitive and proper, we can follow the same steps of the proof of
Proposition 4.1 in [11] due to Proposition 3.13.

3.2.2 Affine Holonomy Group of ∆

Consider now a smooth completely controllable distribution ∆ on (M,∇). We will determine
the sub-distribution of DR by restriction to ∆ instead of considering the whole tangent space
of M .

Definition 3.15. The rolling distribution ∆R on ∆ is the smooth sub-distribution of DR defined
on (x, x̂;A) ∈ Q by

∆R∣(x,x̂;A) =LR(∆∣x)∣(x,x̂;A). (8)

Since ∆ is completely controllable, we use Proposition 3.11 to obtain the next corollary.

Corollary 3.16. For any q0 = (x0, x̂0;A0) ∈ Q and any a.c. ∆-admissible curve γ ∶ [0,1] →M

starting at x0, there exists a unique a.c. ∆R-admissible curve q∆R
(γ, q0) ∶ [0, T ] → Q where

0 < T ≤ 1.

Since we can easily restrict the proof of Proposition 3.14 (cf. [11]) on ∆R, we get the next
proposition.

Corollary 3.17. The action µ mentioned in Proposition 3.14 preserves the distribution ∆R.
Moreover, for every q ∈ Q, there exists a unique algebraic subgroup H ∇

∆R ∣q
of H∇q , called the

affine holonomy group of ∆R, such that

µ(H ∇
∆R∣q
× {q}) = O∆R

(q) ∩ π−1Q,M(x),
where x = πQ,M(q) and O∆R

(q) is the ∆R-orbit at q.
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As before, one gets the following: if q′ = (x, x̂′;A′) ∈ Q belongs to the same πQ,M -fiber as q,
then H ∇

∆R∣q
and H ∇

∆R∣q′
are conjugate in Aff(n) and all conjugacy classes of H ∇

∆R∣q
are of the

form H ∇
∆R∣q′

. This conjugacy class is denoted by H ∇∆R
and its projection in GL(n) is a subgroup

of H∇ which is equal to the ∆-horizontal holonomy group associated with ∆ and the affine
connection ∇.

Definition 3.18. We denote by Oloop∆R
(q0) the set of the end points of the rolling development

curves with initial conditions any point q0 = (x0, x̂0;A0) and any a.c. ∆-admissible loop at x0,
i.e., for q0 = (x0, x̂0;A0) ∈ Q,

Oloop∆R
(q0) = {q∆R

(γ, q0)(1) ∣ γ ∶ [0,1]→M, a.c. ∆-admissible loop at x0}.
If we fix a point q0 of Q = Q(M,Rn) where the initial contact point on M is equal to x0 and
that on Rn is the origin, then we may consider the rolling development ofM along a loop based
at x0. Then, one obtains a control problem whose state space is the fiber π−1Q,M(x0) and the

reachable set is in the fiber π−1Q,M(x0) (for more details, cf. [11]). Then, Oloop∆R
(q0) is trivially in

bijection with O∆R
(q0) ∩ π−1Q,M(x0) and so µ(H ∇

∆R∣q0
× {q0}) ≃ Oloop∆R

(q0).
Proposition 3.19. For any q0 = (x0, x̂0;A0) ∈ Q the restriction of πQ,M ∶ Q→M into the orbitO∆R
(q0) is a submersion onto M .

Proof. Clearly it is enough to show that (πQ,M)∗Tq0O∆R
(q0) = Tx0M . Also recall that by the

assumption of complete controllability of ∆ we have M = O∆(x0).
Write Ex,t(u) and Ẽq,t(u) for the end-point maps of ∆ and ∆R starting from x ∈M and q ∈ Q,
respectively. One easily sees that E and Ẽ are related by

πQ,M ○ Ẽ
q,t = Ex,t, (9)

for any q = (x, x̂;A) ∈ Q and t where defined. We also denote by k the rank of ∆ (i.e. the rank
of ∆R).

Let u ∈ L2([0,1],Rk) be any o-regular control of Ex0,1 which belongs to the domain of definition
of Ẽq0,1. The existence of such an u is guaranteed by an application of Proposition 5.7 given in
the appendix and Proposition 3.11, as in this case (M̂, ĝ) = Rn is complete.

Let then X ∈ Tx0M be arbitrary, and notice that Tx0O∆(x0) = Tx0M . By o-regularity of u with
respect to Ex0,1, there exists a C1-map u ∶ I → L2([0,1],Rk), where I is an open neighbourhood
of 0, such that u(0) = u and h(t, s) ∶= Ex0,t(u(s)), (t, s) ∈ [0,1] × I, satisfy ∂

∂s
h(1, s)∣s=0 = X .

Indeed, let G ∶ I → O∆(x0) be any smooth curve such that Ġ(0) = X . The o-regularity of u
means thatDuEx0,1, i.e. the differential of Ex0,1 at u, is surjective linear map from L2([0,1],Rk)
onto TEx0,1(u)O∆(x0) when u = u, and hence for all u close to ū in L2([0,1],Rk). One next
defines P (u) as the Moore-Penrose inverse of DuEx0,1 and one considers the Cauchy problem
du(s)
ds
= P (u(s))dG(s)

ds
, u(0) = ū. Then [7, Proposition 2] asserts that the maximal solution u(⋅) of

the Cauchy problem is well-defined on a non empty interval centered at zero, which concludes
the argument of the claim (after shrinking I if necessary).
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Write h̃(t, s) = Ẽq0,t(u(s)) for (t, s) ∈ [0,1] × I. For each i = 1, . . . , d and s ∈ I, the maps t ↦
h(t, s) and t↦ h̃(t, s) are absolutely continuous and ∆- and ∆R-admissible curves, respectively,
and h(t, s) = πQ,M(h̃(t, s)) by (9). In particular, ∂

∂s
h̃(1, s)∣s=0 is a vector in Tq0O∆R

(q0) and
(πQ,M)∗( ∂∂sh̃(1, s)∣s=0) = ∂

∂s
h(1, s)∣s=0 =X,

which shows that X ∈ (πQ,M)∗(Tq0O∆R
(q0)). Because X was arbitrary tangent vector of M at

x0, we conclude that Tx0M ⊂ (πQ,M)∗(Tq0O∆R
(q0)).

The opposite inclusion (πQ,M)∗(Tq0O∆R
(q0)) ⊂ Tx0M being trivially true, this completes the

proof.

Remark 3.20. Here is an alternative proof in the case that the distribution ∆ satisfies LARC
on a connected manifold M i.e. Liex(∆) = TxM for all x ∈M .

Given vector fields Y1, . . . , Yr and a subset J = {i1, . . . , il} of {1, . . . , r} we write YJ for the iter-
ated bracket [Yi1 , [Yi2 , . . . [Yil−1, Yil] . . . ] of length l. Given X ∈ Tx0M = Tx0O∆(x0), there are, by
the assumption, vector fields Y1, . . . , Yr tangent to ∆, subsets J1, . . . , Jt of {1, . . . , r} and numbers
a1, . . . , at such thatX = ∑ts=1 asYJs ∣x0. The lifts LR(Yi), i = 1, . . . , r are tangent to ∆R and satisfy(πQ,M)∗LR(Yi) = Yi, hence if we write LR(Y )J for [LR(Yi1), [LR(Yi2), . . . [LR(Yil−1),LR(Yil)] . . . ]
when J is as above, we have that LR(Y )Js is tangent to O∆R

(q0) for every s = 1, . . . , t
(πQ,M)∗∣q0( t

∑
s=1

asLR(Y )Js) = t

∑
s=1

asYJs ∣x0 =X,
i.e. X ∈ (πQ,M)∗Tq0O∆R

(q0). By arbitrariness of X in Tx0M we have the claimed submersivity
of πQ,M .

