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Attitude Estimation and Control Using Linearlike
Complementary Filters: Theory and Experiment
L. Benziane, A. El Hadri, A. Seba, A. Benallegue, and Y. Chitour

Abstract— This brief proposes new algorithms for attitude
estimation and control, based on fused inertial vector mea-
surements using a linear complementary filters principle. First,
n-order direct and passive complementary filters combined with
a TRIaxial Attitude Determination algorithm are proposed to
give the attitude estimation solutions. These solutions that are
efficient with respect to noise include the gyro-bias estimation.
Thereafter, the same principle of data fusion is used to address
the problem of attitude tracking based on the inertial vector
measurements. Thus, instead of using noisy raw measurements
in the control law, a new solution of control that includes a
linearlike complementary filter to deal with the noise is proposed.
The stability analysis of the tracking error dynamics based
on the LaSalle’s invariance theorem proved that almost all
trajectories converge asymptotically to the desired equilibrium.
Simulations and experimental results, obtained with DIY Quad
equipped with the APM2.6 autopilot, show the effectiveness and
the performance of the proposed solutions.

Index Terms— Attitude Control, attitude estimation, Barbalat’s
lemma, complementary filters, quadcopter, Lasalle’s invariance
theorem, Lyapunov analysis.

I. INTRODUCTION

DESPITE the significant existing number of solutions to
the attitude estimation and control problems, it remains

attractive research topics [1], [2]. The widely used techniques
for attitude estimation are based on the extended Kalman
filter [1], [3]. Most of these methods are computationally
demanding and some of them depending on used attitude
representation [4]. Another class of techniques is based on
complementary filters [5], [6], which are not so computation-
ally demanding. Due to their simplicity and efficiency, the use
of the complementary filters [7, Appendix A] to reconstruct
the attitude continues to attract many researchers [7], [8].
In [9], a new strategy by combining a vector-based filter with
an optimal attitude determination algorithm has been proposed.
The vector-based filter presented in [9] was designed as a
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Kalman filter using linear time variant (LTV) representation
of the nonlinear kinematic equation, with observability
conclusions given for the LTV reformulation of the original
nonlinear system, which can be considered as a theoretical
drawback.

Inspired by the approach given in [9], this brief presents
globally asymptotically stable filters for the deterministic
attitude estimation based on high-order linear complementary
filtering. The gyro-bias estimation is also considered. Two
forms of filter, termed direct and passive, are designed sim-
ilarly as the work presented in [7]. The passive form is less
sensitive to noise as claimed in [7]. Moreover, the approach
proposed here is completely deterministic as it is based on
the linear complementary filters followed by the TRIaxial
Attitude Determination (TRIAD) algorithm [10, Sec. II-C]
for the attitude estimation. As a matter of fact, the TRIAD
is the deterministic attitude estimation algorithm par excel-
lence as claimed by [11]. Although it was proved that the
TRIAD is less accurate than other optimal approaches [11],
it will be shown throughout this brief that it is possible to
obtain higher quality of the attitude estimation when this
approach is used.

Most of the traditional rigid body attitude control
approaches given in the literature are based on the feedback
scheme using the attitude estimation [12]–[14]. In fact, the
explicit use of the attitude in the control law involves the
determination of attitude from measurements. An excellent
review of the basic control design and feedback control for
underactuated vertical takeoff and landing (VTOL) aircraft
type can be found in [15]. A quaternion-based feedback
was used in [13], [16], and [17] to stabilize the attitude
of a VTOL. Recently, some authors have proposed to use
directly the raw vector measurements to perform the atti-
tude stabilization [18]–[20]. Frequently, the implementations
of some attitude controllers using directly the raw vector
measurements are confronted with noises. Therefore, a novel
filter to improve the performance of the attitude tracking
controller is proposed. The attitude controller is based on the
filtered vector measurements while ensuring an almost global
asymptotic stability without using the attitude measurements.
Although unit quaternions are used in a stability analysis, the
unwinding phenomenon is avoided.

The result presented in this brief extends those from [10].
The first contribution of this brief is the extension of the
global convergence of the direct and passive complementary
filters to the case of n-order, which gives the advantage to
improve the quality of estimation by choosing the adequate
order and form of the filter. Another contribution is the design
of a new control law based on filtered inertial vectors and
rate-gyro measurements to control the attitude of a rigid
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body without using the attitude measurements, for which an
almost global stability is given. All our contributions are
validated by simulations and experiments on the DIY drone
Quadcopter [21].

