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Abstract

In this paper, we consider a smooth connected finite-dimensional manifold M, an
affine connection V with holonomy group H"Y and A a smooth completely non integrable
distribution. We define the A-horizontal holonomy group H AV as the subgroup of HY
obtained by V-parallel transporting frames only along loops tangent to A. We first set
elementary properties of Hy and show how to study it using the rolling formalism ([9]).
In particular, it is shown that H AV is a Lie group. Moreover, we study an explicit example
where M is a free step-two homogeneous Carnot group and V is the Levi-Civita connec-
tion associated to a Riemannian metric on M, and show that in this particular case the
connected component of the identity of H AV is compact and strictly included in HV.

1 Introduction

The purpose of this paper consists of extending the concept of horizontal holonomy of an affine
connection in the context of distributions on a manifold i.e., subbundles of the tangent bundle of
a manifold. More precisely, consider the triple (M, V,A) where M is an n-dimensional smooth
connected manifold, V is an affine connection on M (one says then that (M, V) is an affine
manifold) and A is a smooth distribution on M. One furthermore assumes that A is completely
controllable, i.e., every pair of points in M can be connected by an absolutely continuous tangent
to the distribution A. Recall that the holonomy group HV of V as the subgroup of GL(n)
obtained (up to conjugation) by V-parallel transporting frames along absolutely continuous (or
piecewise smooth) loops of M.

For every point x € M, we define the subset HY|, of HV|,, the holonomy group of V at z,
obtained by parallel transporting, with respect to Vv, frames of M along a restricted set of
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absolutely continuous A-horizontal loops based at z, namely along loops which are tangent
(almost everywhere) to the distribution A. Thanks to the hypotheses of connectedness of M
and complete controllability of A, one can deduce that the sets HY|,, x € M are all conjugate
to a Lie-subgroup HY of HV that we call A-horizontal (or simply horizontal) holonomy group
of V. In the case where V is the Levi-Civita connection associated to some Riemannian metric
g on M, one can take both HY and HV as subgroups of O(n) and even SO(n) if in addition
M is assumed to be oriented. Understanding the relationships between HY and HY appears
to be an interesting challenge. For instance, given an affine manifold (M, V), determining
necessary and (or) sufficient conditions on a completely controllable distribution A of M so
that the HY equals HV is not an obvious question, besides trivial cases. Another issue to be
addressed consists of fixing the pair manifold and distribution i.e., (M, A) and then make the
connection V vary. One question could be to undestand if there are connections "more adapted
or intrinsic” than others (in a sense to be defined) for the pair (M, A). Moreover, one could
also study the mapping g HXg where ¢ is a complete Riemannian metric on M and V9 the
corresponding Levi-Civita connection, for instance describing the range of this mapping. Note
that such issues have been already addressed in [I3] where the authors consider the case of
manifolds of contact type with a distribution arising from an adapted connection.

In this paper, we essentially start this program by defining precisely the A-horizontal holonomy
group associated to a given admissible triple (M, vV, A). Our first main result besides elementary
ones is the following: we prove that if A is a constant rank completely controllable distribution,
then HY is a connected Lie subgroup of GL(n) (or O(n) if V is the Levi-Civita connection of
some Riemannian metric on ). This enables us to study HYX via its differentiable structure.
Moreover, we also propose to study A-horizontal holonomy groups by recasting them within
the framework of rolling manifolds. Indeed, recall that E. Cartan defines holonomy groups
in [6] as what is called now affine holonomy group by “developing” a manifold its tangent
space at any point. This procedure has been generalized in [9, 14, 29] to an arbitrary pair of
Riemannian manifolds of same dimension and it is also called as “rolling a Riemannian manifold
onto another one without slipping nor spinning”. Yet, that type of rolling was extended in [24]
to the case where both manifolds do not have necessarily the same dimension. See also [§] for
a historical account as well as applications of the rolling of manifolds.

In the present situation, the rolling framework amounts to define an n-dimensional smooth
distribution Zg, called the rolling distribution, on the state space ) defined as the fiber bundle
over the product of (M, V) and (R”, V") where V" is the Euclidean connection on R™ and the
typical fiber over (z,%) € M x R" is identified with the set of endomorphisms of T, M. For
every q € @, let Og,(q), be the Zg-orbit through ¢, i.e., the set of endpoints of the absolutely
continuous curves starting at ¢ and tangent to Zg. Then, for every g € ) and x’ € M, the fiber
of Oy, (q) over 2’ (if non-empty) is conjugate to a subgroup of R” x GL(n) whose GL(n)-part
is exactly HY. Moreover, since O, (q) is an immersed manifold in @) whose tangent space at
every ¢' € Og,(q) contains the (evaluation at ¢’ of the) Lie algebra generated by vector fields
tangent to Zg (cf. [1, [18, [19]), it is possible to determine elements of the Lie algebra of HV as
Lie brackets of vector fields tangent to Y. Given now a completely controllable distribution
A, one can define a subdistribution Ag of Zr on @ so that, for every q € Q) and x’ € M the
fiber over " of Oa,(q) is conjugate to a subgroup of R x GL(n) whose GL(n)-part is now
equal to HY. Since the latter has been proved to be a Lie group, one can determine elements



of its Lie algebra by computing Lie brackets of vector fields tangent to Ag. Note that, as also
mentioned above, GL(n) can be replaced by O(n) (SO(n) respectively) if V is the Levi-Civita
connection of some Riemannian metric on M (if in addition M is oriented).

We use that approach to provide our second main result, namely an explicit example for a
strict inequality in dim(HY) < dim(HV). More precisely, we consider the triple (M,V,A)
where M is a free step-two homogeneous Carnot group of m > 2 generators (X;)i1<jcm, V is the
Levi-Civita associated with the Riemannian metric on M defined in such a way that the X;’s,
1 <i<m and the Lie brackets [X;, X;], 1 <¢ < j <m form an orthonormal basis and A is the
distribution defined by the span of the X,’s, 1 <4 < m. In this case M is of dimension m +n
with n = m(m-1)/2. Then we prove that (M, V) has full holonomy i.e., HV = SO(n), and that
the connected component of the identity of HY is a closed Lie subgroup of SO(n) of dimension
m+n.

We close this introduction by describing the structure of the paper. We gather in the second
section most of the required notations and we precisely define the (V, A)-holonomy group first
using classical concepts and secondly by relying on the rolling framework. In the fourth section,
we consider in details the example of the free step-two homogeneous Carnot group of m > 2
generators and we conclude with an appendix containing a technical result needed in the third
section.

Acknowledgement. The authors thank F. Jean and M. Sigalotti for fruitful discussions and
insights regarding the proof of Proposition 5.7

2 Notations

Let M be an n-dimensional smooth connected manifold where n is a positive integer. Let
X (M) be the set of smooth vector fields on M. An affine connection V on M is a R-bilinear
map

X(M)yxX(M)—->X(M); (X,)Y)~VxY,

which is C*(M)-linear in the first variable and verifies the Leibniz rule over C*°(M) in the
second variable. The pair (M, V) is said to be an affine manifold. If, moreover, the exponential
map expy of (M, V) is defined on the whole tangent space T, M for all x € M, then (M, V) is
said to be a (geodesically) complete affine manifold. We use V™ and V9 respectively to denote
the Euclidean connection on R™ and the Levi-Civita connection of a Riemannian manifold
(M, g). The notation [-,-] stands for the Lie bracket operation in T'M.

We define the curvature tensor RV and the torsion tensor TV of a afline connection V as

RVY(X,Y)Z =VxVyZ-VyVxZ -V ixyZ,
TV(X,Y)=VxY -VyX -[X,Y],

respectively, for smooth vector fields X,Y,Z on M.

If v: 1 - M is any absolutely continuous (a.c. for short) curve in M defined on a real interval
I containing 0, we use (PV){(v)Tp, t € I, to denote the V-parallel transport along 7 of a tensor

3



Ty of rank (m, k) at v(0). It is the unique solution for T'(¢) (in terms of tensor fields of rank
(m, k) defined along 7) to the Cauchy problem

VismT'(t) =0, forae. tel, T(0)=T1T.

Let (M,V) be another affine manifold and f : M — M be a smooth map. we say that f is
affine if for any a.c. curve v:[0,1] - M, one has

Fohvay o (PV)o() = (P9)o(f 07) © foho)- (1)

An a.c. curve v : [a,b] > M is a loop based at x € M if v(a) = v(b) = x. We denote by
Qs (x) the space of all a.c. loops [0,1] = M based at some given point = € M. Moreover, if
v:[0,1] > M and 6 : [0,1] > M are two a.c. curves on M such that v(0) =z, v(1) = §(0) =
and §(1) = z where x, y, z € M, the concatenation ¢ -y is the a.c. curve defined by

30
2 2)

§-v:[0,1] > M, (5-v)(t) :{ v(2t) €[ 7

0,
5(2t-1) t 1,

The previous definitions allow us to state the subsequent definition of holonomy group.