Classical results now apply to give the following.

Corollary 3.21. In particular, for any x ∈M the fiber π−1Q,M(x) ∩O∆R
(q0) of O∆R

(q0) over x
is either empty or a (closed) embedded submanifold of O∆R

(q0) of dimension δ = dimO∆R
(q0)−

dimM .

We arrive at the main result of this subsection.

Proposition 3.22. Assume that ∆ is a constant rank completely controllable distribution on(M,∇) where M is a connected smooth manifold and ∇ an affine connection. Then, the ∆-
horizontal holonomy group H ∇

∆ and the affine holonomy group H ∇∆R
of ∆R as defined previously

are Lie subgroups of Aff(n).
Proof. It is enough to prove the claim for H ∇∆R

. We first argue that H ∇
∆R∣q0

is an algebraic

subgroup of Aff(n). To this end, to any p ∈ π−1Q,M(x0) (i.e. p is an arbitrary element of the fiber
of Q over x0) we match a unique (yp,Cp) ∈ Aff(n) such that µ((yp,Cp), q0) = p. Recall thatO∆R
(q0) ∩ π−1Q,M(x0) is identified with H ∇

∆R∣q0
through this correspondence.
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Then given p1, p2 ∈ O∆R
(q0)∩π−1Q,M(x0), there are ∆-admissible (piecewise smooth) loops γ1, γ2 ∈

ΩM(x0) inM based at x0 such that pi = q∆R
(γi, q0)(1) for i = 1,2. Letting p = q∆R

(γ1 ⋅γ2, q0)(1)
we have

µ((yp,Cp), q0) =p = q∆R
(γ1 ⋅ γ2, q0)(1) = q∆R

(γ1, q∆R
(γ2, q0))(1) = q∆R

(γ1, p2)(1)
=q∆R

(γ1, µ((yp2 ,Cp2), q0))(1) = µ((yp2,Cp2), q∆R
(γ1, q0)(1))

=µ((yp2,Cp2), p1) = µ((yp2,Cp2), µ((yp1 ,Cp1), q0))
=µ((yp2 ,Cp2)(yp1 ,Cp1), q0),

i.e. (yp,Cp) = (yp2,Cp2)(yp1 ,Cp1), because the action µ is free. Since γ1 ⋅ γ2 is ∆-admissible
loop, we have p = q∆R

(γ1 ⋅ γ2, q0)(1) ∈ O∆R
(q0) ∩ π−1Q,M(x0) i.e. (yp,Cp) ∈ H ∇∆R∣q0

, and therefore

H ∇
∆R∣q0

is indeed an algebraic subgroup of Aff(n) as claimed.

In other words we have shown that if m ∶ Aff(n) × Aff(n) → Aff(n) is the smooth group
multiplication operation on Aff(n), then

m(H ∇
∆R ∣q0

×H ∇
∆R∣q0
) ⊂ H ∇

∆R∣q0
.

By the orbit theorem 5.2 as given in the appendix (see also [16]), we know that any smooth
map f ∶ Z → Q for any smooth manifold Z such that f(Z) ⊂ O∆R

(q0) is smooth as a map
f ∶ Z → O∆R

(q0). In other words, O∆R
(q0) is an initial submanifold of M (cf. [16]).

By Corollary 3.21 O∆R
(q0)∩π−1Q,M(x0) is a smooth embedded submanifold of O∆R

(q0), hence an
initial submanifold of Q. Since O∆R

(q0)∩π−1Q,M(x0) ⊂ π−1Q,M(x0) and π−1Q,M(x0) is diffeomorphic to

Aff(n) using the action µ, we have that H ∇
∆R∣q0

is a smooth immersed submanifold of Aff(n) as
well. Now the group multiplication m restricted to H ∇

∆R ∣q0
which we write asm′ is a smooth map

m′ ∶H ∇
∆R∣q0

×H ∇
∆R∣q0

→ Aff(n) whose image is a subset of H ∇
∆R∣q0

. Pulling this map back by the

action µ on Q we obtain a smooth map M ∶ (O∆R
(q0)∩π−1Q,M(x0))× (O∆R

(q0)∩π−1Q,M(x0))→ Q

whose image is contained in O∆R
(q0) ∩ π−1Q,M(x0). As mentioned above, O∆R

(q0) ∩ π−1Q,M(x0) is
an initial submanifold of Q, hence M is smooth as a map into O∆R

(q0) ∩ π−1Q,M(x0). This then
is reflected, by applying the action µ once more, in the fact that m′ is smooth as a map intoH ∇

∆R∣q0
. Thus the latter space is a Lie-subgroup of Aff(n).

Remark 3.23. The situation described in Remark 3.5 with the rolling formalism can be treated
as the rolling system without spinning nor slipping of two oriented connected Riemannian
manifolds (M,g) and (Rn, sn), where sn is the Euclidean metric on Rn. Thus, the state space
Q(M,Rn) is a principal SE(n)-bundle (cf [9], [10] and [11] for more details).

3.3 Integrability of ∆R

A natural question arises in the framework of horizontal holonomy, namely under which condi-
tions the horizontal holonomy group H∇∆R

is trivial. More generally, we pose this question on

the level of Lie algebra, which translates on the group level to asking when H∇∆R
is discrete in

its underlying Lie group topology. As H∇∆R
is identified with a fiber O∆R

(q0)∩π−1Q,M(x0) of the
12



orbit O∆R
(q0), we see that answering question comes down to studying when the distribution

∆R itself is involutive.

In the case where ∆ = TM , it is known that the answer is that H∇∆R
is discrete if and only if(M,∇) has vanishing curvature and torsion. This justifies the following definition.

Definition 3.24. We say that the triple (M,∇) is ∆-horizontally flat is ∆R is involutive.

By (4), we see that for any vector field X,Y tangent to ∆ we have for any q = (x, x̂;A) ∈ Q,
[LR(X),LR(Y )]∣q =LR([X,Y ])∣q −LNS(T∇(X,Y ))∣q + ν(AR∇(X,Y ))∣q

where, as before, T∇ and R∇ are the torsion and the curvature of ∇, respectively.

This formula immediately implies a simple characterization of the involutivity of ∆R.

Proposition 3.25. The manifold with connection (M,∇) is ∆-horizontally flat if and only if
∆ is involutive and for all x ∈M and X,Y ∈∆∣x,

T∇(X,Y ) = 0, R∇(X,Y ) = 0
For the rest of this subsection, we assume that M is a Riemannian manifold with metric g and
that ∇ is the associated Levi-Civita connection.

Let ∆⊥ be the g-orthogonal complement of ∆, and let P ∶ TM → ∆ be P ⊥ ∶ TM → ∆⊥ be the
orthogonal projections onto ∆ and ∆⊥, respectively. Define the fundamental II form of ∆ by

II(X,Y ) = P ⊥(∇XY ), ∀X,Y ∈∆∣x, x ∈M.