II. PRELIMINARIES

A. Mathematical Background and Notations

Attitude of the rigid body represents the relative orientation
of {B} with respect to {I}, where {B} denotes the mobile body-
frame fixed to its center of mass and {I} denotes the inertial
reference frame attached to the 3-D space. In this brief, the
attitude of the rigid body will be described using either rotation
matrices R ∈ SO(3) or quaternions

[ q0
q

] ∈ S
3 [22], where

SO(3) is the special orthogonal group, S
3 is the unit sphere,

and � denotes the quaternions multiplication on S
3, as defined

in [7, Appendix B]. Denote by S(·) the skew-symmetric matrix
defined such that for any x, y ∈ R

3, S(x)y = x × y,
where × denotes the vector cross product and

S(x) =
⎡

⎣
0 −x3 x2
x3 0 −x1

−x2 x1 0

⎤

⎦, x =
⎡

⎣
x1
x2
x3

⎤

⎦. (1)

The mapping R : S
3 → SO(3) is defined by the

Euler–Rodriguez formula as follows:
R(q0, q) = Id + 2q0S(q)+ 2S(q)2 (2)

where Id is the 3 × 3 identity matrix.
For any two vectors x, y ∈ R

3 and rotation matrix
R ∈ SO(3), the following identities hold: S(x)y = −S(y)x ,
S(S(x)y) = S(x)S(y)− S(y)S(x), S(x)2 = xx T −x T x Id , and
S(Rx) = RS(x)RT.

If n is a positive integer, set en = (0, . . . , 0, 1)T . To every
γ = (γ1, . . . , γn) ∈ R

n , we associate the polynomial

Pγ (s) = sn +
n∑

k=1

γksn−k (3)

and the companion matrix Aγ

Aγ =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1

−γn −γn−1 · · · −γ2 −γ1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

(4)

whose characteristic polynomial is Pγ . Use π : R
n → R

n−1 to
denote the projection onto R

n−1, i.e., π(γ ) = (γ1, . . . , γn−1).
Define the following subsets of R

n , Hn = {γ ∈ R
n |

PγHurwitz} and Hn = {γ ∈ Hn | π(γ ) ∈ Hn−1}.
The proof of the following lemma is deferred in the

Appendix.
Lemma 1: If n is a positive integer, then Hn is not empty.
Note 1: Let E ∈ R

(n×n) and σ(E) = {λ1, . . . , λn} its
spectrum, where λl , l = 1 . . .n are the eigenvalues of E .
Let Ik ∈ R

(k×k) , k integer, be the identity matrix. Then, the
spectrum of the Kronecker product of E by Ik , E ⊗ Ik ∈
R
(kn×kn) , is equal to σ(E) according to [23, Th., p. 245].

In particular, E ⊗ Ik is Hurwitz if and only if E is.

Fig. 1. Classical form of complementary filters.

The rigid body rotational motion can be described by its
kinematic and dynamic equations

[
q̇0(t)
q̇(t)

]
=

⎡

⎢
⎣

−1

2
qT (t)ω(t)

1

2
(q0(t)Id + S(q(t)))ω(t)

⎤

⎥
⎦ (5)

J ω̇(t) = −S(ω(t))Jω(t) + τ (t) (6)

where ω(t) is the angular velocity of the rigid body and τ (t)
is the applied torque to the system, both expressed in {B}.
J ∈ R

3×3 is a symmetric positive definite constant inertia
matrix about the center of mass of the rigid body.

Now, given a constant vector r in {I}, then its corresponding
vector in {B} is given by b(t) = RT (t)r and

ḃ(t) = −S(ω(t))b(t). (7)

Consider the following rate-gyros model:
ωm(t) = ω(t) + η (8)

where ωm(t) is the measured angular velocity and η is the real
unknown gyro bias.

In all what follows, the indices i = 1, . . . ,m denote the
number of the used inertial vectors.

B. Sensor-Based Attitude Estimation Approach
Using Complementary Filters

The sensor-based attitude estimation approach, mentioned
in [9], is consisting of two steps process: first, filter sensor
measurements, and then determine attitude. Inspired by this
approach, a new structure of the complementary filters is
proposed. Indeed, the complementary filters give us a mean
to fuse multiple heterogeneous independent noisy measure-
ments of the same signal that have complementary spectral
characteristics [7]. The classical form of the complementary
filters is shown in Fig. 1. In this case, the complementarity
filtering is achieved if the following condition is satisfied:

H1i(s)+ s H2i(s) = 1, i = 1, . . . ,m (9)

where s is the Laplace variable, H1i(s) is a low-pass filter,
and s H2i(s) is a high-pass filter.

From the structure of the classical form of a complementary
filter, the estimate b̂i of the state bi by fusing measurements of
the i th inertial direction vectors and gyro measurements can
be written as

b̂i = H1i(s)bi + H2i(s)ḃi , i = 1, . . . ,m. (10)

Now, for the determination of the attitude, the complemen-
tary filter can be followed by any algebraic algorithm like
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Fig. 2. Direct linearlike complementary filter.