Definition 2.1. For every x € M, the holonomy group HV|, at z is defined by
HY], ={(P)5(7) |7 € Qur(2)}.

For every = € M, HY|, is a subgroup of GL(T, M), the group of isomorphisms of T, M, which is
clearly isomorphic to GL(n) the group of n x n invertible matrices with real entries. Since M
is connected, it is well-known that, for any two points x,y € M, HV|, and HV|, are conjugate
subgroups of GL(7,M) and thus one can define HV c GL(n) the holonomy group of the affine
connection V (cf. [20]).

We also recall that a smooth distribution A on M is a smooth subbundle of TM The flag
of A is the collection of the distributions A7, j > 1, where, for every x € M, Al|, := A|, and
A= A3, + [AL A%, for s > 1. We say that the distribution A on M is of constant rank
m < n if dim(A|;) = m for every x € M and verifies the Lie algebraic rank condition (LARC)
if, for any x € M, there exists an integer r = r(x) such that A7|, = T, M. The number r(z) is
called the step of Al, (cf. [I8] for more details).

An a.c. curve v: I - M, I bounded interval in R, is said to be A-admissible, or A-horizontal,
if it is tangent to A a.e. on I, i.e., if for a.e. t € I, 4(t) € Al . For xo € M, the A-orbit
through xy, denoted Oa(x), is the set of endpoints of the A-admissible curves of M starting
at xg, i.e.,

Oa(xo) ={v(1) |v:[0,1] » M, a.c. A-admissible curve, v(0) = x¢}.

By the Orbit Theorem (cf.[18]), it follows that Oa(xg) is an immersed smooth submanifold of
M containing xy so that the tangent space T,0a(x¢) for every y € Oa(zo) contains Lie,(A),
the evaluation at y € M of the Lie algebra Lie(A) generated by A. Furthermore, if a smooth
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distribution A’ on M is a subdistribution of A (i.e., A’ ¢ A), then Oas(xg) c¢ Oa(zo) for all
xo € M. A smooth distribution A is said to be completely controllable if, for every z € M,
Oa(x) = M i.e. any two points of M can be joined by an a.c. A-admissible curve. Recall that,
the Lie Algebra Rank Condition (LARC), i.e. Lie,(A) =T,M, is a sufficient condition for the
complete controllability of A (cf. [18]) when M is connected, which is what we assume in this

paper.

3 Affine Holonomy Group of (M,V,A)

3.1 Definitions

Consider the triple (M, vV, A) where M is a smooth manifold, V a affine connection on M and A
a completely controllable smooth distribution on M. In this section, we will restrict Definition
2.1l to the A-admissible curves on M. To this end, we will define the set of all A-admissible
loop based at points of M.

Definition 3.1. We define Q () the set of all a.c. A-admissible loops based at x, as
Qa(x) ={y|7v:[a,b] > M a.c., y(a) =v(b) =z and (t) € A‘«/(t) a.e.}

The following result is immediate from the definitions.

Proposition 3.2. The set Qa(x) of all a.c. A-admissible loop based at x is not empty and is
closed under the operation” " given in (2)).

We define the holonomy group associated with the distribution A as follows.

Definition 3.3. For every x € M, the holonomy group associated with A at z is defined as

HY o= {(PY)o(7) [ 7 € Qa(2)}-

Proposition 3.4. For every x,y € M, HY|, is a subgroup of H|, and H |, is conjugate to
HY|,. One can thus define H ¢ HV ¢ GL(n) and we call it the A-horizontal holonomy group
associated with A and the affine connection V.

Proof. Since Qa(x) is a nonempty set for any x € M, then HJ|, is also a nonempty subset
of HV|,. By Definitions 2.2.1 and 2.2.2 of [20], the inverse map of (PV)}(v) is (PV)i(v71)
and (PY)L(8) o (PY)i(v) is equal to (PV){(d-7), for any ~: [0,1] - M and § : [0,1] - M
belonging to Qa(z). Thus, we get the first statement. Next, taking into account the fact that
A is completely controllable, one deduces the rest of the proposition. O

Remark 3.5. If g is a Riemannian metric on the smooth manifold M and VY9 is the Levi-
Civita connection associated to g, then the holonomy group HV’|, with x € M is a subgroup of
O(T,M), the set of g-orthogonal transformations of T, M. If, moreover, M is oriented, one can
easily prove that HV?|, is a subgroup of SO(7,M). One can then define the holonomy group
of V9 as a subgroup of O(n) (SO(n) respectively) the group of orthogonal transformations of
the euclidean n-dimensional space (the subgroup of O(n) with determinant equal to one if M
is oriented respectively).



3.2 Holonomy groups associated with distributions using the frame-
work of rolling manifolds

Let M be a smooth n-dimensional manifold and V a connection on M. Set (M, V) = (R7, vn)
where V" is the Euclidean connection on R”. We associate to (M, V) the curvature tensor RV
and to the product manifold (M, V) x (R™, V™) the affine connection V.

3.2.1 Affine Holonomy Group of M

We recall next basic definitions and results stated in [9] and [21].
Definition 3.6. The state space of the development of (M,V) on (R", V™) is
Q:=Q(M,R") = {AeT*M&R" | Ae GL(T,M), x € M}.
A point g € @) is written as ¢ = (x,2; A). Note that the word “development” can also be replaced
by “rolling”.

Definition 3.7. Let v:[0,1] = M be an a.c. curve on M starting at v(0) = xg. We define the
development of vy on T,, M with respect to V as the a.c. curve Ay, (7):[0,1] - T, M

AL = [(ETRGYiG)ds, telo.n]

The following result can be found from [23].

Proposition 3.8. Let V be the Levi-Civita connection of a Riemannian metric g. Then for
any a.c. curve I' : [0,1] = Ty, M there exists a maximal T = T(T") such that 0 <T <1 and an
a.c. curve y:[0,T] - M satisfying

AL, (3)(8) =T(t), Vee[0,T].
Moreover, one can take T =1 for all such I's if and only if (M,g) is complete.
By identification of T M ® R™ as the space of all R-linear maps from the tangent space T, M

at x € M onto the tangent space of R" at & € R", one gets the following definitions.

Definition 3.9. Let (z¢,20) € M xRN, Ag e T M ® R" and an a.c. curve v:[0,1] = M such
that v(0) = zp. We define the development of v onto R through Ay with respect to V as the
a.c. curve A} (7):[0,T] - M given by

AT, (M) = (AL (Ao AT, (M)(E),  te[0,T]
with 7'=T(y) as in the previous definition.

We also define the relative parallel transport of Ay along v with respect to V to be the linear
map

V¢ . _
(P )O(V)AO . T’Y(t)M - TAZO(,\{)(t)

(PY)5(7) Ao := (PY)(AT, (7)) 0 Ag o (PY)2(7) = Ag o (PY)?(7).

M, such that for ¢ € [0,1],



We define the No-Spinning development lift of (X, X) € Tz,2) (M xR™), the Rolling development
lift and the Rolling development distribution of X € T, M respectively as follows.

Definition 3.10. Let ¢ = (z,#; A) € Q, (X, X) € T(z.4y(M xR") and ~ (resp 4) be an a.c. curve

on M (resp. on R") starting at x (resp. &) with initial velocity X (resp. X ). The No-Spinning
development lift of (X, X) is the unique vector Lys(X, X)|, of T,Q at ¢ = (x,2; A) given by

Lns(X, X))y = \(Pvn)o(v) Ao (PY))(v) = —\A (PY)2 (7).

If, moreover, the initial velocity of 4 is AX, then we define the Rolling lift £ at ¢ = (z,2;A) € Q
to be the injective map from T, M onto T,(), such that for every X € T, M,

Lr(X)g = ZLvs(X, AX)], = %\O(PW) ()0 Ao (PY)}(7) = \ Ao (PY)}(7).

The Rolling distribution Zy at q = (z,%; A) € @ is an n-dimensional smooth distribution defined
by
@R|q = ZR(TJ;M)L]

We say that an a.c. curve t —» q(t) = (v(¢),5(t); A(t)) on @Q, is a rolling curve if and only
if it is tangent to Zr for a.e. t € I, where I is a bounded interval of R, i.e. if and only if
q(t) = ZLr((t))|qq) for a.e. tel. For the proof of next proposition, see [9} 23].

Proposition 3.11. For any qo := (%9, Z0; Ag) € Q and any a.c. curve 7 :[0,1] - M starting
at xo, there exist unique a.c. curves J(t) = Azo(fy)(t) and A(t) = (PV)4(y)Ay such that
A)A(t) = A(t) and Vs ianAt) =0, for all t € [0,T], for a mazimal T = T(v) such that
0<T <1. We refer tot > qu,(7v,q) = (7(t),5(t); A(t)) as the rolling curve along v with
wnatial position qq.

Moreover, if (M,g) is a complete Riemannian manifold and V is the corresponding Levi-Civita
connection, then one may take above T' =1 for all v’s.