When ξ ∈ ∆⊥∣x is given, one defines the shape operator Sξ ∶ ∆∣x →∆∣x of ∆ with respect to ξ to
be given by

g(Sξ(X), Y ) = −g(ξ, II(X,Y )), ∀X,Y ∈∆∣x.
In the case where ∆ is involutive II is symmetric, and we define the induced ∆-connection D

and induced ∆⊥-connection D⊥ by

DXY = P (∇XY ),
D⊥Xξ = P ⊥(∇Xξ),

for X ∈ ∆∣x, for any vector field Y tangent to ∆ and for any vector field ξ tangent to ∆⊥.
Furthermore, if one defines for X,Y,Z ∈∆∣x, ξ ∈∆⊥∣x, where x ∈M ,

RD(X,Y )Z =DXDY Z −DYDXZ −D[X,Y ]Z,

R⊥(X,Y )ξ =D⊥XD⊥Y ξ −D⊥YD⊥Xξ −D⊥[X,Y ]ξ,
then the following result holds.

13



Corollary 3.26. The Riemannian manifold (M,g) is ∆-horizontally flat if and only if ∆ is
involutive and for all X,Y,U,V ∈∆∣y, ξ, η ∈∆⊥∣y and y ∈M ,

g(RD(X,Y )U,V ) = g(II(X,U), II(Y,V )) − g(II(X,V ), II(Y,U)), (10)

g((∇XII)(Y,U), ξ) = g((∇Y II)(X,U), ξ), (11)

g(R⊥(X,Y )ξ, η) = g(Sξ(X), Sη(Y )) − g(Sη(X), Sξ(Y )). (12)

Proof. Indeed, if L is a leaf of ∆, h is the metric on L induced by g, then D is exactly the
Levi-Civita connection of h, and II restricted to L is the second fundamental form of (L,h)
in (M,g). The result follows from these observations combined ([4, Theorem 1.72]) with the
Gauss, Codazzi-Mainardi and Ricci equations, which are (10), (11) and (12), respectively.

4 Case Study: Holonomy of Free Step-two Homogeneous

Carnot Group

The goal of this section is to provide an example of a triple (M,∇,∆) such that ∆ verifies the
LARC (and thus is completely controllable) and H ∇

∆ is a Lie group strictly included in H∇.
After giving the required definitions to treat the example, we first compute H∇ and then H ∇

∆

using the rolling formalism.

4.1 Definitions

The affine manifold (M,∇) we consider is the free step-two homogeneous Carnot group G

endowed with a Riemannian metric and its Levi-Civita connection. To describe it, we will use
the definitions of Jacobian basis, homogeneous group and Carnot group of Chapters 1 and 2 of
[5].

For m positive integer greater than or equal to 2, set m + n where n ∶= m(m − 1)/2 andI ∶= {(h, k) ∣ 1 ≤ k < h ≤m} of cardinal n. Let S(h,k) be the m ×m real skew-symmetric matrix
whose entries are −1 in the position (h, k), +1 in the position (k,h) and 0 elsewhere. On Rm+n

where an arbitrary point is written (v, γ) with v ∈ Rm, and γ ∈ Rn, define the group law ⋆ by
setting

(v, γ) ⋆ (v′, γ′) = ( vi + v
′
i, i = 1, . . . ,m

γh,k + γ
′
h,k +

1
2
(vhv′k − vkv′h), (h, k) ∈ I ) . (13)

Then it is easy to verify that G ∶= (Rm+n,⋆) is a Lie group, more precisely a free step-two
homogeneous Carnot group of m generators. Indeed, a trivial computation shows that the
dilation δλ given by

δλ ∶ R
m+n
→ R

m+n; δλ(v, γ) = (λv,λ2γ), (14)

is an automorphism of G for every λ > 0. On the other hand, the (Jacobian) basis of the Lie
algebra g of G is given by Xh, Γh,k where
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Xh = ∂

∂vh
+
1

2
∑

1≤j<i≤m

( ∑ml=1 S(i,j)h,l vl ) ( ∂

∂γi,j
),

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
∂v1
+

1
2∑1<i≤m vi

∂
∂γi,1

if h = 1,
∂
∂vh
+

1
2 ∑h<i≤m vi ∂

∂γi,h
−

1
2 ∑1≤j<h vj

∂
∂γh,j

if 1 < h <m,
∂
∂vm
−

1
2 ∑1≤j<m vj

∂
∂γm,j

if h =m,

Γh,k = ∂

∂γh,k
, (h, k) ∈ I .

while the Lie brackets on G = (RN ,⋆) are given by

[Xh,Xk] = ∑
1≤j<i≤m

S
(i,j)
h,k

∂

∂γi,j
= ∂

∂γh,k
= Γh,k

[Xh,Γi,j] = 0, [Γh,k,Γi,j] = 0.
Then,

rank(Lie{X1, . . . ,Xm}) = dim(span{ ∂
∂v1

, . . . ,
∂

∂vm
, (Γh,k)(h,k)∈I}) = N = dimg.

Therefore, we can conclude that G is a homogeneous Carnot group of step 2 and m generators
X1, . . . ,Xm. The Lie algebra g is equal to V1 ⊕ V2, where V1 = span{X1, . . . ,Xm} and V2 =
span{Γh,k, (h, k) ∈ I}.
Moreover, (G, g) is an analytic manifold where the metric g, with respect to the previous basis,
is given by

g(Xi,Xj) = δi,j, if i, j ∈ {1, . . . ,m},
g(Xi,Γh,k) = 0, if i ∈ {1, . . . ,m} and (h, k) ∈ I ,
g(Γh,k,Γi,j) = δh,iδk,j, if (i, j), (h, k) ∈ I .

(15)

In the sequel of this article, we find useful to introduce the following notation of vector fields
instead of Γh,k, for h, k ∈ {1, . . . ,m}, in order to facilitate computations by avoiding the confusion
between the two cases k < h and h < k.
Definition 4.1. For every h, k ∈ {1, . . . ,m}, we define,

Ωh,k =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γh,k if h > k,
−Γk,h if h < k,
0 if h = k.

(16)
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By the above definition, the Lie bracket [Xh,Xk] is equal to Ωh,k, for any h, k ∈ {1, ...,m}.
Furthermore, let ∇g be the Levi-Civita connection associated to the Riemannian metric in
(15).

Lemma 4.2. For h, k, l, s, t ∈ {1, . . . ,m}, we have the following covariant derivatives on (G, g),
∇
g
Xh
Xk = 1

2
Ωh,k, ∇

g
Ωh,k

Ωs,t = 0,
∇
g
Xl
Ωh,k = 1

2
(δklXh − δhlXk), ∇

g
Ωh,k

Xl = 1
2
(δklXh − δhlXk).

Proof. Let us denote by ∇gXY the covariant differential of a vector field Y in the direction of
another vector field X on G. It is equal to

∇
g
XY =

m

∑
h=1

αh(X,Y )Xh + ∑
1≤k<h≤m

β(h,k)(X,Y )Ωh,k. (17)

On the other hand, by Koszul’s formula (cf. [28]), we have

2g(∇gXY,Z) = g([X,Y ],Z) − g([X,Z], Y ) − g([Y,Z],X). (18)

Combining (17) and (18), we easily find the coefficients αh(X,Y ) and β(h,k)(X,Y ) and hence
we obtain the claim.