Fig. 3. Passive linearlike complementary filter.

the TRIAD algorithm. Despite the fact that the TRIAD is
known less accurate than other statistical algorithms based on
minimizing Wahba’s loss function [11], we will show that we
can obtain good results by using fused data. The choice of
the TRIAD algorithm is justified by the fact that the optimal
algorithms are usually much slower than the deterministic
algorithms [11].

The first problem addressed in this brief is the design of
an attitude and heading reference system using the concept
of the sensor-based attitude estimation approach [9]. The goal
is to prove that it is possible to obtain a structure based on
a deterministic complementary linear filter with a globally
asymptotic convergence. The filtered data will be used by
a TRIAD for the attitude determination as explained before.
The second problem addressed is to prove that the use of
estimated measurements by the complementary filters can
achieve attitude tracking with an almost global stability.

Along this brief, the following assumptions will be used.
Assumption 1: Assume the existence of m measured vectors

bi (t), i = 1, . . . ,m expressed in {B}, and then, at least two of
them are noncollinear.

Assumption 2: Assume that the real unknown gyro bias η
is bounded and constant (or slowly varying), such that η̇ = 0.
Moreover, assume that the measured angular velocities ωm(·)
are bounded as well.

III. DESIGN OF THE LINEARLIKE

COMPLEMENTARY FILTERS

The classical form of the complementary filters can be
reformulated in the feedback form, as shown in Fig. 2.
Two structures of the complementary filter are proposed. The
first one termed direct linearlike complementary filter and the
second one termed passive linearlike complementary filter.
In the first one, the offsetting of nonlinear term uses direct
raw measurements, as shown in Fig. 2, while in the second
one, the filtered measurements are used, as shown in Fig. 3.

From the equivalence between the classical form and the
feedback form, one can get H1i(s) = (Ci (s)/s + Ci (s)) and
H2i(s) = (1/s + Ci (s)), where Ci (s) represents the compen-
sator term in the feedback form. One can write the compen-
sator term as

Ci (s) = s H1i(s)

1 − H1i(s)
, i = 1, . . . ,m. (11)

The design of the compensator Ci (s) can be achieved
by choosing the adequate filter order for improving the
quality of estimation. Consider now, for i = 1, . . . ,m,
the general n-order transfer function H1i(s) by first taking
Υi = (γi1, . . . , γin) ∈ Hn and setting H1i(s) = (γin/PΥi (s)),
where PΥi (s) and γin are defined by (3). Using (11), one can
obtain

Ci (s) = γin

Pπ(Υi )(s)
, i = 1, . . . ,m. (12)

A. High-Order Direct Linearlike Complementary Filters

Consider system (14) and the block diagram of the direct
form in Fig. 2 with compensator Ci (s) given by (12) for
i = 1, . . . ,m. Then, the closed-loop dynamics with gyro-bias
estimation for any n-order is given for i = 1, . . . ,m by

⎧
⎪⎨

⎪⎩

x (n−1)
i = − ∑n−1

k=1 γikx (n−k−1)
i + γin(bi − b̂i )

˙̂bi = −S(ωm − η̂)bi + xi
˙̂η = 
d

∑m
i=1 S(bi )υi

(13)

where x ( j )
i is the j th derivative of xi with x (0)i = xi ,

γik, i = 1, . . . ,m, k = 1, . . . , n are the components of
Υi = (γi1, . . . , γin) ∈ Hn , 
d is a real positive definite
diagonal matrix gain, and υi is a vector to be defined later.

First, using (7) and (8), one can write the following system:
{

ḃi = −S(ωm − η)bi

η̇ = 0.
(14)

Define the observation errors

b̃i = bi − b̂i , i = 1, . . . ,m (15)

η̃ = η − η̂ (16)

then using (7) and (13)–(16), yield the following error
dynamics:

⎧
⎪⎪⎨

⎪⎪⎩

x (n−1)
i = − ∑n−1

k=1 γikx (n−k−1)
i + γinb̃i

˙̃bi = −S(bi )̃η − xi

˙̃η = −
d
∑m

i=1 S(bi )υi .

(17)

By the evaluation of the time derivative of the first equation
of (17), one can rewrite (17) as

{
x (n)i = − ∑n

k=1 γikx (n−k)
i − γinS(bi )̃η

˙̃η = −
d
∑m

i=1 S(bi )υi .
(18)

Now, consider the new state vector zi ∈ R
3n, i = 1, . . . ,m,

such as zT
i = [x T , ẋ T , . . . , x (n−1)T ], and define the vectors υi

to be

υi = BT
di Pdi zi , i = 1, . . . ,m. (19)
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One can rewrite (18) as
{

żi (t) = Adi zi (t)+ Bdi S(̃η)bi

˙̃η = −
d
∑m

i=1 S(bi )BT
di Pdi zi

(20)

where i = 1, . . . ,m and the Hurwitz matrices Adi = AΥi ⊗
Id ∈ R

(3n×3n) [AΥi is defined by (4)], Bdi = γinen ⊗ I3 ∈
R

3n×3, and the matrices Pdi ∈ R
(3n×3n) are real symmetric

positive definite solutions of the following Lyapunov equations
for given symmetric positive definite matrices Qdi:

AT
di Pdi + Pdi Adi = −Qdi , i = 1, . . . ,m. (21)

Now, the first result can be stated.
Proposition 1: Consider the filter (13) with (19), under

Assumptions 1 and 2, then the errors (15) and (16) converge
globally asymptotically to zero.