Consider the smooth bundle 7g : Q@ - M xR™ and ¢ € Q. We define V|,(mg) to be the set of
all B € T'|,Q such that the tangent application (7g).(B) = 0. The collection of spaces V|,(mg),
q € @ defines a smooth submanifold V' (mg) of T'Q). We will write an element of V|,(mg) at
q=(z,2;A) € Q as v(B)|, where B e T M ® R" verifies B € A so(T,M). Intrinsically, to know
what it means to take the derivative with respect to v(B)|,. Then, for all smooth maps f
defined on (an open subset of) @) with values in the manifold of (m, k)-tensors of M, we define

v(B) |y (f) = Glof(a+1B),

that we call the vertical derivative of f at ¢ in the direction of B.

We next present the main computation tools obtained in Proposition 3.7, Lemma 3.18, Propo-
sition 3.24, Proposition 3.26, Proposition 4.1, Proposition 4.6 [22].

Proposition 3.12. Let O c T*M ® R™ be an immersed submanifold, 7 = (Z, Z), 8=(5,8) ¢
C>=(mo, Trmern) be such that for all ¢ = (x,3;A) € O, Lns(Z(q))|q, Lns(S(@))|, € T,0 and



U, V € 0= (w0, mrom), be such that for all q = (2, A) € O, (U (@), Y(V (@), € T,0.
Then, one has

Lns(Z(A)) |q§(') = v?(A) (5(A4)),

[Zns(Z(), Lus(SOly = Lns(Lis(Z(A)NeS() = Lus(S(ANLZ ()l

Lns(TV(Z,5))g + v(ARY(Z,5))lg;
[Zr(Z), Zr(5)]lq = Zr([Z, SDlq + Lns(ATV(Z,5))|g +v(ARY(Z(q),5(2)))lo;
[Zns(Z (), v(U(N]lg = =Lus(W(UA))]Z()lg + v(Lus(Z(A)]U )l

[ (U)),v(V(N]lg =v(w(UA))V = v(V(A),U)lg-
Both sides of the equalities in (), @), (&), @) and (@) are tangent to O.

We use Aff(M) to denote the affine group of all invertible affine transformations from the affine
manifold M onto itself. In particular, the affine group of R” is denoted by Aff(n). One can
extend readily Proposition 3.10 of [11] to get the following result.

Proposition 3.13. For any f € Aff(M), fe Aff(n) and any qo = (xo,Z0; Ag) € Q, define the
following smooth right and left actions of Aff(M) and Aff(n) on Q

qo- f = (f_l(ifo)’i’o;Ao o f*|f‘1(mo))7 f‘% = ('r()af('%());f*'ﬁo o Ap).

Then, for any a.c. curve y:[0,1] > M starting at zo, one has for a.e. t €[0,1]
f' QQR(’YaqO)(t) ’ f = qg}?,(f_l 0 77.}3 qo - f)(t)

Proof. By the definition of an affine transformation f on M, we have Eq. (1) for any a.c. curve
v:[0,1] = M. This implies that, for a.e. ¢t €[0,1]

Ly o (PY)o(v) = (PY)o(f o) o fulyo)-

We have the same conclusion for affine transformations f on R". Then, since Aff(n) is a Lie
group and by what precedes, one can repeat the steps of the proof of Proposition 3.10 in [11]
with the group Aff(n) instead of isometry groups on M and R” to get the claim. O

Recall that if G is a Lie group, then a smooth bundle 7 : E — M is a principal G-bundle over
M if there exists a smooth and free action of G on E which preserves the fibers of 7, cf. [20].
Furthermore, we recall that the affine group Aff(n) is equal to R® x GL(n) and its product
group ¢ is given by

(v,L) o (u,K):=(Lu+v,LoK).

Using the previous proposition, one can extend immediately the simple but crucial Proposition
4.1 in [I1] to derive the next result.



Proposition 3.14. The bundle g ar: Q) - M is a principal Aff(n)-bundle with the left action
o AfE(n) x Q — Q;

1((9,C), (2, 2; A)) = (2,08 +§;C o A).
The action p preserves Dg, i.e. for any q € Q and B € Aff(n), we have (115)«Zrlq = Prlus(q)
where pug : Q - Q; q ~ u(B,q). Moreover, for any q = (x,z;A) € Q, there exists a unique
subgroup Hy of Aff(n), called the affine holonomy group of (M, V) verifying

(1Y x{q}) = O, (q) N 75y ().

If ¢ = (z,3"; A") € Q belongs to the same mg -fiber as q, then Hy and ’qu, are conjugate in
Aff(n) and all conjugacy classes of Hy are of the form ’qu,. This conjugacy class is denoted by
HY and its projection in GL(n) is equal to HY the holonomy group of the affine connection V.

Proof. Let q = (z,2;A) e Q and B = (y,C) € Aff(n). Since C'o A is in GL(n), then u(B,q) € Q.
In order to prove that p is transitive and proper, we can follow the same steps of the proof of
Proposition 4.1 in [I1] due to Proposition 313l O

3.2.2 Affine Holonomy Group of A

Consider now a smooth completely controllable distribution A on (M, V). We will determine
the sub-distribution of Z5 by restriction to A instead of considering the whole tangent space

of M.

Definition 3.15. The rolling distribution Az on A is the smooth sub-distribution of %5 defined
on (z,z;A) €@ by
AR|(z,3:4) = LR(AL)| (2,2:4)- (8)

Since A is completely controllable, we use Proposition B.11] to obtain the next corollary.

Corollary 3.16. For any qo = (zo,Z0; Ag) € Q and any a.c. A-admissible curve v :[0,1] - M
starting at xo, there exists a unique a.c. Apg-admissible curve qa,(7v,qo) : [0,T] - Q where
0<T<1.

Since we can easily restrict the proof of Proposition BI4 (cf. [I1]) on Ag, we get the next
proposition.

Corollary 3.17. The action i mentioned in Proposition preserves the distribution Ag.
Moreover, for every q € @, there exists a unique algebraic subgroup %AVqu of Hy , called the
affine holonomy group of Ag, such that '

PN, < {a}) = Ong(a) nmgy (),

where x = o am(q) and Oa,(q) is the Ag-orbit at q.



As before, one gets the following: if ¢’ = (x,2'; A’) € @ belongs to the same 7rQ u-fiber as g,
then H V and HY g ATe conjugate in Aff(n) and all conjugacy classes of # Y Aglg 2T€ of the
form H V Anlg’” This conjugacy class is denoted by H Y A, and its projection in GL(n) is a subgroup
of HV which is equal to the A-horizontal holonomy group associated with A and the affine
connection V.

Definition 3.18. We denote by OIAO‘:’ (qo) the set of the end points of the rolling development
curves with initial conditions any point gy = (g, Zo; Ag) and any a.c. A-admissible loop at zg,
i'e'u for qo = (l’o,.ﬁi’o;Ao) € Qa

Olgff(qo) ={ga,(7,9)(1) | 7:[0,1] = M, a.c. A-admissible loop at z}.

If we fix a point gy of @ = Q(M,R") where the initial contact point on M is equal to xy and
that on R™ is the origin, then we may consider the rolling development of M along a loop based
at xg. Then, one obtains a control problem whose state space is the fiber WélM(LUO) and the

reachable set is in the fiber 75}, (20) (for more details, cf. [I1]). Then, OZAO(:’ (qo) is trivially in
bijection with Oa (o) N 75!y, (7o) and so “(HAR\qo x{qo}) = (’)loap(qo)

Proposition 3.19. For any qo = (zo,Zo; Ao) € Q the restriction of mgar: Q@ -~ M into the orbit
Oa,(qo) is a submersion onto M.

Proof. Clearly it is enough to show that (7g )Ty, Onp(q0) = Ty M. Also recall that by the
assumption of complete controllability of A we have M = Oa(zg).

Write E=t(u) and E4t(u) for the end-point maps of A and Ag starting from x € M and q € Q,
respectively. One easily sees that E and E are related by

TQ,M © Eq’t = Em’t, (9)

for any g = (z,%; A) € @ and t where defined. We also denote by k the rank of A (i.e. the rank
of AR)

Let W € L*([0, 1], R*) be any o-regular control of E*0:! which belongs to the domain of definition
of E%:1, The existence of such an u is guaranteed by an application of Proposition b.7] given in
the appendix and Proposition 311 as in this case (M, g) = R" is complete.