4.2 Riemannian Holonomy Group of (G, g)
The main of this subsection is to prove the following theorem.

Theorem 4.3. Let (G,∇g) be a free step-two homogeneous Carnot group of dimension N en-
dowed with the Levi-Civita connection ∇g given in Lemma 4.2. Then, (G,∇g) has full holonomy
group H∇

g = SO(m + n).
To this end, we compute the Riemannian tensor curvature R and as well as part of its covariant
derivation of (G,∇g).
Lemma 4.4. For any h, k, l, i, j ∈ {1, . . . ,m}, the Riemannian curvature tensor R of (G,∇g))
is given by the following skew-symmetric matrices,

R(Xh,Xk) = 3
4
(Xh ∧Xk) + 1

4

m

∑
j=1

Ωh,j ∧Ωk,j, (19)

R(Xl,Ωh,k) = 1
4
(Xh ∧Ωk,l +Xk ∧Ωl,h), (20)

R(Ωi,j ,Ωh,k) = 1
4
(δikXh ∧Xj + δjkXi ∧Xh + δihXj ∧Xk + δjhXk ∧Xi). (21)

Proof. From Lemma 4.2 and the intrinsic definition of R,

R(X,Y )Z = ∇gX∇gY Z −∇gY∇gXZ −∇g[X,Y ]Z, ∀X, Y, Z ∈ TxG,
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we get, for any h, k, l, i, j ∈ {1, . . . ,m},
R(Xh,Xk)Xl = 3

4
(δhlXk − δklXh),

R(Xh,Xk)Ωi,j = 1
4
(δihΩk,j + δjhΩi,k − δikΩh,j − δjkΩi,h).

Similarly, for any h, k, l, i, j, t ∈ {1, . . . ,m}, R(Xl,Ωh,k) is given by

R(Xl,Ωh,k)Xt = 1
4
(δthΩk,l − δtkΩh,l),

R(Xl,Ωh,k)Ωi,j = 1
4
((δjkδil − δjlδki)Xh + (δjlδhi − δilδjh)Xk).

Finally, for any i, j, h, k, l ∈ {1, . . . ,m}, R(Ωi,j ,Ωh,k) is given by

R(Ωi,j ,Ωh,k)Xl = 1

4
((δlkδjh − δhlδjk)Xi + (δhlδik − δlkδih)Xj

+ (δilδjk − δjlδik)Xh + (δljδih − δhjδil)Xk),
R(Ωi,j ,Ωh,k)Ωs,t = 0, ∀s, t ∈ {1, . . . ,m}.

Collecting the above equalities, we get Eq. (19), Eq. (20) and Eq. (21).

Using the definition of the covariant derivative of tensors, which is,

(∇gZR(X,Y ))(W ) = ∇gZ(R(X,Y )W ) −R(X,Y )∇gZW, ∀X, Y, Z, W ∈ TxG,
we deduce the following lemma.

Lemma 4.5. The covariant derivatives of R in the direction of a vector fields Xt on G, for
t ∈ {1, . . . ,m}, are
∇
g
Xt
R(Xh,Xk) = −R(Xt,Ωh,k) + 1

8

m

∑
j=1

(δktXj ∧Ωh,j − δhtXj ∧Ωk,j),
∇
g
Xt
R(Xl,Ωh,k) = 1

8
(Ωt,h ∧Ωk,l +Ωt,k ∧Ωl,h + 2δltXh ∧Xk + δhtXk ∧Xl − δktXh ∧Xl),

∇
g
Xt
R(Ωi,j ,Ωh,k) = 1

8
(δikR(Xj,Ωh,t) + δjkR(Xh,Ωi,t) + δihR(Xk,Ωj,t) + δjhR(Xi,Ωk,t)),

where h, k, l, i, j are any integers in {1, . . . ,m}.
Similarly, the covariant derivatives of R in the direction of a vector fields Ωs,t on G, for every
s, t ∈ {1, . . . ,m}, are

∇
g
Ωs,t

R(Xh,Xk) = 3
8
(δthXs ∧Xk − δshXt ∧Xk + δtkXh ∧Xs − δskXh ∧Xt),

∇
g
Ωs,t

R(Xl,Ωh,k) = 1
8
(δthXs ∧Ωk,l − δshXt ∧Ωk,l + δtkXs ∧Ωl,h − δskXt ∧Ωl,h),

∇
g
Ωs,t

R(Ωi,j ,Ωh,k) = 1
8
((δihδtk − δikδth)Xj ∧Xs + (δikδjt − δjkδti)Xh ∧Xs

+ (δjhδti − δihδtj)Xk ∧Xs + (δjkδth − δjhδtk)Xi ∧Xs

− (δikδjs − δjkδis)Xh ∧Xt − (δjkδsh − δjhδsk)Xi ∧Xt

− (δjhδsi − δihδsj)Xk ∧Xt − (δihδsk − δikδsh)Xj ∧Xt),
17



where h, k, l, i, j are any integers in {1, . . . ,m}.
We next deduce from the two previous lemma the main computational result of the section.

Proposition 4.6. Fix some q0 ∈ Q(G,RN) and let q = (x, x̂;A) ∈ ODR
(q0), then SO(TxM) ⊂ODR

(q0).
Proof. Fix some q0 = (x0, x̂0;A0) ∈ Q, for any h, k, i, j ∈ {1, . . . ,m} such that i ≠ j and k ≠ h,
the first order Lie brackets on ODR

(q0) are
[LR(Xh),LR(Xk)]∣q =LR(Ωh,k)∣q + ν(AR(Xh,Xk))∣q

=LR(Ωh,k)∣q + 3

4
ν(A(Xh ∧Xk))∣q + 1

4
ν(A( m∑

j=1

Ωh,j ∧Ωk,j))∣q,
[LR(Ωi,j),LR(Ωh,k)]∣q = 1

4
ν(A(δikXh ∧Xj + δjkXi ∧Xh + δihXj ∧Xk + δjhXk ∧Xi))∣q,

[LR(Xi),LR(Ωh,k)]∣q = 1
4
ν(A(Xh ∧Ωk,i +Xk ∧Ωi,h))∣q.

By taking i = k in the bracket [LR(Ωi,j),LR(Ωh,k)]∣q, we get that, for any h, j ∈ {1, . . . ,m},
ν(A(Xh ∧Xj))∣q is tangent to ODR

(q0). In addition, from the first and the last brackets of the
above Lie brackets, we obtain that ν(A(∑mj=1Ωh,j ∧ Ωk,j))∣q and ν(A(Xh ∧ Ωk,i +Xk ∧ Ωi,h))∣q
are tangent to ODR

(q0), for any h, k, i, j ∈ {1, . . . ,m}. Thus, we can compute the next bracket
in TqODR

(q0), for q ∈ ODR
(q0),

[LR(Xi), ν((⋅)(Xh ∧Xk))]∣q = δkiLNS(AXh)∣q − δhiLNS(AXk)∣q
−

1
2
ν(A(Xh ∧Ωk,i +Xk ∧Ωi,h))∣q.

Using [LR(Xi),LR(Ωh,k)]∣q and then putting i = h in the last Lie bracket, we obtain that
LNS(AXk)∣q is tangent to ODR

(q0), for all k ∈ {1, . . . ,m}. In addition, we have

[LR(Ωt,s), ν((⋅)(Xh ∧Ωk,i +Xk ∧Ωi,h))]∣q
= (δtkδls − δtlδsk)LNS(AXh)∣q + (δhtδls − δtlδhs)LNS(AXk)∣q
+

1
2
(δshν(A(Xt ∧Ωk,l))∣q + δskν(A(Xt ∧Ωl,h))∣q
−δthν(A(Xs ∧Ωk,l))∣q + δtkν(A(Xs ∧Ωl,h))∣q).