Proof: Consider the following Lyapunov function
candidate:

V1 =
m∑

i=1

zT
i Pdi zi + η̃T
−1

d η̃ (22)

where Pdi ∈ R
(3n×3n), i = 1, . . . ,m is given by (21).

Using (21) and the fact that η̃T S(bi )BT
di Pdi zi =

zT
i Pdi Bdi S(̃η)bi , the time derivative of (22) in view of (20)

is given by V̇1 = − ∑m
i=1 zT

i Qdi zi ≤ 0. Therefore, zi and η̃i

are bounded, and consequently, by using (20), żi and ˙̃ηi are
bounded. The evaluation of the second derivative of (22) in
view of (20) gives V̈1 = − ∑m

i=1 zT
i Gzi + 2zT

i Qdi Bdi S(bi )̃η
with G = AT

di Qdi + Qdi Adi , V̈1 is clearly bounded.
By Barbalat’s lemma, limt→∞ V̇1(t) = 0 and consequently
limt→∞ zi (t) = 0. Then, according to (17), one can obtain
limt→∞ b̃i (t) = 0. Next, one can evaluate the second
time derivative of zi and conclude that all terms are
bounded. Thus, using Barbalat’s lemma, limt→∞ żi (t) = 0.
Therefore, using (20) and limt→∞ zi (t) = 0, one can
conclude that Bdi S(bi )̃η converges to zero and equivalently
limt→∞ S(bi (t))̃η(t) = 0. Under Assumption 1, one can
conclude that limt→∞ η̃(t) = 0. �

Remark 1: One can obtain the first-order direct filter as
{ ˙̂bi = −S(ωm − η̂)bi + γi1(bi − b̂i)

˙̂η = 
1
∑m

i=1 S(bi )b̂i .
(23)

B. High-Order Passive Linearlike Complementary Filters

In the passive form, the design of the complementary filter is
performed by injecting filtered measurements for the offsetting
nonlinear term, as shown in block diagram of Fig. 3, with
a compensator Ci (s), i = 1, . . . ,m, defined by (12). Then,
the following new n-order passive form with the gyro-bias
estimation is proposed:

⎧
⎪⎪⎨

⎪⎪⎩

x (n−1)
i = − ∑n−1

k=1 γikx (n−k−1)
i + γin(bi − b̂i)

˙̂bi = −S(ωm − η̂)b̂i +wi

˙̂η = −
p
∑m

i=1 S(bi )b̂i

(24)

where i = 1, . . . ,m, x ( j )
i is the j th order derivative of xi

with x (0)i = xi , γik, i = 1, . . . ,m, k = 1, . . . , (n − 1) are

components of π(Υi ) = (γi1, . . . , γi(n−1)) for Υi ∈ Hn ,

p is a real positive definite diagonal matrix gain, and wi is
given by

wi = BT
pi Ppi Xi (25)

with Xi ∈ R
3(n−1), i = 1, . . . ,m, such as X T

i =
[xT , ẋ T , . . . , x (n−2)T ], allowing to rewrite (24) as

⎧
⎪⎨

⎪⎩

Ẋi (t) = Api Xi (t)+ Bpi(bi − b̂i )
˙̂bi = −S(ωm − η̂)b̂i + BT

pi Ppi Xi

˙̂η = −
p
∑m

i=1 S(bi )b̂i

(26)

where the Hurwitz matrices Api = Aπ(Υi ) ⊗ Id ∈
R
(3(n−1)×3(n−1)) [Aπ(Υi ) is defined by (4), see Note 1 for Api

Hurwitz] and the matrices Bpi = γine(n−1) ⊗ Id ∈ R
3(n−1)×3.

The matrices Ppi ∈ R
(3(n−1)×3(n−1)), i = 1, . . . ,m, are

real symmetric positive definite solutions of the following
Lyapunov equations for given symmetric positive definite
matrices Qpi:

AT
pi Ppi + Ppi Api = −Qpi. (27)

Now, the second result can be stated.
Proposition 2: Consider the filter (24) with (25), under

Assumptions 1 and 2, then the errors (15) and (16) converge
globally asymptotically to zero.

Proof: First, let us evaluate the error dynamics of (26).
Using (7), (15), and (16), one can obtain

⎧
⎪⎪⎨

⎪⎪⎩

Ẋi (t) = Api Xi (t)+ Bpib̃i

˙̃bi = −S(bi )̃η + S(b̃i )(ω + η̃)− BT
pi Ppi Xi

˙̃η = −
p
∑m

i=1 S(bi )b̃i .