Let then X € T, M be arbitrary, and notice that T, ,Oa (o) = Ty, M. By o-regularity of @ with
respect to E*0:1, there exists a C'-map u: I — L2([0,1],R¥), where I is an open neighbourhood
of 0, such that u(0) = @ and h(t,s) := E®t(u(s)), (t,s) € [0,1] x I, satisfy h(1,s)|s0 = X.
Indeed, let G : I - Oa(x0) be any smooth curve such that G(0) = X. The o-regularity of @
means that D, E%0:l i.e. the differential of E%0:! at u, is surjective linear map from L2([0, 1], R¥)
onto Tgeo1(,)Oa(o) when u =, and hence for all u close to u in L*([0,1],R*). One next
defines P(u) as the Moore-Penrose inverse of D, FE*0:! and one considers the Cauchy problem
d”(s = P(u(s) dG(S u(0) = @. Then [7, Proposition 2] asserts that the maximal solution u(-) of
the Cauchy problem is well-defined on a non empty interval centered at zero, which concludes
the argument of the claim (after shrinking I if necessary).
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Write h(t, s) =~E~q07t(u(s)) for (t,s) € [0,1] x I. For each i =1,...,d and s € I, the maps ¢ —
h(t,s) and t = h(t,s) are absolutely continuous and A- and Ag-admissible curves, respectively,
and h(t,s) = o u(h(t,s)) by ([@). In particular, Zh(1,s)|s is a vector in Ty, Oa,(qo) and

0 -~ 0
(ﬂ-Q’M)*(%h/(]_’S)LS:O) = ah(l, $)|S:0 = X,

which shows that X € (7g ar)«(T50O0a;(q0)). Because X was arbitrary tangent vector of M at
g, we conclude that T, M c (7o a)«(T4,0n,(q0))-

The opposite inclusion (7 ar)«(T4,0nr(q0)) € Ty M being trivially true, this completes the
proof. O

Remark 3.20. Here is an alternative proof in the case that the distribution A satisfies LARC
on a connected manifold M i.e. Lie,(A)=T,M for all z € M.

Given vector fields Yy,... Y, and a subset J = {i1,...,4;} of {1,...,r} we write Y} for the iter-
ated bracket [Y;,,[Yi,,...[Yi._,,Y:]... ] of length [. Given X € T, M =T,,Ona(zo), there are, by
the assumption, vector fields Y7, ..., Y, tangent to A, subsets Jy, ..., J; of {1,...,r} and numbers
ay,...,a;such that X = Y% a,Y; |4, Thelifts Zr(Y;),i=1,...,r are tangent to A and satisfy
(mo.m)+ZLr(Y:) =Y, hence if we write Zr(Y) s for [ Zr(Yi,), [Zr(Yi,),s - [Zr(Yi ), ZRr(Y:)] ...
when J is as above, we have that Zr(Y'),, is tangent to Oa,(qo) for every s=1,...,¢

t t
(7,01 )0 Z; asZp(Y)s,) = ;CLSYJS

x0:X7

ie. X € (mg.m)+TyOnn(qo). By arbitrariness of X in T, ,M we have the claimed submersivity
of mg -

Classical results now apply to give the following.

Corollary 3.21. In particular, for any v € M the fiber WélM(ZL‘) NOa,(q0) of Oa,(qo) over x
is either empty or a (closed) embedded submanifold of Oa,(qo) of dimension § = dim Oa,(qo) -
dim M.

We arrive at the main result of this subsection.

Proposition 3.22. Assume that A is a constant rank completely controllable distribution on
(M, V) where M is a connected smooth manifold and V an affine connection. Then, the A-
horizontal holonomy group HY and the affine holonomy group ’HAVR of Ar as defined previously
are Lie subgroups of Aff(n).

Proof. Tt is enough to prove the claim for H AVR. We first argue that H AVR\qo is an algebraic

subgroup of Aff(n). To this end, to any p € ﬂél’M(:po) (i.e. pis an arbitrary element of the fiber
of @ over zy) we match a unique (y,,C,) € Aff(n) such that p((y,,Cp),q) = p. Recall that
Onr(q0) N5y (o) is identified with H AVR\qo through this correspondence.

11



Then given p1,pz € Oay(q0) 75"y, (20), there are A-admissible (piecewise smooth) loops 71,72 €
Qar(xg) in M based at o such that p; = ga, (7i,qo) (1) for i = 1,2. Letting p = ga,, (7172, q0)(1)
we have

1((Yp, Cp), 00) =P = 4an (172, 90) (1) = qar (11, 98 (72:20) ) (1) = qag (71, p2) (1)
=qan (71 11((Up, Cp2)1 40) ) (1) = 110 (Y C ) 4 (11, 00) (1))
=1((Yp Cps)s21) = (U2 G ) 11Uy Cy )1 40))
:N((ypzvcpz)(ym ) Cm)a QO)u

Le. (Up,Cp) = (Upys Cpy ) (Upy, Cpy ), because the action p is free. Since v; - 2 is A-admissible
loop, we have p = ga, (71 72,90)(1) € Oag(q0) N 75y, (20) ie. (¥, Cp) € HAVR|q0’ and therefore
H Aleqo is indeed an algebraic subgroup of Aff(n) as claimed.

In other words we have shown that if m : Aff(n) x Aff(n) —» Aff(n) is the smooth group
multiplication operation on Aff(n), then

m(HY  xHY

\Y
c
ARrlgo AR\qo) H

ARlgo”

By the orbit theorem as given in the appendix (see also [16]), we know that any smooth
map f : Z - @ for any smooth manifold Z such that f(Z) c Oa,(q) is smooth as a map
f:Z - Oap(qo). In other words, Oa,(qo) is an initial submanifold of M (cf. [16]).

By Corollary B2T1 Oa, (g0) N5ty (o) is a smooth embedded submanifold of Oa (o), hence an
initial submanifold of Q. Since Oa,(q0)N7g'y, (w0) € 75ty (20) and 75!y, (o) is diffeomorphic to
Aff(n) using the action u, we have that H AVR\qo is a smooth immersed submanifold of Aff(n) as
well. Now the group multiplication m restricted to H AVR\qo which we write as m’ is a smooth map

Y
m HA o
action p on @) we obtain a smooth map M : (Oa,(q0) N 75!, (%0)) x (Oay(q0) N5y, (20)) = Q
whose image is contained in Oa,(q0) N 75"y, (20). As mentioned above, Oa(go) N 75!, (o) is
an initial submanifold of @, hence M is smooth as a map into Oa,(q0) N 75"y, (20). This then
is reflected, by applying the action p once more, in the fact that m’ is smooth as a map into

HAVRIqo' Thus the latter space is a Lie-subgroup of Aff(n). O

xH AVquO — Aff(n) whose image is a subset of H AVquo' Pulling this map back by the

Remark 3.23. The situation described in Remark 3.5l with the rolling formalism can be treated
as the rolling system without spinning nor slipping of two oriented connected Riemannian

manifolds (M, g) and (R", s, ), where s, is the Euclidean metric on R". Thus, the state space
Q(M,R") is a principal SE(n)-bundle (cf [9], [10] and [I1] for more details).

3.3 Integrability of Ap

A natural question arises in the framework of horizontal holonomy, namely under which condi-
tions the horizontal holonomy group ’HXR is trivial. More generally, we pose this question on
the level of Lie algebra, which translates on the group level to asking when HZR is discrete in
its underlying Lie group topology. As ’HXR is identified with a fiber Oa,(qo) N Wé}M(l‘o) of the
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orbit Oa,(qo), we see that answering question comes down to studying when the distribution
Ap itself is involutive.

In the case where A = T'M, it is known that the answer is that ’HXR is discrete if and only if
(M, V) has vanishing curvature and torsion. This justifies the following definition.

Definition 3.24. We say that the triple (M, V) is A-horizontally flat is Ag is involutive.

By (@), we see that for any vector field XY tangent to A we have for any ¢ = (x,%; A) € Q,
[ZLr(X), Lr(Y)]ly = Zr([X. Y Dlg = Lus(TY(X,Y))lg + v(ARY (X, Y))]q

where, as before, TV and RV are the torsion and the curvature of V, respectively.

This formula immediately implies a simple characterization of the involutivity of Ag.

Proposition 3.25. The manifold with connection (M,V) is A-horizontally flat if and only if
A is involutive and for all x € M and XY € A,

TY(X,Y)=0, RY(X,Y)=0

For the rest of this subsection, we assume that M is a Riemannian manifold with metric g and
that V is the associated Levi-Civita connection.

Let A+ be the g-orthogonal complement of A, and let P: TM — A be PL:TM — A' be the
orthogonal projections onto A and A*t, respectively. Define the fundamental II form of A by

(X,Y)=PYvVxY), VX,Y €Al zel.

When & € At|, is given, one defines the shape operator S : Al, > A|, of A with respect to & to
be given by

g(Sg(X),Y)Z—g(f,II(X,Y)), VX7Y€A|1

In the case where A is involutive II is symmetric, and we define the induced A-connection D
and induced A+-connection D* by

DxY = P(VxY),
Dx& = P*(Vx¢),

for X € A|,, for any vector field Y tangent to A and for any vector field £ tangent to AtL.
Furthermore, if one defines for X|Y,Z € A|,, £ € At|,, where x € M,

RP(X,Y)Z =DxDyZ - DyDxZ - Dixy\Z,
RL(Xa Y)f = D§D§f - D§D§(§ - D[LX,Y]S’

then the following result holds.
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Corollary 3.26. The Riemannian manifold (M,g) is A-horizontally flat if and only if A is
involutive and for all X,Y,U,V e A, &, ne At|, andye M,

g(RP(X,Y)U,V) = g(II(X, U),11(Y, V)) - g(II(X, V), II(Y, U)), (10)
g((VxID)(Y,U),€) = g((VyID (X, U),§), (11)
g(RH(X,Y)E,n) = g(Se(X), 5y (Y)) = g(Sy(X), Se(Y)). (12)

Proof. Indeed, if L is a leaf of A, h is the metric on L induced by g, then D is exactly the
Levi-Civita connection of h, and II restricted to L is the second fundamental form of (L,h)
in (M,g). The result follows from these observations combined ([4, Theorem 1.72]) with the
Gauss, Codazzi-Mainardi and Ricci equations, which are ([I0), (I1I) and (I2]), respectively. O

4 Case Study: Holonomy of Free Step-two Homogeneous
Carnot Group

The goal of this section is to provide an example of a triple (M, V,A) such that A verifies the
LARC (and thus is completely controllable) and H\ is a Lie group strictly included in HV.
After giving the required definitions to treat the example, we first compute HV and then H
using the rolling formalism.