Since LNS(AXk)∣q is tangent to ODR
(q0), for all k ∈ {1, . . . ,m}, then ν(A(Xt ∧Ωh,k))∣q is also

tangent for any distinct integers h, k, t ∈ {1, . . . ,m}. The last Lie bracket to compute is

[LNS(Xt), ν(A(Xl ∧Ωh,k))]∣q = 1

2
(δtkν(A(Xl ∧Xh))∣q − δthν(A(Xl ∧Xk))∣q
+ ν(A(Ωt,l ∧Ωh,k))∣q).
18



Therefore, for every h, k, t, l ∈ {1, . . . ,m}, ν(A(Ωt,l ∧Ωh,k))∣q is tangent to ODR
(q0). Hence, for

all q ∈ ODR
(q0) the following vector fields

ν(A(Xh ∧Xk))∣q, ν(A(Xt ∧Ωh,k))∣q, ν(A(Ωt,l ∧Ωh,k))∣q,
are tangent to ODR

(q0). This completes the proof because we have that ν(AB)∣q ∈ TqODR
(q0)

if and only if B ∈ so(TxG) for q = (x, x̂;A) ∈ ODR
(q0).

We return to prove the main theorem in the beginning of the current subsection.

Proof of Theorem 4.3. . As the vertical bundle of Q is included in the tangent space of ODR
(q0)

by Proposition 4.6, then the rolling problem (Σ)R is completely controllable (see Corollary 5.21
in [9]). According to Theorem 4.3 in [11], the holonomy group of G is equal to SO(m + n).
Note that one could have used as well the main result in [25] stating that the tangent space of
the holonomy group at every point x ∈M contains the evaluations at x of the curvature tensor
and its covariant derivatives at any order.

4.3 Horizontal Holonomy Group of (G, g)
We define the distribution ∆ ∶= span{X1, . . . ,Xm} on G and q0 = (x0, x̂0;A0) ∈ Q. Note that
is of cnstant rank m. We will first compute a basis of TqO∆R

(q0) for any q ∈ O∆R
(q0) and

then determine the holonomy group H ∇∆R
of rolling of (G, g) against (RN , sN), where sN is the

Euclidean metric on RN .

4.3.1 The Tangent Space of O∆R
(q0)

Proposition 4.7. For any q0 ∈ Q, the tangent space of O∆R
(q0) is generated by the following

linearly independent vector fields:

LNS(Xh)∣q, LNS(AXh)∣q, LNS(AΩh,k)∣q, LNS(Ωh,k)∣q + 1

2
ν(A(Xh ∧Xk))∣q, (22)

ν(A( m∑
j=1

Xj ∧Ωh,j))∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q.
Proof. Recall that all the data of the problem are analytic. Then, by the analytic version of the
orbit theorem of Nagano-Sussmann (cf. [2]), the orbit O∆R

(q0) is an immersed analytic sub-
manifold in the state space Q and TqO∆R

(q0) = Lieq(∆R). Therefore, we are left to determine
vector fields spanning Lieq(∆R), i.e., to compute enough iterated Lie brackets of ∆.

For any h, k, l, s, t, p ∈ {1, . . . ,m}, we have

[LR(Xh),LR(Xk)]∣q =LR(Ωh,k)∣q + ν(AR(Xh,Xk))∣q
= LR(Ωh,k)∣q + 3

4
ν(A(Xh ∧Xk))∣q + 1

4
ν(A(∑mj=1Ωh,j ∧Ωk,j))∣q.

(23)
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[LR(Xl), [LR(Xh),LR(Xk)]]∣q
= δkl (34LNS(AXh)∣q + 1

8
ν(A∑mj=1Xj ∧Ωh,j))∣q)

− δhl (34LNS(AXk)∣q + 1
8
ν(A(∑mj=1Xj ∧Ωk,j))∣q).

(24)

[LR(Xt), [LR(Xl), [LR(Xh),LR(Xk)]]]∣q
= δkl (12LNS(AΩt,h)∣q + 1

16
ν(A(Xt ∧Xh))∣q + 1

16
ν(A(∑mj=1Ωt,j ∧Ωh,j))∣q)

− δhl (12LNS(AΩt,k)∣q + 1
16
ν(A(Xt ∧Xk))∣q + 1

16
ν(A(∑mj=1Ωt,j ∧Ωk,j))∣q).

(25)

[LR(Xs), [LR(Xt), [LR(Xl), [LR(Xh),LR(Xk)]]]]∣q
= δkl (δhs(38LNS(AXt)∣q + 1

32
ν(A(∑mj=1Xj ∧Ωt,j)))

−δts(38LNS(AXh)∣q + 1
32
ν(A(∑mj=1Xj ∧Ωh,j))))

− δhl (δks(38LNS(AXt)∣q + 1
32
ν(A(∑mj=1Xj ∧Ωt,j)))

−δts(38LNS(AXk)∣q + 1
32
ν(A(∑mj=1Xj ∧Ωk,j)))).

(26)

[LR(Xp), [LR(Xs), [LR(Xt), [LR(Xl), [LR(Xh),LR(Xk)]]]]]∣q
= δkl (δhs( 7

32
LNS(AΩp,t)∣q + 1

64
ν(A(Xp ∧Xt))∣q + 1

64
ν(A(∑mj=1Ωp,j ∧Ωt,j))∣q)

−δts( 7
32

LNS(AΩp,h)∣q + 1
64
ν(A(Xp ∧Xh))∣q + 1

64
ν(A(∑mj=1Ωp,j ∧Ωh,j))∣q))

− δhl (δks( 7
32

LNS(AΩp,t)∣q + 1
64
ν(A(Xp ∧Xt))∣q + 1

64
ν(A(∑mj=1Ωp,j ∧Ωt,j))∣q)

−δts( 7
32

LNS(AΩp,k)∣q + 1
64
ν(A(Xp ∧Xk))∣q + 1

64
ν(A(∑mj=1Ωp,j ∧Ωk,j))∣q)).

(27)
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First we should remark that, by iteration, the commutators

[LR(Xαr
), . . . [LR(Xα2

),LR(Xα1
)] . . . ],

where αi ∈ {1, . . . ,m} and r ≥ 3 are written either as the vectors in (24) and (26), or as those
in (25) and (27). Therefore, one only has to prove that (23), (24), (25), (26) and (27) are
linear combinations of the vector fields in (22) and then show that the Lie algebra generated
by these vector fields is involutive. Indeed, fix some h, k ∈ {1, . . . ,m} such that k ≠ h and take
p = s = t = l = k in the above Lie brackets. Calculate 1

4
(24) + (26) and 1

2
(24) + (26), we get that

LNS(AXh)∣q, ν(A( m∑
j=1

Xj ∧Ωh,j))∣q
are vectors in Lie(∆R). On the other hand, 1

4
(25) + (27) and 7

16
(25) + (27) imply that

LNS(AΩh,k)∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q
belong also to Lie(∆R). The last two vectors with (23) give us another vector in Lie(∆R)
which is

LNS(Ωh,k)∣q + 1

2
ν(A(Xh ∧Xk))∣q.

To show that the vector fields given in Eq. (22) form a basis for Lie(∆R), it remains to compute
their first order Lie brackets to see that they define an involutive Lie algebra.