(28)

Consider now, the following Lyapunov function:

V2 =
m∑

i=1

X T
i Ppi Xi +

m∑

i=1

b̃T
i b̃i + η̃T
−1

p η̃ (29)

using (27), the time derivative of (29) in view of (28) is
given by V̇2 = − ∑m

i=1 X T
i Qpi Xi ≤ 0. Therefore, Xi ,

b̃i , and η̃i are bounded, and consequently, from (28) and
Assumption 2, Ẋi ,

˙̃bi , and ˙̃ηi are also bounded. The rest of
the proof is similar to the proof of Proposition 1. It is easy
to verify that V̈2 is bounded. Thus, using Barbalat’s lemma,
limt→∞ V̇2(t) = 0, and consequently, limt→∞ Xi (t) = 0.
In addition, Ẍi is bounded, then limt→∞ Ẋi (t) = 0, and
using (28), limt→∞ b̃i (t) = 0. By a standard reasoning by
contradiction, one gets that limt→∞ ˙̃bi (t) = 0. Using this fact
and (28), therefore limt→∞ S(bi )̃η = 0. Under Assumption 1,
one can conclude that limt→∞ η̃(t) = 0. �

Remark 2: One can obtain the first-order passive filter as

{ ˙̂bi = −S(ωm − η̂)b̂i + γi1(bi − b̂i )

˙̂η = 
2
∑m

i=1 S(bi )b̂i .
(30)
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IV. SENSOR-BASED ATTITUDE TRACKING

As a logical sequel to the proposed solutions to the problem
of attitude estimation, a new sensor-based attitude control
law that uses only filtered inertial vectors and rate-gyro mea-
surements to track the desired attitude without using attitude
measurements is proposed. In this section, it is assumed
that ωm(t) = ω(t).

A. Controller Design

First, let us define the orientation error by R̄(t) =
R(t)RT

d (t), which corresponds to the quaternion error[ q̄0(t)
q̄(t)

] ∈ S
3 whose dynamics is governed by

[ ˙̄q0˙̄q
]

=
⎡

⎢
⎣

−1

2
q̄T Rd ω̃

1

2
(q̄0 Id + S(q̄))Rd ω̃

⎤

⎥
⎦ (31)

where time indices are omitted, ω̃ = ω − ωd , ω is the time-
varying angular velocity of the rigid body expressed in {B},
ωd is the time-varying desired angular velocity, and Rd is
the time-varying desired rotation matrix. Now, the following
new filter for the control problem with the new control law is
proposed as:

˙̂bi = αi b̃i + S(ωd )b̃i − S(ω)bi + δi S
(
bd

i

)
ω̃ (32)

τ = (S(ω)J − J S(ωd ))ω + J
m∑

i=1

ρi S
(
bd

i

)
b̂i

+ J ω̇d − k J ω̃ (33)

where time indices are omitted, αi > 0, δi > 0, ρi > 0, bi ,

i = 1, . . . ,m are the inertial measurements, and b̃i = bi − b̂i .
Define the following tracking errors ω̄ = Rd (ω − ωd ) and
b̄i = Rd (bi − b̂i ). Then, one can obtain the following error
dynamics:

˙̄ω = Rd S(ωd )ω + Rd (ω̇ − ω̇d ) (34)
˙̄bi = −αi b̄i − δi S(ri )ω̄. (35)

Then, the torque τ (t) can be rewritten as

τ = S(ω)Jω − J S(ωd )ω + J ω̇d − k J RT
d ω̄

− 2J RT
d (q̄0 Id − S(q̄))Wq̄ − J RT

d

m∑

i=1

ρi S(ri )b̄i (36)

where [20, Lemma 1] is used to rewrite the term∑m
i=1 ρi S(bd

i )bi , W = − ∑n
i=1 ρi S(ri )

2, and W is a positive
definite matrix [20, Lemma 2] and supposed to has simple
eigenvalues (see [18, Lemma 1] to justify this hypothesis).
Finally, using (6), (31), and (34)–(36), one can obtain the
following closed-loop dynamics:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄bi (t) = −αi b̄i(t)− δi S(ri (t))ω̄(t)

˙̄q0(t) = −1

2
q̄T (t)ω̄(t)

˙̄q(t) = 1

2
(q̄0(t)Id + S(q̄(t)))ω̄(t)

˙̄ω(t) = −2(q̄0(t)Id − S(q̄(t)))Wq̄(t)

− ∑m
i=1 ρi S(ri )b̄i (t)− kω̄(t).

