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On the Spatial Resolution of Fault Location

Techniques Based on Full Fault Transients
Shao-yin He, Andrea Cozza, Senior Member, IEEE, Yan-zhao Xie, Senior Member, IEEE

Abstract—This paper discusses the mechanisms enabling spa-
tial resolution in fault location methods based on full transient
signals, as opposed to those only using their early-time portion.
This idea is found in recent travelling-wave methods (TWM) and
those based on electromagnetic time reversal (EMTR). Their
spatial resolution is discussed in terms of the sensitivity of a
system resonances to change in the fault position and their
coherence bandwidth. It is proven that using the entire transient
signal it is possible to bypass the Fourier transform uncertainty
principle, which limits the spatial resolution of time-domain
reflectometry and standard early-time TWM. Super-resolved
fault location is shown to be possible only for resonating systems,
enabling high spatial resolution without relying on wide-band
data. A detailed theoretical analysis for laterals and numerical
results for networks and a three-phase line show that significant
differences can be observed for the spatial resolution associated to
each resonance, most often resulting in a loss of spatial resolution.
The interaction between separate resonant structures, such as
laterals in networks and coupled conductors in three-phase lines
are shown to be main cause of resolution loss.

Index Terms—Fault location, fault transients, spatial resolu-
tion, power grids, correlation methods, characteristic frequencies.

I. INTRODUCTION

T
RAVELLING-WAVE methods (TWM) have been devel-

oped over the years to provide accurate fault location,

by processing fault transient signals, e.g., the voltage vm(t)
recorded by a probe, usually placed at the end of a line, e.g.,

at the busbar of a power transformer, resulting from the initial

fault surge vf (t) propagating away from the fault [1]–[3], as

schematically depicted in Fig. 1. They basically operate as

time-domain reflectometry methods, exploiting the fault surge

signal vf (t) itself to estimate the fault distance [4], e.g., by

measuring the propagation delay between the first observation

of the fault surge and subsequent reflections over the fault. To

do so, TWM need to separate impinging and reflected portions

of the fault transient signal, which may require relatively large

bandwidths, potentially a drawback, but also the reason behind

their good spatial resolution.

Alternative formulations of TWM that dispense with signal

separation were more recently discussed in [5]–[7], where the
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Fig. 1. Single-phase line with shunt fault at a distance L from its probed

end, generating a surge voltage vf (t), giving rise to a voltage wave v+m(t)
impinging on the probe and the recorded voltage transient vm(t).

series of multiple echoes appearing in the full fault transient is

regarded as accurately and uniquely encoding the distance L
from the probe at which the fault occurs, an idea also discussed

in [8]. Decoding the fault position from its transient is based

on the assumption that reference results be available, typically

transients v̂m(t; L̂) that would be generated by faults at an

arbitrary position L̂. The fault position is then estimated, e.g.,

as the one presenting the highest correlation ρ(L̂) between

measured and simulated fault transient signals, which can be

expressed as follows

ρ(L̂) =
(

Am(L)Am(L̂)
)−1

∫

dt vm(t)v̂m(t; L̂) (1)

with Am(L) and Am(L̂) the L2 norms of vm(t) and v̂m(t; L̂),
respectively. A similar approach to fault location is found in

the recent proposal of using ElectroMagnetic Time Reversal

(EMTR), where a fault transient signal is re-injected into

a numerical model of the line, and the fault located by

monitoring where it focuses back with the highest intensity

[9]. As proven in [10], EMTR operates by approximating a

correlation.

Assuming the availability of propagation models for the line

or network (e.g., numerical or theoretical) is clearly a critical

issue and requires a careful assessment of the robustness of

the results to tolerances in the system parameters, such as

termination loads and propagation losses. Empirical evidence

supporting robustness can be found in [5], [9], [11], [12], but

a general analysis is not available in the literature, to the best

of our knowledge.

Parseval theorem allows to recast (1) in terms of Fourier

spectra, now implying that the fault position is found by

identifying its transient spectrum. A similar viewpoint, though

mostly restricted to single lines rather than networks, is

adopted in papers analyzing the characteristic frequencies of

the fault transient [13]–[15], representing the natural resonant
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frequencies of a line where the fault occurs. By estimating

these frequencies it is possible to infer the fault distance, again

assuming an accurate knowledge of the the line characteristics.

Because all these methods rely on an assumed bijective

relationship between a fault’s full transient and its position,

they can be referred to as transient-based methods (TBM).

They have been shown to potentially have a better spatial

resolution than standard TWM, relaxing the need for fast-

sampling devices. Still, it is not clear what mechanisms enable

their higher spatial resolution and how it can be predicted.

Moreover, it is not clear how the sampling rate with which

the transient is recorded affects the spatial resolution.

This paper attempts to bridge this gap by presenting a

theoretical analysis of TBM, first for single lines in Sec. II,

where spatial resolution is explained in terms of the resonant

frequencies of the line and their sensitivity to a fault position.

Results clearly indicate that the spatial resolution is only

limited by the line losses and that TBM present super-resolved

fault location in resonant lines. Sec. III extends these results

to the case of a junction, proving how adding a lateral branch

to the line results most often in a loss of spatial resolution, not

because of increases losses from the lateral, but rather because

of a loss of sensitivity to the fault position, altered by the

lateral’s own resonances. Sec. IV extends these conclusions to

more complex networks, for up to five junctions. Evidence of a

similar cause of loss of spatial resolution is presented in Sec.