We have,

[ν((⋅)(∑mj=1Xj ∧Ωh,j)), ν((⋅)(∑mj=1Xj ∧Ωk,j))]∣q
= ν(A(Xh ∧Xk +∑mj=1Ωh,j ∧Ωk,j))∣q,

(28)

[ν((⋅)(∑mj=1Xj ∧Ωl,j)), ν((⋅)(Xh ∧Xk +∑mj=1Ωh,j ∧Ωk,j))]∣q
= δklν(A(∑mj=1Xj ∧Ωh,j))∣q − δhlν(A(∑mj=1Xj ∧Ωk,j))∣q,

(29)
and,

[ν((⋅)(Xl ∧Xt +∑mj=1Ωl,j ∧Ωt,j)), ν((⋅)(Xh ∧Xk +∑mj=1Ωh,j ∧Ωk,j))]∣q
= δklν(A(Xh ∧Xt +∑mj=1Ωh,j ∧Ωt,j))∣q + δhlν(A(Xt ∧Xk +∑mj=1Ωt,j ∧Ωk,j))∣q
+ δtkν(A(Xl ∧Xh +∑mj=1Ωl,j ∧Ωh,j))∣q + δhtν(A(Xk ∧Xl +∑mj=1Ωk,j ∧Ωl,j))∣q.

(30)
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Moreover, the Lie brackets between LNS(Ωh,k)+ 1
2
ν(A(Xh ∧Xk)) and the remaining vectors of

(22) are

[LNS(Xl),LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk))]∣q = 0,

[LNS((⋅)Xl),LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk))]∣q = 0,

[LR((⋅)Ωi,j),LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk))]∣q = 0,

[LNS((⋅)Ωl,t),LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk))]∣q = 0,

[LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk)),LNS(Ωl,t) + 1

2
ν((⋅)(Xl ∧Xt))]∣q = 0,

[LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk)), ν((⋅)(Xl ∧Xt +

m

∑
j=1

Ωl,j ∧Ωt,j))]∣q = 0,
[LNS(Ωh,k) + 1

2
ν((⋅)(Xh ∧Xk)), ν((⋅)( m∑

j=1

Xj ∧Ωl,j))]∣q = 0.
Then, the vector fields

LNS(Xh)∣q, LNS(AXh)∣q, LNS(AΩh,k)∣q, LNS(Ωh,k)∣q + 1

2
ν(A(Xh ∧Xk))∣q,

ν(A( m∑
j=1

Xj ∧Ωh,j))∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q,
form an involutive distribution and any vector fields in Lie(∆R) is a linear combination of
them. It remains to check that they are linearly independent. It is clearly enough to do that
for the family of vector fields ν(A(∑mj=1Xj ∧ Ωh,j))∣q. Suppose there exists (αh)1≤h≤m, such
that ∑mh=1αh∑mj=1Xj ∧ Ωh,j = 0. Then ∑mj=1Xj ∧ (∑mh=1,h≠j αhΩh,j) = 0 ∀j ∈ {1, . . . ,m}. Hence,

∑mh=1,h≠j αhΩh,j = 0 for every j, h ∈ {1, . . . ,m}, so αh = 0 for every h ∈ {1, . . . ,m}. Therefore,
LNS(Xh)∣q, LNS(AXh)∣q, LNS(AΩh,k)∣q, LNS(Ωh,k)∣q + 1

2
ν(A(Xh ∧Xk))∣q,

ν(A( m∑
j=1

Xj ∧Ωh,j))∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q,
is a global basis of Lieq(∆R) and hence the dimension of Lieq(∆R) is constant and equal to
3N . We deduce that dimO∆R

(q0) = 3N and the tangent space of O∆R
(q0) is generated by the

vectors in (22).

Remark 4.8. According to this proposition, LNS(AXh)∣q and LNS(AΩh,k)∣q are tangent toO∆R
(q0). This implies that πQ,RN(O∆R

) = Rm+n which means that all the translations along
Rm+n are included in the tangent space of the orbit. Furthermore, the families of vector fields
ν(A(∑mj=1Xj ∧Ωh,j))∣q and ν(A(Xh ∧Xk +∑mj=1Ωh,j ∧Ωk,j))∣q form an involutive vertical distri-
bution.
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4.3.2 Determination of H ∇
∆R∣q

The main result of the subsection is given next.

Proposition 4.9. (i) The affine ∆-horizontal holonomy group H ∇∆R
is a Lie subgroup of

SE(m + n) of dimension 2(m + n).
(ii) The ∆-horizontal holonomy group H ∇

∆ is a Lie subgroup of SO(m+n) of dimension m+n.
Moreover, the connected component of the identity (H ∇

∆ )0 of H ∇
∆ is compact.

Proof. As an immediate adaptation of Proposition 3.22 to the case where one is dealing with
principal SE(n)-bundles, one gets that the affine holonomy group H ∇∆R

is a Lie subgroup of
SE(m+n). Notice then that, if Π ∶ SE(m+n) → SO(m+n) is the projection onto the SO(m+n)
factor of SE(m + n), one has, by definition H∇ = Π(H∇) and H ∇

∆ = Π(H ∇∆R
). This shows that

the ∆-horizontal holonomy group H ∇
∆ is a Lie subgroup of SO(m + n).

We next prove that for every q′ ∈ Q, a basis of Lie(H ∇
∆R ∣q′
) the Lie-algebra of H ∇

∆R∣q′
is given by

the evaluation at q′ of the vector fields whose values at q = (x, x̂,A) ∈ Q are

LNS(AXh)∣q,LNS(AΩh,k)∣q, ν(A( m∑
j=1

Xj ∧Ωh,j))∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q, (31)

and hence this Lie algebra has dimension 2(m + n) = m(m + 1). To see that, consider some
element V ∈ Lie(H ∇

∆R ∣q′
) as a linear subspace of Tq′O∆R

(q0). Then V is a linear combination

of the vector fields described in Eq. (22) evaluated at q′ and V projects to a zero-vector in
TM . By an obvious computation, one deduces that V is a linear combination of the vector
fields given in Eq. 31. Conversely, it is clear that the vector fields given in Eq. (31) generate
a distribution whose integral manifolds lie in O∆R

(q0) ∩ π−1Q,M(x′) where x′ = πQ,M(q′). This

proves that Lie(H ∇
∆R∣q′
) the Lie-algebra of H ∇

∆R∣q′
has dimension 2(m + n) = m(m + 1). One

could also check that the distribution generated by the vector fields in Eq. (31) is involutive.

By a similar reasoning, a basis Lie(H ∇
∆∣q′
) of the Lie-algebra of H ∇

∆∣q′
is given by the (evaluations

at q′ of) vector fields (see also (32) below)

ν(A( m∑
j=1

Xj ∧Ωh,j))∣q, ν(A(Xh ∧Xk +

m

∑
j=1

Ωh,j ∧Ωk,j))∣q,
and hence this Lie algebra has dimension m + n =m(m + 1)/2.
It remains to prove the last claim in (ii). For 1 ≤ h ≤ m, let Ah ∈ so(m + n) corresponding to
the vertical vector ν(A(∑mj=1Xj ∧Ωh,j)) and, for (h, k) ∈ I , let Bh,k ∈ so(m + n) corresponding
to the vertical vector (A(Xh ∧Xk +∑mj=1Ωh,j ∧Ωk,j)). We extend the notations for the Bh,k to

for any 1 ≤ h, k ≤ m by setting Bh,k = −Bk,h. The basis of Lie algebra L ∶= Lie(H ∇
∆ ) of H ∇

∆ is
given by the matrices Ah, 1 ≤ h ≤m and Bh,k, (h, k) ∈ I and thanks to Eqs. (28), (29) and (30),
one has

[Ai,Aj] = Bi,j, [Ai,Bh,k] = δkiAh − δhiAk, [Bl,t,Bh,k] = δklBh,t + δhlBt,k + δtkBl,h + δhtBk,l. (32)
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We prove in Subsection 5.2 that L is a compact semisimple Lie algebra. Since the connected
component of identity (H ∇

∆
)
0
of H ∇

∆ is a connected Lie with Lie algebra L, it follows from

Weyl’s theorem (cf. [26, Theorem 26.1]) that (H ∇
∆ )0 is compact in SO(m+n) and of dimension

m + n.