(37)

Denote by 03m the 3 × m zero matrix and define the state
� := (b̄1, . . . , b̄m , Q̄, ω̄). The closed-loop dynamics (37) can
be rewritten as �̇ = G(�), such that � ∈ � and � := R

3m ×
S

3 ×R
3, and define the following positive radially unbounded

function: V3 : Δ → R:

V3(�) =
m∑

i=1

ρi

δi
b̄T

i b̄i + 4q̄Wq̄ + ω̄T ω̄. (38)

Theorem 1: Consider system (5) and (6) and the control
law (33) with the observer given by (32). Under Assumption 1,
the following holds.

1) The equilibriums of the closed-loop system (37) are
defined by �±

1 = (03m,
[ ±1

0

]
, 0) and �±

2,3,4 =
(03m,

[ 0±v j

]
, 0), where v j j = 1, 2, 3 are the eigenvec-

tors of W .
2) The equilibriums �±

1 are asymptotically stable with a
domain of attraction containing the set C+

a := {� ∈ � |
V3(�) < 4λmin(W ) and q̄0 > 0}, for �+

1 and C−
a :=

{� ∈ � | V3(�) < 4λmin(W ) and q̄0 < 0}, for �−
1 ,

where λmin(W ) is the smallest eigenvalue of W .
3) The equilibriums �±

2,3,4 are locally unstable and �±
1 are

almost globally asymptotically stable.
Proof: The proof of the first item is similar to the proof

of [18, Th. 1]. Recall that the closed-loop dynamics (37) is
autonomous, therefore it is possible to use LaSalle’s invariance
theorem to prove the second item. Note that the time derivative
of (38) using (37) is given by V̇3(�) = −2kω̄(t)T ω̄(t) −
2

∑m
i=1 αi (ρi/δi )b̄i (t)T b̄i (t) ≤ 0 and the proof of item 2) will

be similar to the proof of [18, Th. 1].
Let us prove that the equilibriums �±

2,3,4 are unstable. Since
the only difference between these equilibriums is the value
of the eigenvector, the proof is given only for �+

2 ∈ �.
The other cases will be similar. To do this, we consider
�∗

2 := (b̄∗
1, . . . , b̄∗

m, Q̄∗, ω̄∗) a neighborhood of �+
2 (arbitrary

close), and since the function V3 is nonincreasing, it suffices
to prove that V3(�

∗
2)− V3(�

+
2 ) < 0. Let us use the following

change of variable:
[

q̄∗
0

q̄∗
]

=
[

0
v1

]
�

[
x0
x

]
=

[ −vT
1 x

x0v1 + S(v1)x

]
. (39)

Using (39) and the fact that Wv1 = λ1v1 (where λ1
is the eigenvalue associated with the unit eigenvector v1
of W ), one can evaluate D = V3(�

∗
2) − V3(�

+
2 ) as fol-

lows: D = ∑m
i=1(ρi/δi )b̄∗T

i b̄∗
i + ω̄∗T ω̄∗ + 4λ(x2

0 − 1) −
4xT S(v1)W S(v1)x . If we take x close to v2 such that
x = εv2, where ε > 0 sufficiently small, the unit quaternion
constraint gives x2

0 = 1 − ε2. In this case, one can get

D = ∑m
i=1(ρi/δi )b̄∗T

i b̄∗
i + ω̄∗T ω̄∗ − 4λ1ε

2 which means that
if ε2 > (1/4λ1)(

∑m
i=1(ρi/δi )b̄∗T

i b̄∗
i + ω̄∗T ω̄∗) then D < 0.

As a result, there exists �∗
2 arbitrary close to �+

2 , such that
V3(�

∗
2) < V3(�

+
2 ), and since the function V3 is nonincreasing,

it is clear that�+
2 is unstable. Similarly, all equilibriums�±

2,3,4
are unstable. Finally, in the state space �, the set of unstable
equilibriums is Lebesgue measure zero. Therefore, almost all
trajectories converge asymptotically to �±

1 . �
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TABLE I

STANDARD DEVIATION OF EULER ANGLES ERRORS

Remark 3: In the case of stabilization (ωd = 0), the control
law (33) with the filter (32) can be modified to get

˙̂bsi = αi (bi − b̂si)− S(ω)bi + δi S
(
bd

i

)
ω (40)

τs =
m∑

i=1

ρi S
(
bd

i

)
b̂si − kω. (41)

V. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present some simulation and experimen-
tal results showing the effectiveness and the performances of
the proposed solutions. The considered observed vectors are
b1 = a = [ ax ay az ]T (m/s2) for accelerometer measure-
ments and b2 = m = [ mx my mz ]T (normalized) for magne-
tometer measurements expressed in north-east-down reference
frame. The corresponding fixed gravitational earth vector and
the magnetic earth field vector are r1 = [0, 0, 1]T and
r2 = [0.434,−0.04, 0.899]T , respectively, both normalized.