4.1 Definitions

The affine manifold (M,V) we consider is the free step-two homogeneous Carnot group G
endowed with a Riemannian metric and its Levi-Civita connection. To describe it, we will use
the definitions of Jacobian basis, homogeneous group and Carnot group of Chapters 1 and 2 of
[5].

For m positive integer greater than or equal to 2, set m + n where n := m(m - 1)/2 and
T:={(h,k)|1<k<h<m} of cardinal n. Let S("*) be the m x m real skew-symmetric matrix
whose entries are —1 in the position (h,k), +1 in the position (k,h) and 0 elsewhere. On R™*"
where an arbitrary point is written (v,v) with v € R™, and v € R", define the group law » by
setting

vi+u, i=1,...,m

, , , . 13
Tk T Vg T %(Uhvk —upvy,), (hk) eI ) (13)

()« () =

Then it is easy to verify that G := (R™™" x) is a Lie group, more precisely a free step-two

homogeneous Carnot group of m generators. Indeed, a trivial computation shows that the
dilation d, given by

5 R S R 5, (0,7) = (Ao, A7), (14)

is an automorphism of G for every A > 0. On the other hand, the (Jacobian) basis of the Lie
algebra g of G is given by Xj,, I'y ;, where
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_ 0 1 m i)
Mo d T (st )

j<i<m

o) 1 o) : —
For + 3 Lilcicm Vigyia ifh=1,

0 41 0 1 _0
= don + 5 Zh<i$m Vi Tvin 3 lej<h vj n ifl<hx< m,

Bfm - % Zlgj<m vj%w if h=m,
Fh,k = a , (h, k) eT.
a%,k

while the Lie brackets on G = (RY, x) are given by

0 o
X, Xi| = St = =Tk
[ ] 1§j;$m ok 871‘7]’ 87}17/“

[ Xy, Ti;]1=0, [Thiij]=0.

Then,
rank(Lie{X1,..., X;n}) = dim(spzm{i o 9 (Th)npyer)) = N = dimg.
Y Y av17 Y 8’Um’ 5 5

Therefore, we can conclude that G is a homogeneous Carnot group of step 2 and m generators
Xi,...,X,n. The Lie algebra g is equal to Vi @ V5, where V; = span{Xi,...,X,,} and V5 =
span{Tyx, (h,k) € T}.

Moreover, (G, ¢) is an analytic manifold where the metric g, with respect to the previous basis,
is given by

g(Xi7Xj):5i,j7 if i,jE{l,...,m},
g(X;,Thi) =0, if ie{l,...,m} and (h,k)€Z, (15)
9(Thw,Tij) = 0ni0kj, if (4,7),(h, k) eZ.

In the sequel of this article, we find useful to introduce the following notation of vector fields
instead of 'y, i, for h,k € {1,...,m}, in order to facilitate computations by avoiding the confusion
between the two cases k < h and h < k.

Definition 4.1. For every h k€ {1,...,m}, we define,

Pth if h> k?,
Qh,k = _Fk,h if h< k?, (16)
0 if h=k.
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By the above definition, the Lie bracket [Xp, Xi] is equal to €, for any h,k € {1,...,m}.
Furthermore, let V9 be the Levi-Civita connection associated to the Riemannian metric in

(@)

Lemma 4.2. For h,k,l,s,t € {1,...,m}, we have the following covariant derivatives on (G, g),
1
V§<th = §Qh,k7 v%hkas,t =0,
1 1
Vi, Ok = 5(5leh — 6 Xk), V?Zh,le = 5(5leh — 0 Xg).

Proof. Let us denote by V%Y the covariant differential of a vector field Y in the direction of
another vector field X on G. It is equal to

Vg(Y = Z Oéh(X, Y)Xh + Z B(h,k‘)(Xu Y)Qh,k- (17)
h=1

1<k<h<m

On the other hand, by Koszul’s formula (cf. [28]), we have

Combining (I7) and (I8)), we easily find the coeflicients oy, (X,Y") and B,y (X,Y") and hence

we obtain the claim. O

4.2 Riemannian Holonomy Group of (G,g)

The main of this subsection is to prove the following theorem.

Theorem 4.3. Let (G,V9) be a free step-two homogeneous Carnot group of dimension N en-
dowed with the Levi-Civita connection V9 given in Lemmal{.2. Then, (G, V?) has full holonomy
group HV" =SO(m +n).

To this end, we compute the Riemannian tensor curvature R and as well as part of its covariant
derivation of (G, V9).

Lemma 4.4. For any h,k,l,i,j € {1,...,m}, the Riemannian curvature tensor R of (G, V9))
is given by the following skew-symmetric matrices,

3 1
R(Xhan):Z(Xh/\Xk)"'ZZQh,jAQk,ja (19)
j=1
1
R(Xl,Qh,k) = Z(Xh N Qk,l + Xk AN Ql,h); (20)
1
R(Qi,ja Qh,k) = Z(élth A Xj + 5ijz A Xh + 5ihXj A Xk + 5thk N Xz) (21)

Proof. From Lemma and the intrinsic definition of R,

R(X,Y)Z = V4V4Z - V4V Z - Vi1 Z,  ¥X, Y, ZeT,G,
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we get, for any h, k,l,i,7 €{1,...,m},
R(Xn, X)Xy = 2(6uXy — 6 Xn),
R(Xn, X)) j = 205 + 05k = 0Oy — 06
Similarly, for any h, k,l,i,7,t € {1,...,m}, R(X;, Q) is given by
R(X0, Q0 se) Xt = 3 (60t — 60 0),
R(X0, 1)y = 5((0600 — 6;00:) Xn + (810mi — 0a0;) Xi)-
Finally, for any 7,7, h,k,l e {1,...,m}, R(; ;, ) is given by
1
R(€%, Qi) X = Z((5zk5jh — 01051 ) Xi + (Oni0it — Oi0in ) X
+ (600, — 65108 ) Xp + (8100 — 5hj5il)Xk)>

R(Qi,jth,k)Qs,tzoa VS,tE {1,,777,}
Collecting the above equalities, we get Eq. (I9), Eq. (20) and Eq. (21)). O

Using the definition of the covariant derivative of tensors, which is,
(VLR(X,Y))(W) = VL(R(X,Y)W) - R(X,Y)VLW, VX,Y, Z, WeT,G,
we deduce the following lemma.
Lemma 4.5. The covariant derivatives of R in the direction of a vector fields Xy on G, for

te{l,...,m}, are

V%, R(Xn, Xi) = =R(Xy, Qi) + 2 ). (5kth A= 0 Xj A Q)
)

ol

1
Vg(tR(Xl, Qth) = g(ch A QkJ + Qtvk A th + 251tXh A Xk + 5}1th A Xl - 5ktXh A Xl),
1
Vg(tR(Qi,j, Qh,k) = g(ész(XJ, Qh,t) + 5ij(Xh7 Qi,t) + 5th(Xk, Qjﬂg) + 5th(Xi7 Qk,t))7

where h,k,l,i,j are any integers in {1,...,m}.

Similarly, the covariant derivatives of R in the direction of a vector fields Qs on G, for every
s,te{l,...,m}, are

V%S’tR(Xhan) = g(étth A Xk — 5shXt N Xk + 5thh A XS - (551.4;)(]1 A Xt)7
1
Vo, , B(Xi, Q) = §(5tth A g = Osn Xy A g + 0 X A Qup = 05, X A Q)

1
Vo Qi Q) = g((éihatk = 0kl ) X A X + (0ik Gt = 0101 ) Xn A X

+ (5jh5ti - 5ih5tj)Xk A XS + (5jk5th - 5jh5tk)Xi A XS
— (005 = 6j10is) Xn A Xy = (0jk0sh — 0jn0s ) Xi A Xy
— (0jn0si = 0in0s;j ) Xie A Xy = (0in sk — Oik0sn) X A Xt),
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where h,k,l,i,j are any integers in {1,... ,m}.

We next deduce from the two previous lemma the main computational result of the section.