Since m + n ≤ (m + n)(m + n − 1)/2 (resp. 2(m + n) ≤ (m + n + 1)(m + n)/2) for all m ≥ 2 and
equality holds if and only if m = 2 we have obtain our last result.

Corollary 4.10. In the set up of Proposition 4.9, the inclusions H ∇∆R
⊂ SE(m + n) and H ∇

∆ ⊂
SO(m + n) are strict if and only if m ≥ 3.

5 Appendix

5.1 o-regular controls

We first generalize the usual definition of regular control and then provide a result about
existence of such controls. LetM be an n-dimensional smooth manifold, F a (possibly infinite)
family of smooth vector fields on M , and let ∆F be the smooth singular distribution (cf. [16])
spanned by F , i.e.

∆F ∣p = span{X ∣p ∣ X ∈ F} ⊂ TpM, p ∈M.

We use the word ”singular” (to emphasize the fact that the rank (dimension) of ∆F might vary
from point to point. One can, in fact, prove given any such family F , there is a finite subfamilyF0 = {X1, . . . ,Xm} such that ∆F = ∆F0

, and m ≤ n(n + 1) (see [12, 30], or [27] when ∆F has
constant rank). Moreover, by span S we mean R-linear span of a set S.

Definition 5.1. An absolutely continuous (a.c.) curve γ ∶ [0, T ]→M is horizontal with respect
to F if there is a finite subfamily {X1, . . . ,Xm} of F and u = (u1, . . . , ud) ∈ L1([0, T ],Rm), m ∈ N
(here m might depend on the curve γ in question), such that for almost every t ∈ [0, T ],

γ̇(t) = m

∑
i=1

ui(t)Xi∣γ(t).
The orbit OF(p) of F through p ∈M is the set of all points ofM reached by F -horizontal paths
γ with γ(0) = p.
If ∆ is a smooth distribution of constant rank k onM , and if F = F∆ is the set of smooth vector
fields tangent to ∆, then it is easy to see that ∆ = ∆F , and that an a.c. curve is ∆-horizontal
if and only if it is F -horizontal. Therefore, in this case the concept of orbit coincides with
the notion we have used previously in the paper, and one can without ambiguity denote it byO∆(p) instead of OF(p).
For a smooth vector field X write ΦX ∶D →M for its flow, where D = DX is an open connected
subset of R×M containing {0}×M . We also use the notation (ΦX)t(x) = (ΦX)x(t) = ΦX(t, x)
when (x, t) ∈ D.

The orbit of a family F of vector fields has the following properties (cf. [16], [18]).
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Theorem 5.2 (Orbit Theorem). 1. The orbit OF(p) is an immersed submanifold of M .

2. Any continuous (resp. smooth) map f ∶ Z →M , where Z is a smooth manifold, such that
f(Z) ⊂ OF(p) is continuous (resp. smooth) as a map f ∶ Z → OF(p).

3. If one writes GF for the set of all locally defined diffeomorphisms of M of the form(ΦXr
)t1 ○ ⋅ ⋅ ⋅ ○ (ΦXd

)td for X1, . . . ,Xd ∈ F and t1, . . . , td ∈ R for which this map is defined,
then

OF(p) = {ϕ(p) ∣ ϕ ∈ GF}
TOF(p) = span{ϕ∗(X) ∣ ϕ ∈ GF , X ∈ F},

wherever the expressions ϕ(p) and ϕ∗(X) are defined.

As a consequence of Case 3. of the theorem, one sees that L1([0, T ],Rm) in Definition 5.1 can
be replaced by L2([0, T ],Rm), which for the rest paper will be the appropriate space of controls
for our needs.

Following [27] we define the concepts of the end-point mapping and that of a regular (L2-
)control.

Definition 5.3. For every p ∈M , any time T > 0, and any smooth finite family of vector fieldsF = {X1, . . . ,Xm} onM , there exists a maximal open subset Up,T
F ⊂ L2([0, T ],Rm) such that for

every u = (u1, . . . , um) ∈ UT
p , there exists a unique absolutely continuous solution γu ∶ [0, T ]→M

to the Cauchy problem

γ̇u(t) = m

∑
i=1

ui(t)Xi(γu(t)), γu(0) = p. (33)

The end-point map Ep,T
F associated to F at p in time T is defined as the mapping

E
p,T
F ∶ U

p,T
F →M, E

p,T
F (u) = γu(T ).

By [27, Proposition 1.8] we have the following.

Proposition 5.4. With p,T,F as above, the end point map Ep,T
F ∶ U

p,T
F →M is C1-smooth.

This proposition allows us to give the following definition.

Definition 5.5. A control u ∈ Up,T
F is said to be o-regular with respect to p in time T if the rank

of DuE
p,T
F ∶ L

2([0, T ],Rm)→ T
E

p,T
F
(u)M , the differential of Ep,T

F (u) at u, is equal to dimOF(p).
Here, ”o-regular” stands for orbitally regular.

Remark 5.6. A control u is usually said to be regular (with respect to p in time T ) if the
rank of Ep,T

F (u) is equal to the dimension n of the ambient manifold M (cf [27, Section 1.3]),
implying in particular that the orbit OF(p) is open in M and thus is n-dimensional. If the
distribution generated by F verifies the LARC, it can be proved that any pair of points in
M can be joined by the trajectory tangent to this distribution and corresponding to a regular
control, cf. [3]. In this paper, we have extended this definition without assuming controllability.
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The main purpose of this appendix is to generalize the result of [3] to the case where the
distribution ∆ is not necessarily bracket-generating. Indeed, we have the following result.

Proposition 5.7. Let M be an n-dimensional smooth manifold, F = {X1, . . . ,Xm}, m ∈ N, a
smooth finite family of vector fields on M . Then, for every p ∈ M and time T > 0, and every
q ∈ OF(p), there exists a o-regular control with respect to p in time T such that the unique
solution γu to the Cauchy problem (33) such that γu(T ) = q.
Remark 5.8. By the proof of Proposition 1.12 in [27] (see also [16]), the conclusion is immediate
if TqOF(p) is equal for every q ∈ OF(p) to Lieq(F), the evaluation at q of the Lie algebra
generated by F . In fact, in this case a stronger result holds, namely the set of regular controls
is dense in U q,T

F for every q ∈ OF(p) and T > 0. As a consequence, any control u0 ∈ Ep,T
F admits

an o-regular control u arbitrarily close (in L2) to u0 such that Ep,T
F (u) = Ep,T

F (u0).
Proof. Fix q0 ∈ OF(p) and (Z0

1 , . . . ,Z
0
d) a basis of Tq0OF(p). According to Theorem 5.2,

there exists ϕ1 ∈ GF and Y1 ∈ F with q1 ∶= ϕ−11 (q0) such that Z0 ∶= (Z̃0
1 ,Z

0
2 , . . . ,Z

0
d
), where

Z̃0
1 = (ϕ1)∗Y1∣q0, forms a basis of OF(p) at q0. The basis Z0 is the pushforward of a basis Z1 =(Z1
1 , . . . ,Z