A. Importance of Filter Order and
Form for Attitude Estimation

To show the effectiveness and performances of the
proposed filters for attitude estimation, many simulations
were done. Three cases were selected, depending on the
order of the filters. The selected transfer functions are
H1i(s) = (γin/PΥi (s)) = (αn/(s + α)n), for i = 1, 2 and
n = 1, 2, 3. α was set to 10 for all cases, 
d = 
p = 0.1Id .
For the direct second-order and passive third-order
Qdi = Qpi = I6×6, i = 1, 2, and for the direct
third-order, Qdi = I9×9, i = 1, 2. An additive centered
zero-mean white noise was taken for measurements with
standard deviation 0.1(normalized) for accelerometer and
magnetometer, 1 (°/s) for rate gyros. The measurements from
gyroscope ωm(t) (rad/s) are also corrupted by a constant
bias η = [2,−3, 1] (°/s). The standard deviations σϕ, σθ , σψ
of Euler angles errors are shown in Table I. It is clear that
choosing a high order improves the quality of estimation.
In addition, as claimed, the passive form is less sensitive to
noise compared with the direct one.

B. Importance of Filtered Observed
Vectors for Attitude Control

The advantage of the novel sensor-based control law (33)
presented in this brief is the use of the data fusion to
improve the attitude tracking. To show the impact of using
the filtered measurements b̂i , one can generate a raw con-
trol torque by replacing b̂i in (33) with the raw measure-
ments bi , which can be denoted by τn . Simulations have been

Fig. 4. Attitude tracking simulation results: (a) Real quaternion trajectories.
(b) Desired quaternion trajectories. (c) Quaternion errors. (d) τx compared
to τnx . (e) τy compared to τny . (f) τz compared to τnz .

Fig. 5. Test-bench DIY Quad. (a) Test-bench. (b) Mounted Xsens MTi.

conducted to illustrate this fact with the following parame-
ters: the desired trajectories are generated using the desired
angular acceleration ω̇d = [0.4 sin(0.4t), 0.5 sin(0.5t + 0.1),
0.3 sin(t −0.2)]T (rad/s2). The chosen gains are: α1 = α2 = 1,
δ1 = δ2 = 1, ρ1 = ρ2 = 8, and k = 5. The initial attitude in
the Euler angles was taken (ϕ(0), θ(0), ψ(0)) = (−30, 15, 5)°
and (ϕd(0), θd (0), ψd (0)) = (0, 0, 0)° for rigid body and
desired attitude, respectively. All other parameters are taken
the same as in Section V-A, except the fact that ωm(t) = ω(t)
(without bias). Despite the fact that the chosen noise represents
nearly 10% of the amplitude of the measured vectors, the
proposed attitude controller tracks the desired attitude suc-
cessfully, as shown in Fig. 4, where Fig. 4(a)–(c) shows the
real quaternion trajectories, the desired quaternion trajectories,
and the quaternion errors, respectively. In Fig. 4(d)–(f), the
torque τ compared with the raw torque τn illustrates the
importance of using the filtered measurements.

C. Experimental Tests

Experiments were done based on DIY drone project [21].
We have used the platform shown in Fig. 5(a). It is a test-bench
with DIY Quad equipped with the APM2.6 [24] autopilot used
for indoor tests. The autopilot APM2.6 is based on Atmel
ATMEGA2560-16AU using an external clock of 16 MHz.
The embedded system is equipped with Invensense’s 6 DoF
Accelerometer/Gyro MPU-6000 and a three-axis external com-
pass HMC5883L-TR. The main loop operating frequency of
the firmware is 100 Hz. The acquisition of accelerometer and
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Fig. 6. Raw and filtered accelerometer measurements: (a) For x-axis. (b) For
y-axis. (c) For z-axis.

gyros measurements is similar to the main loop, while the
frequency acquisition of magnetometer measurements is 10 Hz
(after an internal filtering). To validate our results, two main
experiments were done. The first one was made to evaluate
the performance of our attitude observer using the well-known
Xsens MTi AHRS, as shown in Fig. 5(b). In this experiment,
the attitude measurements provided by the MTi is considered
as a reference signal. The second experiment consists of
the implementation of our attitude controller directly on the
autopilot APM2.6.

1) Experimental Test for Attitude Estimation: As described
above, the attitude measurements delivered by the Xsens MTi
will be considered as a reference signal for the comparison
of results. This reference is obtained with an internal Kalman
filter implemented inside MTi. The explicit observer presented
in [7] with quaternion formulation was implemented and will
be termed MahonyHamelPflimlin (MHP) observer.

Remark 4: To preserve the acquisition frequency of
accelerometer and gyros measurements and due to autopilot
limitation, only the first-order direct and passive filters given
by (23) and (30) were implemented using the first-order Euler
integration.