Proposition 4.6. Fiz some gy € Q(G,RY) and let g = (x,%;A) € Og,(qo), then SO(T, M) c
09, (q0)-

Proof. Fix some qy = (zo,Z0; Ag) € Q, for any h,k,i,j € {1,...,m} such that ¢ # j and k # h,
the first order Lie brackets on Oy, (qy) are

[Lr(Xn), Lr(Xi)]lg = Lr(Qni)lq + v(AR(Xy, X))l
= Loy + A A X))+ %(A(ji1 Qs A %))
[ZLr(), ZLr(Up)]lg = iV(A(@th ANXG+ 00X N X+ 6 X5 A X+ 0, X5 A XG))lg
[L0(X0), Za( ) ]la = oA A+ XA ),
By taking ¢ = k in the bracket [Zr(£%;), ZLr(Qnk)]ls, we get that, for any h,j € {1,...,m},
v(A(Xp A X))l is tangent to Og,(qo). In addition, from the first and the last brackets of the

above Lie brackets, we obtain that I/(A(z;nzl Qnj A Qk,j))|q and v(A(Xn A Qi+ Xe A Qin))lg
are tangent to Oy, (qo), for any h,k,i,5 € {1,...,m}. Thus, we can compute the next bracket

in TqO@R(QO)v for qc¢€ 0912(4[0)’
[Zr(X), v((OVXn AXiD]lg = kil (AXn)g = 0ni-Zns (AX)]g
_ %V(A(Xh/\Qk,i+Xk/\Qi,h))|Q'

Using [-Zr(X:), Zr(Qnk)]l, and then putting ¢ = h in the last Lie bracket, we obtain that
Lns(AXy)|, is tangent to Oy, (qo), for all ke {1,...,m}. In addition, we have

[Lr(s), v(()(Xn A Qg + X A Qi) ]l
= (0015 — 010k )-LNs (AX1)|g + (Ontdis — 010ns ) -ZLns (AXk)]q
+ (0 (A(Xe A Q))g + Sk (A(Xe A 0n))lg
=0V (A(Xs A Q)| + 0 (A(Xs A Ql,h))|q).

Since ZLns(AXy)|, is tangent to Ogy,(qo), for all ke {1,...,m}, then v(A(X; A Qp 1)), is also
tangent for any distinct integers h, k,t € {1,...,m}. The last Lie bracket to compute is

[Lns(Xe), V(AKX A Qi) g = %(@W(A(Xl A Xn)g = 0V (A(Xy A Xi))lg
+ I/(A(Qu N Qh,k))|q)-
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Therefore, for every h,k,t,l € {1,...,m}, v(A(Qu A Qx))|, is tangent to Og, (qo). Hence, for
all ¢ € Og,,(qo) the following vector fields

V(A(Xn A Xi))lgy V(AKX A Qi ))lgs V(AR A Qni))g,

are tangent to Oy, (qo). This completes the proof because we have that v(AB)|, € 7,04, (q)
if and only if B € s0(7,,G) for g = (z,2; A) € Og,(qo)- O

We return to prove the main theorem in the beginning of the current subsection.

Proof of Theorem[4.3. . As the vertical bundle of ) is included in the tangent space of Og,, (qo)
by Proposition .0, then the rolling problem (3)g is completely controllable (see Corollary 5.21
in [9]). According to Theorem 4.3 in [11], the holonomy group of G is equal to SO(m + n).
Note that one could have used as well the main result in [25] stating that the tangent space of
the holonomy group at every point x € M contains the evaluations at x of the curvature tensor
and its covariant derivatives at any order. O

4.3 Horizontal Holonomy Group of (G, g)

We define the distribution A := span{Xy,..., X,,} on G and ¢y = (g, Zo; Ag) € Q. Note that
is of cnstant rank m. We will first compute a basis of 7,0 ,(q) for any ¢ € Oa,(q0) and
then determine the holonomy group H AVR of rolling of (G, g) against (RY, sy ), where sy is the
Euclidean metric on R¥.

4.3.1 The Tangent Space of Oa,(qo)

Proposition 4.7. For any qo € Q, the tangent space of Oa,(qo) is generated by the following
linearly independent vector fields:

1
Lns(Xi)lgy Lns(AXn)lgs Lns(AQi)lg, Lnvs(Qnr)g + §V(A(Xh A Xk))lgs (22)

I/(A(Z Xj N Qh7]‘))|q, I/(A(Xh AN Xk + Z QhJ N Qk,j))|q-

J=1 J=1

Proof. Recall that all the data of the problem are analytic. Then, by the analytic version of the
orbit theorem of Nagano-Sussmann (cf. [2]), the orbit Oa,(qo) is an immersed analytic sub-
manifold in the state space () and 7,04, (qo) = Lie,(Ar). Therefore, we are left to determine
vector fields spanning Lie,(Ag), i.e., to compute enough iterated Lie brackets of A.

For any h,k,l,s,t,pe{l,...,m}, we have

[LR(Xn), ZLr(Xk)]lg = LR(Qni)lg + V(AR(X, Xi))lq

(23)

= Lr(p)lg + 2v(A(Xn A Xi))lg + 3(ACET QU A Qei))g
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[XR(Xl)v [gR(Xh)7gR(Xk)]]|q
Okt (%XNS(AXth +3V(ATT X A Qh,j))|q)

b (3L (AX0], + B (A(E] X5 A Qe)),)-

[Lr(X0), [Lr(X0), [Lr(Xn), ZLr(Xi)]]]l4
Out (5-Zws (AQun)ly + 15 (AX A X))y + T (AT Qg A ))la)

Ont (3-Lns(AQui )y + TV (A(Xy A X)) + 5 (A(ZTL QA Qe i))lg)-

[XR(XS% [XR(Xt)v [gR(Xl)v [gR(Xh)7gR(Xk)]]]]|q
Ol (5hs(%$NS(AXt)|q + 3V (A(Z]) X5 A Q)

~b1s (£ Lns(AXn)]g + V(AT X A Qh,j))))

i (aks(gzmmxmq  LU(AGS, X, A9)))

_5t8(%$NS(AXk‘)|q + 3—121/(14(2]121 Xj A de))))

[Zr(X}), [Lr(X:), [Lr(Xt), [LR(X1), [Lr(Xh), Lr(Xe) 1]l

Okt (5hs(3—72$NS(AQp,t)|q + 5V (A(Xp A X))lg + g (AET ) Qg A )g)

_5t8(3_72$NS(AQp,h)|q + 6L4V(A(Xp A Xh))|q + 6L4V(A(Z;‘n=1 Qpi A Qh,j))|q))

Onl (5ks(3—72$NS(AQp,t)|q + gV (A(Xp A X)lg + g (AT Qg A )g)

—5ts(3—72$Ns(AQp,k)|q + 2V (A(X, A Xi)g + g (AT QA Qk]))|q))
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First we should remark that, by iteration, the commutators
[gR(Xar)v s [gR(Xa2)7gR(Xa1)] s ]7

where «; € {1,...,m} and r > 3 are written either as the vectors in (24)) and (20]), or as those

in (28) and (27). Therefore, one only has to prove that (23), 24)), [25), (26) and 27) are

linear combinations of the vector fields in (22]) and then show that the Lie algebra generated
by these vector fields is involutive. Indeed, fix some h,k € {1,...,m} such that k& # h and take
p=s=t=10=k in the above Lie brackets. Calculate }(24) + [26) and 1(24) + [26), we get that

Lns(AXn)lg: V(A X; A ))lg
j=1
are vectors in Lie(Ag). On the other hand, ;(25) + 27) and 5(25) + (27) imply that
Lns(AQnp)lg, V(AL A Xk + 3, Qg A Q)
=1

belong also to Lie(Ag). The last two vectors with (23]) give us another vector in Lie(Ag)
which is ]
s (Qnlg + 5 (AXR A X))o

To show that the vector fields given in Eq. (22)) form a basis for Lie(Ag), it remains to compute
their first order Lie brackets to see that they define an involutive Lie algebra.