1
d) of Tq1OF(p) by ϕ1 and obviously Z1

1 = Y1. We proceed inductively (using Theorem

5.2) with this construction for 1 ≤ l ≤ d so that the basis Z l−1 = (Z l−1
1 , . . . ,Z l−1

l−1 , Z̃
l−1
l ,Z l−1

l+1 , . . . ,Z
l−1
d )

of Tql−1OF(p) is the pushforward of a basis Z l = (Z l
1, . . . ,Z

l
d) with ql ∶= ϕ−1l (ql−1), Yl ∶= Z l

l ∈ F and

Z̃ l−1
l = (ϕl)∗(Z l

l). Finally consider ϕd+1 ∈ G so that ϕd+1(p) = qn and set ψ = ϕ1 ○ ϕ2 ○ ⋯ ○ ϕd+1.
One has that ψ(p) = q0 and there exists T > 0 and u ∈ L2([0, T ],Rm) such that the unique
solution γu to the Cauchy problem γ̇u(t) = ∑mi=1 ui(t)Xi∣γu(t), x(0) = p verifies γu(T ) = q0.
Then the flow of diffeomorphisms ψu(t, q) corresponding to the time-varying vector field q ↦

∑mi=1 ui(t)Xi∣q verifies ψ = ψu(T,0) and ψu(t, p) = γu(t) where one has, for 0 ≤ s ≤ t ≤ T ,
∂ψu(t,q)

∂t
= ∑mi=1 ui(t)Xi∣ψu(t,q) together with the initial condition ψu(0, q) = q for every q ∈ M .

With the above notations, it is clear that, for every 1 ≤ l ≤ d,
(dqψu(T, p)(dqψu(tl, p))−1Yl)l=1,...,d =∶ (Z̃1, . . . , Z̃d)

forms a basis of Tq0OF(p), where dqψu(t, ⋅) denotes the differential of ψ(t, q) with respect to
the q variable.

Recall that the differential of the end-point map at u is the linear mapDuE
p,T
F ∶ L

2([0, T ],Rm)→
Tq0OF(p) given by

DuE
p,T
F (v) = dqψu(T, p)∫ T

0
(dqψu(t, p))−1Xv(t, γu(t))dt, (34)

where Xv(t, x) = ∑mi=1 vi(t)Xi∣x for almost every t ∈ [0, T ] and every x ∈M . We further complete
the notations as follows. Let 0 = t0 < t1 < ⋯ < td+1 ∶= T the sequence of times where γu(tl) = qd+1−l
with the convention that p = qd+1 and thus ψu(T, p)ψu(tl, p)−1(ql) = q0, for 0 ≤ l ≤ d+1. Moreover,
one has Yl = ∑mi=1 yilXi∣ql for 1 ≤ l ≤ d and some real numbers (yil).
For every ε > 0 small enough and 1 ≤ l ≤ d, consider the sequence (vlε) of functions in
L2([0, T ],Rm) defined by vlε(t) = 1

ε
(yil)1≤i≤k if tl − ε ≤ t ≤ tl and zero otherwise. It is a matter of

standard computations (as performed in [27, Proposition 1.10] to prove that, for every 1 ≤ l ≤ d,
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DuE
p,T
F (vlε) tends to dqψu(T, p)(dqψu(tl, p))−1Yl = Z̃l as ε tends to zero. Since the the range of

DuE
p,T
F is closed, we deduce that it contains Z̃l for every 1 ≤ l ≤ d.

We have therefore proved that u is o-regular at p in time T in the sense of Definition 5.3.

Remark 5.9. In contrast to what was discussed in Remark 5.8, we highlight the fact that in
general case where the (finite) family F of vector fields does not satisfy (everywhere on the
orbit) the Hörmander condition LieqF = TqOF(p), for a given control u0 ∈ Up,T

F the o-regular

controls u (in the sense of Definition 5.5) such that Ep,T
F (u0) = Ep,T

F (u) might lie far away from
u0 in L2-sense.

As the standard example, consider on M = R2, with coordinates (x, y), the vector fields (cf.
[16], p.12) X = ∂

∂x
and Y = φ(x) ∂

∂y
where φ ∶ R → R is smooth such that φ(x) = 0 if x ≤ 0 and

φ(x) > 0 for x > 0. Let F = {X,Y } and R2
− = {(x, y) ∣ x < 0}

It is clear that for any point p0 = (x0, y0) with x0 < 0, any T > 0 and any control u0 such that
E
p0,t
F (u0) ∈ R2

− for all t ∈ [0, T ], there is an L2-neighbourhood of u0 such that Ep0,T
F is not regular

at any of its points.

A regular control u steering p0 to q0 = Ep0,T
F (u0) in time T (i.e. E

p0,T
F (u) = q), which exists

thanks to Proposition 5.7, must have the property that Ep0,T0
F (u) ∉ R2

− for some 0 < T0 ≤ T .
Therefore, if we write γu(t) = (xu(t), yu(t)) = Ep0,t(u) and u = (u1, u2), one has

∣x0∣ ≤ ∣xu(T0) − x0∣ = ∣∫ T0

0
u1(s)ds∣ ≤√T0 ∥u1∥L2([0,T ]) ≤

√
T ∥u∥L2([0,T ],R2) .

If for example one took u0 = 0, hence q0 = p0, the above inequality would prove, as was claimed
above, that a regular control u steering p0 to q0 in time T cannot be near u0 in L2-sense.

5.2 Semisimplicity of the Lie algebra L

In this paragraph, we prove that the Lie algebra L of H ∇
∆ whose generators are given in Eq. (32)

is compact semisimple. In order to so, according to the proof of Proposition 26.3 in [26], it is
enough (and necessary) to show that L is compact and has trivial center. We also recall that a
Lie algebra g is called compact ([26, Definition 26.2]) if there is a positive definite inner product
k on g which satisfies

k([x, y], z) + k(y, [x, z]) = 0, ∀x, y, z ∈ g. (35)

It follows immediately that any Lie-subalgebra h of a compact Lie-algebra g is also compact,
and therefore, L as a Lie-subalgebra of the compact so(n +m) is compact.

It remains to show that the center L is trivial. Consider C in the center of L, i.e., [C,X] = 0
for every X ∈ L. Let a and b be respectively the R-linear span of the (Ah)1≤h≤m and the span
of the (Bh,k)(h,k)∈I . Note that b = so(m) (up to an isomorphism of Lie algebras) and L is the
direct sum of a and b. Thus we can write C = A +B with unique A ∈ a and B ∈ b.
For every (h, k) ∈ I , one has 0 = [C,Bh,k] = [A,Bh,k] + [B,Bh,k]. Thanks to the relations in
Eq. (32), one also has that [A,Bh,k] ∈ a and [B,Bh,k] ∈ b, and then, due to the direct sum
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property one concludes that, for every (h, k) ∈ I ,
[A,Bh,k] = [B,Bh,k] = 0.

Since b is semisimple, its center reduces to zero and thus B = 0. We next set A = ∑ml=1 alAl and
use the relations [A,Ah] = 0 for 1 ≤ h ≤m. We get that, for 1 ≤ h ≤m,

0 =
m

∑
l=1

al[Al,Ah] = m

∑
l=1

alBl,h,

yielding at once that al = 0 for 1 ≤ h ≤m because m ≥ 2. (Indeed we need at least two distinct
indices h as above.) Then C = 0 which concludes the proof of the claim.
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