For implementation, the following gains were chosen:
γ11 = γ21 = 1 and 
1 = 
2 = 0.003Id for both
two filters, while for MHP observer, the gains presented
in [7] were used: kP = 1 and kI = 0.3. The mea-
sured initial attitude condition given by MTi was Q(0) =
[0.998,−0.031,−0.029,−0.046]T , which was used as an
initial condition. For reporting results, we first consider the
performance of the data fusion obtained by implemented
complementary filters. Then, Fig. 6 shows the experimental
results for the direct and passive filters. One can observe
that the two complementary filters have good performance,
which corroborates the fact that asymptotic stability was
demonstrated for both filters. Table II shows the standard
deviation of Euler angles obtained by tacking attitude mea-
surements delivered by the Xsens MTi as a reference signal.
As explained before, the passive filter is less sensitive to noise,
as it is shown in Table II. The comparison presented in Table II
illustrates the effectiveness of the proposed solution. The

TABLE II

STANDARD DEVIATION OF EULER ANGLES ERRORS

Fig. 7. Rate gyro bias estimation experimental results: (a) For x-axis. (b) For
y-axis. (c) For z-axis.

first-order passive filter and the MHP observer give roughly
similar results. In Fig. 7, the gyros-bias estimation from both
observers is shown.

2) Attitude Stabilization: For this test, we considered for
simplicity and without loss of generality the special case
of stabilization of attitude. The experiment was done using
the test-bench shown in Fig. 5(a). The controller (41) was
implemented using the following notations and parameters:
Rd(t) = Id , which means bd

1 = r1 and bd
2 = r2;

b̂1 = â(normalized) and b̂2 = m̂(normalized) are the estimates
of the inertial vector measurements given by the accelerometer
and magnetometer, respectively; ωm(t) (rad/s) is the rate-gyro
measurements considered to be the same as the real one ω(t);
ρ1 = 1.66 and ρ2 = 0.1161 (for the axis x and y), and
ρ1z = 0.05 and ρ2z = 0.03 (for the z-axis); the damping
gain k = 0.2621 and the filter gains α1 = 6 and α2 = 10.

The main loop for attitude stabilization is running at
100 Hz. At each sampling time, the measurements of
accelerometer and magnetometer are normalized after the
execution of the observer (32). Due to the poor quality of
magnetometer measurements, the gains corresponding to
the z-axis are chosen small. Therefore, the stabilization is
done around the x and y axes only. Then, starting from
an arbitrary measured initial condition in the Euler angles
(φ, θ, ψ) = (−18.478, 41.192, 2.847)°, the evolution of
normalized inertial measurement vectors, torque, and Euler
angles are shown in Fig. 8. We can see that after transient
time, the normalized measurements vectors a and m
converge to the desired values bd

1 = [0, 0, 1]T and
bd

2 = [0.434,−0.04, 0.899]T . Consequently, according
to the attitude estimate, this corresponds to the roll and pitch
angles close to zero, which confirms the stabilization of the
platform. We can also observe that the control torque is smooth
without noise through the use of the complementary filter.
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Fig. 8. Attitude stabilization experimental results.

VI. CONCLUSION

Due to its importance and despite the considerable number
of solutions, the problem of attitude estimation and control is
still relevant. This brief presents high-order direct and passive
linearlike complementary filters for attitude and gyro-rate
bias estimation. Using the Lyapunov analysis, the proposed
solutions ensure global convergence. Another novelty of this
brief lies in the proposition of the new control law for
sensor-based attitude tracking problem, in which the prin-
ciple of data fusion is used. Only filtered inertial vectors
and rate-gyro measurements were used in the control law,
without using attitude measurements and ensuring an almost
global stability. To show the efficiency and performance of
the proposed solutions, a set of simulation and experimen-
tal tests were performed based on DIY drone Quadcopter,
equipped with APM2.6 autopilot. The passive second-order
filter can be of great help. Indeed, in the future work,
this filter will be used to enhance the low sampling fre-
quency of magnetometer measurements compared with that of
accelerometer.

APPENDIX

PROOF OF LEMMA 1

Showing the thesis amounts to exhibit an example. For
that purpose, consider γ = (Cl

nα
l )1≤l≤n ∈ R

n , where n is
a positive integer, α is a positive real number, and Cl

n is the
binomial coefficient. Then, Pγ (s) = (s + α)n implying that
γ ∈ Hn . It remains to show that γ ∈ Hn . One clearly has
that Pπ(γ ) = (Pγ (s)− Pγ (0))/s, and thus, the roots of Pπ(γ )
are the nonzero roots of (s + α)n − αn . Every root z of the
previous polynomial verifies that ((z/α)+ 1)n = 1, and then,
(z/α)+ 1 = e j (2kπ/n), where j2 = −1 and k = 0, . . . , n − 1.
It yields that Re(z) = α(cos(2kπ/n) − 1), which is negative
only if k 
= 0 and in the latter case z = 0. One deduces that
all the roots of Pπ(γ ) have negative real part, i.e., Pπ(γ ) is
Hurwitz, and thus, γ ∈ Hn .
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