We have,
[ ()20 X5 A Q) v () (72 X5 A Q) g

V(A(Xy A Xi+ X000 Qi A Q%)

(28)
[ () (X572 X5 A ), v((O)(Xn A Xk + 252 Qg A ) g
= OV (A(Z X5 A Qj)lg = omv (ACETE X5 A Qi)
(29)
and,
()Xo A X+ 270 Q5 AQe ), v (O (X A X+ 250 Qg A Q) g
= 5le(A(Xh A Xt + Z;{L:I Qh,j N Qt,j))|q + 5hlV(A(Xt N Xk + Zyil Qt,j A Qk,j))|q
+ 5th(A(Xl 74\ Xh + Z;nzl Ql,j A Qh,j))|q + 5htl/(A(Xk A Xl + Z;nzl de N Ql,j))|q-
(30)
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Moreover, the Lie brackets between Lys(Q, k) + 37 (A(X) A Xy)) and the remaining vectors of

@) are
[Ls(X0), Zavs (D) + 5(()(X0 A X))y =0,
[Zs(()X0), Zas (i) + 5V n X))y =0,
(L)), Ls( i) + 50(() (X n X))y =0,

[Ls (O, Zrs (i) + 50(() (XA X))y =0,
[Zivs(@ni) + 370X A X)), Lus(h) + 5O (XA X))y =0,

[Lns(Qnp) + %V((')(Xh AXE)),v(()(Xi A X+ i Qi AQu)]lg =0,

J=1

[Livs (@) + 37X A X)), (O X5 A 2))], =0,

j=1

Then, the vector fields
1
Lns(Xn)lgy Lns(AXn)lgy Lns(A )|y Lns(Qn)lg + §V(A(Xh A Xk))lgs

I/(A(Z Xj N Qh7]‘))|q, I/(A(Xh AN Xk + Z QhJ AN Qk,j))|qa

J=1 J=1

form an involutive distribution and any vector fields in Lie(Ag) is a linear combination of
them. It remains to check that they are linearly independent. It is clearly enough to do that
for the family of vector fields V(A(Z;”:lXj A Q;))lg- Suppose there exists (a)i<hem, such
that Y52, an Y5 X5 A Q= 0. Then X7 X5 A (X5k) pej anfhy) = 0 Vi e {1,...,m}. Hence,
Yohet nej OnSn,j = 0 for every j,h e {1,...,m}, so oy, = 0 for every h e {1,...,m}. Therefore,

1
Lns(Xi)lgy Lns(AXn)g, Lns(AQi)lg, Lnvs(Qnr)g + §V(A(Xh A Xk))lgs

I/(A(Z Xj N Qh7]‘))|q, I/(A(Xh AN Xk + Z QhJ AN Qk,j))|qa

j=1 j=1

is a global basis of Lie,(Ag) and hence the dimension of Lie,(Ag) is constant and equal to
3N. We deduce that dim Oa,(go) = 3N and the tangent space of Oa,(qy) is generated by the
vectors in (22)). O

Remark 4.8. According to this proposition, Zys(AX})|, and ZLyns(AQ, k)|, are tangent to
Onr(qo). This implies that mggn(Oa,) = R™" which means that all the translations along
R™* are included in the tangent space of the orbit. Furthermore, the families of vector fields
V(A(Z;-”:l XA Qh7j))|q and I/(A(Xh A X+ 250 Qg A Qk,j))|q form an involutive vertical distri-
bution.

22



4.3.2 Determination of %ZR‘q

The main result of the subsection is given next.

Proposition 4.9. (i) The affine A-horizontal holonomy group ’HAVR 1s a Lie subgroup of
SE(m +n) of dimension 2(m +n).

(ii) The A-horizontal holonomy group HY is a Lie subgroup of SO(m+n) of dimension m+n.
Moreover, the connected component of the identity (HY )o of HY is compact.

Proof. As an immediate adaptation of Proposition to the case where one is dealing with
principal SE(n)-bundles, one gets that the affine holonomy group H AVR is a Lie subgroup of
SE(m+n). Notice then that, if IT: SE(m+n) - SO(m+n) is the projection onto the SO(m+n)
factor of SE(m +n), one has, by definition HY = II(#V) and Hy =TI(#H, ). This shows that
the A-horizontal holonomy group H, is a Lie subgroup of SO(m +n).

Y

Anld is given by

We next prove that for every ¢’ € @), a basis of Lie(H AVR‘q,) the Lie-algebra of H
the evaluation at ¢’ of the vector fields whose values at ¢ = (z,2,A) € Q are

gNS(AXh”qagNS(AQh,qu; V(A(Z Xj N Qh,j))|q7 I/(A(Xh N Xk + Z Qh,j N Qk,j))|q7 (31)
j=1

J=1

and hence this Lie algebra has dimension 2(m +n) = m(m + 1). To see that, consider some
element V' e Lie(H AVR‘q,) as a linear subspace of T;yOa,(qo). Then V is a linear combination
of the vector fields described in Eq. ([22) evaluated at ¢’ and V' projects to a zero-vector in
TM. By an obvious computation, one deduces that V' is a linear combination of the vector
fields given in Eq. BTl Conversely, it is clear that the vector fields given in Eq. (BI) generate
a distribution whose integral manifolds lie in Oa,(q0) N7y, (2') where 2/ = mg a(q'). This
proves that Lie(HAVR|q,) the Lie-algebra of %AVR‘q, has dimension 2(m +n) = m(m +1). One
could also check that the distribution generated by the vector fields in Eq. (3] is involutive.

By a similar reasoning, a basis Lie( H Av‘q,) of the Lie-algebra of H Av‘q, is given by the (evaluations

at ¢’ of) vector fields (see also (B2)) below)

IJ(A(Z Xj VAN Qh,j))|qa V(A(Xh AN Xk + Z th‘ N Qk,j))|q>

J=1 J=1

and hence this Lie algebra has dimension m +mn =m(m+1)/2.

It remains to prove the last claim in (ii). For 1 < h <m, let A, € so(m +n) corresponding to
the vertical vector I/(A(Z?ll X, A Qh,j)) and, for (h,k) € Z, let By € so(m +n) corresponding
to the vertical vector (A(Xh A Xy + Z?ll Qp i A Qk])) We extend the notations for the By, to
for any 1 < h,k <m by setting By, = =By . The basis of Lie algebra L := Lie(HAV) of HAv is
given by the matrices Ay, 1 <h <m and Bp g, (h,k) € Z and thanks to Egs. (28)), (29) and (30),

one has

[A;,A;] = Bij, [Ai, Bhi| = 0kiAn = 6niArk, [Big, Bhi) = 6uBhi + 0nBik + 0uBij + 0pBiy. (32)

23



We prove in Subsection that L is a compact semisimple Lie algebra. Since the connected
component of identity (H N ) o of HY is a connected Lie with Lie algebra L, it follows from

Weyl’s theorem (cf. [20, Theorem 26.1]) that (HAV)O is compact in SO(m+n) and of dimension
m+n. U

Since m+n < (m+n)(m+n-1)/2 (resp. 2(m+n) < (m+n+1)(m+n)/2) for all m >2 and
equality holds if and only if m =2 we have obtain our last result.

Corollary 4.10. In the set up of Proposition[4.9, the inclusions ’HAVR cSE(m+n) and HY c
SO(m +n) are strict if and only if m > 3.

5 Appendix

5.1 o-regular controls

We first generalize the usual definition of regular control and then provide a result about
existence of such controls. Let M be an n-dimensional smooth manifold, F a (possibly infinite)
family of smooth vector fields on M, and let Az be the smooth singular distribution (cf. [16])
spanned by F, i.e.

Agl, =span{X|, | X e F} cT,M, pe M.

We use the word ”singular” (to emphasize the fact that the rank (dimension) of Az might vary
from point to point. One can, in fact, prove given any such family F, there is a finite subfamily
Fo={X1,...,X\n} such that Azr = Ax,, and m < n(n +1) (see [12, 30], or [27] when Ax has
constant rank). Moreover, by span S we mean R-linear span of a set S.

Definition 5.1. An absolutely continuous (a.c.) curve v : [0,7'] - M is horizontal with respect
to F if there is a finite subfamily {Xi,...,X,,} of F and v = (uy,...,uq) € L*([0,T],R™), meN
(here m might depend on the curve v in question), such that for almost every t € [0,7T],

(1) = iw(t)xim)-

The orbit Ox(p) of F through p € M is the set of all points of M reached by F-horizontal paths
~ with v(0) = p.

If A is a smooth distribution of constant rank k on M, and if F = Fa is the set of smooth vector
fields tangent to A, then it is easy to see that A = Az, and that an a.c. curve is A-horizontal
if and only if it is F-horizontal. Therefore, in this case the concept of orbit coincides with
the notion we have used previously in the paper, and one can without ambiguity denote it by

Oa(p) instead of Ox(p).

For a smooth vector field X write ®x : D - M for its flow, where D = D is an open connected
subset of R x M containing {0} x M. We also use the notation (®x):(z) = (Px)*(t) = Px (¢, )
when (z,t) € D.

The orbit of a family F of vector fields has the following properties (cf. [16], [18]).

24



Theorem 5.2 (Orbit Theorem). 1. The orbit Oz(p) is an immersed submanifold of M.

2. Any continuous (resp. smooth) map f:Z — M, where Z is a smooth manifold, such that
f(Z) cOg(p) is continuous (resp. smooth) as a map f:Z - Ox(p).

3. If one writes Gx for the set of all locally defined diffeomorphisms of M of the form
(Px, )00 (Dx, )l for Xi,...,XgeF and ty,...,t5 € R for which this map is defined,
then

Or(p) ={v(p) | pe GF}
TOx(p) =span{p.(X) | p€Gr, X € F},

wherever the expressions ¢(p) and ¢.(X) are defined.

As a consequence of Case 3. of the theorem, one sees that L'([0,7],R™) in Definition (511 can
be replaced by L2([0,T],R™), which for the rest paper will be the appropriate space of controls
for our needs.

Following [27] we define the concepts of the end-point mapping and that of a regular (L?-
)Jcontrol.

Definition 5.3. For every p € M, any time T > 0, and any smooth finite family of vector fields
F={Xy,...,X,,} on M, there exists a maximal open subset U;’;T c L2([0,T],R™) such that for
every u = (u1,...,uy) € UL, there exists a unique absolutely continuous solution ~, : [0,T'] - M
to the Cauchy problem

Tult) = iumxi(w)), 74(0) = p. (33)

The end-point map Ef‘i_’T associated to F at p in time T is defined as the mapping

ERTURT > M, B2 (u) =y (T).

By [27, Proposition 1.8] we have the following.
Proposition 5.4. With p,T,F as above, the end point map Ef‘i_’T : Uf‘l_’T — M is Cl-smooth.

This proposition allows us to give the following definition.

Definition 5.5. A control u € U;’}’T is said to be o-reqular with respect to p in time 7' if the rank
of DuEng : L2([0,T],R™) —» TE-;;T(U)M, the differential of Eé’r_-’T(u) at u, is equal to dim O (p).
Here, ”o-regular” stands for orbitally regular.

Remark 5.6. A control u is usually said to be regular (with respect to p in time T') if the
rank of E%" (u) is equal to the dimension n of the ambient manifold M (cf [27, Section 1.3]),
implying in particular that the orbit Oz(p) is open in M and thus is n-dimensional. If the
distribution generated by F verifies the LARC, it can be proved that any pair of points in
M can be joined by the trajectory tangent to this distribution and corresponding to a regular
control, cf. [3]. In this paper, we have extended this definition without assuming controllability.
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The main purpose of this appendix is to generalize the result of [3] to the case where the
distribution A is not necessarily bracket-generating. Indeed, we have the following result.

Proposition 5.7. Let M be an n-dimensional smooth manifold, F = {X1,..., X}, meN, a
smooth finite family of vector fields on M. Then, for every p € M and time T >0, and every
q € Ox(p), there exists a o-regular control with respect to p in time T such that the unique
solution 7y, to the Cauchy problem (33]) such that v,(T') = q.

Remark 5.8. By the proof of Proposition 1.12 in [27] (see also [16]), the conclusion is immediate
if T,0x(p) is equal for every g € Ox(p) to Lie,(F), the evaluation at g of the Lie algebra
generated by F. In fact, in this case a stronger result holds, namely the set of regular controls
is dense in qugT for every ¢ € Ox(p) and T' > 0. As a consequence, any control ug € Ef‘i_’T admits
an o-regular control u arbitrarily close (in L?) to ug such that Eg_iT(u) = Eg_iT(uo).

Proof. Fix qy € Ox(p) and (Z7,...,Z9) a basis of T,,Ox(p). According to Theorem [(.2]

there exists ¢1 € Gr and Y] € F with ¢; = ¢7'(qo) such that Z0 := (Zlo,Zg,...,Zg), where

79 = (01).Yig, forms a basis of Oz(p) at qo. The basis Z° is the pushforward of a basis Z! =

(Z1,...,2}) of T,,Ox(p) by ¢1 and obviously Z] = Y;. We proceed inductively (using Theorem

[5.2)) with this construction for 1 < < d so that the basis Z!-1 = (Z{1, ..., ZI-], lefl, ZI Lz
of Ty, ,Ox(p) is the pushforward of a basis Z! = (Z%,..., Z}) with ¢, := p;*(q1-1), Vi := Z} € F and

lefl = (1)« (Z}). Finally consider ¢gs1 € G so that ¢4.1(p) = ¢, and set 1) = o1 0 P00 Qau1.

One has that ¢(p) = g and there exists 7' > 0 and u € L?([0,7'],R™) such that the unique

solution 7, to the Cauchy problem 4,(t) = Y% 4;(t) Xi|y. 0y, ©(0) = p verifies 7,(T) = qo.

Then the flow of diffeomorphisms 9%(t,q) corresponding to the time-varying vector field g —

> ui ()X, verifies ¢ = ¢%(T,0) and ¥*(t,p) = v,(t) where one has, for 0 < s <t < T,

%(tt’q) = Y ui (1) Xilyu(i,q) together with the initial condition ¥“(0,q) = ¢ for every ¢ € M.
With the above notations, it is clear that, for every 1< <d,

(g (T, p) (gt p)) V) L, = (Zaees Za)

-----

forms a basis of T,,,Ox(p), where d,i)%(t,-) denotes the differential of 1 (t,q) with respect to
the ¢ variable.

Recall that the differential of the end-point map at u is the linear map DuEﬁ’;T : L2([0,T],R™) —»
T4, 07 (p) given by

DR () = dy*(T,p) [ (@ (1)) X7 (0))i, (34)

where XV(t,x) = X", v;(t) X;|,. for almost every t € [0, 7] and every x € M. We further complete
the notations as follows. Let 0 =t <ty <+ < tgy1 := T the sequence of times where 7, (¢;) = qgs1-
with the convention that p = gg4¢1 and thus ¥*(T', p)v*(t;, p) 1 (q1) = qo, for 0 <1 < d+1. Moreover,
one has Y} = Y7, yuXil, for 1 <1< d and some real numbers (y;).

For every € > 0 small enough and 1 < [ < d, consider the sequence (vl) of functions in
L2([0,T],R™) defined by vL(t) = 2(yi)1<iek if T —€ <t <t and zero otherwise. It is a matter of
standard computations (as performed in [27, Proposition 1.10] to prove that, for every 1 <1< d,
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D, E2" (v!) tends to dyo*(T,p)(dy(t1,p))~1Y; = Z; as ¢ tends to zero. Since the the range of
DuEf‘i_’T is closed, we deduce that it contains Z; for every 1 <1 <d.

We have therefore proved that u is o-regular at p in time 7" in the sense of Definition 5.3l [

Remark 5.9. In contrast to what was discussed in Remark 5.8, we highlight the fact that in
general case where the (finite) family F of vector fields does not satisfy (everywhere on the
orbit) the Hormander condition Lie,F = T,0x(p), for a given control ug € U%" the o-regular
controls u (in the sense of Definition [5.5) such that E2" (ug) = E%" (u) might lie far away from
ug in L2-sense.

As the standard example, consider on M = R2 with coordinates (z,y), the vector fields (cf.

[16], p.12) X = & and Y = Qﬁ(x)a% where ¢ : R - R is smooth such that ¢(x) =0 if x <0 and

¢(x) >0 for £ >0. Let F={X,Y} and R2 = {(z,y) | z <0}

It is clear that for any point py = (29, y0) with xo < 0, any 7" > 0 and any control g such that
E2"(ug) e R2 for all € [0, 77, there is an L2-neighbourhood of ug such that E2" is not regular
at any of its points.

A regular control u steering py to qo = E%”T(uo) in time T (i.e. E?’T(u) = q), which exists
thanks to Proposition B.7] must have the property that ng’TO (u) ¢ R? for some 0 < Ty < T.
Therefore, if we write v, (t) = (xy(t),y.(t)) = EPot(u) and w = (uy,us), one has

To
o < |24 (To) = 20| = ‘ fo ul(s)ds‘ <V 1o Hu1||L2([O,T]) <VT ||“HL2([0,T],R2) :

If for example one took uy = 0, hence gy = pg, the above inequality would prove, as was claimed
above, that a regular control u steering py to ¢o in time 7' cannot be near ug in L?-sense.

5.2 Semisimplicity of the Lie algebra L

In this paragraph, we prove that the Lie algebra L of H AV whose generators are given in Eq. (32))
is compact semisimple. In order to so, according to the proof of Proposition 26.3 in [26], it is
enough (and necessary) to show that L is compact and has trivial center. We also recall that a
Lie algebra g is called compact ([26, Definition 26.2]) if there is a positive definite inner product
k on g which satisfies

k([z,y],z) + k(y,[x,2]) =0, Vax,y,z€eg. (35)

It follows immediately that any Lie-subalgebra h of a compact Lie-algebra g is also compact,
and therefore, L as a Lie-subalgebra of the compact so(n +m) is compact.

It remains to show that the center L is trivial. Consider C' in the center of L, i.e., [C,X] =0
for every X € L. Let a and b be respectively the R-linear span of the (Ap,)1<h<m and the span
of the (Bh k) nk)ez- Note that b = so(m) (up to an isomorphism of Lie algebras) and L is the
direct sum of a and b. Thus we can write C' = A+ B with unique A € a and B € b.

For every (h,k) € Z, one has 0 = [C, B x| = [A, Bui] + [B, Bnx]. Thanks to the relations in
Eq. (32), one also has that [A, By, ] € a and [B, By ] € b, and then, due to the direct sum
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property one concludes that, for every (h,k) € Z,

[A, B ] =[B,Bng] =0.

Since b is semisimple, its center reduces to zero and thus B = 0. We next set A =" ¢;A; and
use the relations [A, A,] =0 for 1 < h <m. We get that, for 1 <h <m,

m

0=> al[d;, Ay =) aBi,
i-1

=1

yielding at once that a; =0 for 1 < h <m because m > 2. (Indeed we need at least two distinct
indices h as above.) Then C =0 which concludes the proof of the claim.
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