V, where electromagnetic coupling between the conductors

in a three-phase line is shown to alter the sensitivity of its

resonances to a phase-to-ground fault.

The results presents in this paper have practical implications

for the design of accurate fault location methods, providing

quantitative tools for estimating how losses and the presence

of coupled resonant structures (e.g., laterals) affect their spa-

tial resolution. Understanding the mechanisms behind super

resolution should result in a more confident prediction of the

accuracy of TBM, and an alternative to the drive towards faster

sampling.

II. FAULTS ALONG A SINGLE-PHASE LINE

This section presents a first-principle analysis of the spatial

resolution of TBM for a simple line. Its main goal is to explain

their high spatial resolution on the basis of parameters such

as the tested bandwidth, the line length and losses. A single-

phase line will be considered, since it allows to derive closed-

form results that clearly identify the relationships existing

between line parameters and TBM performance. Moreover,

single-phase lines have their own practical importance, not

only for low- and medium-voltage distribution systems, but

also for high-voltage underground power transmission, which

could include three-phase lines based on separate coaxial

cables, as well as high-voltage DC transmission lines, e.g.,

used in offshore wind farms and submarine transmission lines

[16, Sec. 5]. All these configurations are based on single or

separate lines that present no electromagnetic coupling. This

last case will rather be discussed in Sec. V for a three-phase

overhead line.

The configuration here studied is depicted in Fig. 1, where

a shunt fault of impedance ZS occurs along a line of charac-

teristic impedance Zo. Assuming ZS ≪ Zo, this configuration

may represent the case of a single line as well that of a

network, with the fault effectively severing the network into

two independent structures, with the probed line terminated

by the fault. The analysis is based on forward and backward

propagating signals, as defined in transmission-line theory [17,

sec. 3.4].

A. Resonance, coherence and spatial resolution

A uniform transmission line of length L is here considered,

schematically represented in Fig. 1, terminated by two loads

with reflection coefficients ΓT and ΓS , e.g., a power trans-

former and a low-impedance shunt fault, respectively. Both

terminations are assumed to be significantly reflective, i.e.,

with |ΓS |, |ΓT | ≃ 1, as discussed in [3]. Sec. II-C will precise

the minimum reflectivity required for TBM to have high spatial

resolution.

The occurrence of a shunt fault excites a travelling voltage

wave vf (t), the fault surge signal, which will propagate away

from the fault and interact with the probe over the transformer,

recording the transient voltage vm(t), after having eventually

travelled multiple times across the line.

Defining v+m(t) the voltage wave impinging on the probe,

transmission-line theory requires that under steady-state con-

ditions the Laplace spectra of these signals must satisfy

V +
m (s) = V +

m (s)ΓTΓSe
−2αLe−sT + Vf (s)e

−αLe−sT/2, (2)

where s = jω is Laplace variable, ω the angular frequency,

with v the propagation speed and α the line attenuation

constant; T = 2L/v is the round-trip time delay along

the line. Recalling that the total voltage at the probe is

Vm(s) = V +
m (s)(1 + ΓT ), it follows that

Vm(s) = Vf (s)(1 + ΓT )e
−αLe−sT/2H(s;L), (3)

where the resonant response of the line

H(s;L) =
(

1− ΓTΓSe
−2αLe−sT

)−1
, (4)

defines the characteristic features of Vm(s); the remaining

terms in (3) can be neglected, since they have no impact on

either the line characteristic frequencies, or the computation of

correlation functions. H(s;L) can be expanded into an infinite

sum of simple fractions by applying the residue method

H(s;L) =
∑

m∈Z\0

rm
s− pm

, (5)

where pm = −1/τ + jωm are the poles of H(s;L), with

τ = −T/(ln(|ΓSΓT |)− 2αL) (6a)

ωm = (2mπ + ϕS + ϕT )/T, (6b)

while p−m = pm are their conjugate poles; rm = 1/T are

their respective residues; ϕS and ϕT are the phase-shift angles

of the reflection coefficients ΓS and ΓT , respectively. For the

sake of simplicity, τ will be assumed to be independent of the

frequency. It is convenient to introduce the loss factor

δΓ = − ln(|ΓSΓT |) + 2αL ≃ 1− |ΓSΓT |+ 2αL, (7)



3

which will be shown to have a fundamental role in the spatial

resolution of TBM.

Grouping pairs of conjugate poles yields

H(s;L) =
2

T

∞
∑

m=1

s+ 1/τ

(s+ 1/τ)2 + ω2
m

=
2

T

∞
∑

m=1

ψ(s; τ, ωm),

(8)

i.e., an infinite set of resonances, each described by a

Lorentzian function ψ(s).
As recalled in Sec. I, the transient signal measured at the

probe and the one estimated for a guessed fault position L̂ are

compared by means of the correlation (1). Transposed in the

frequency domain, this results in

ρ(L̂) =
(

Am(L)Am(L̂)
)−1

∫

dω |Vf (ω)|2H∗(ω;L)H(ω; L̂).

(9)

According to (6) the distance L between the fault and the probe

directly affects the frequencies at which the line resonates, as

well as their decay time. Hence, any difference between L and

L̂ would result in a mismatch between the set of resonances,

and therefore a loss of correlation between the two transfer

functions, indicating that L̂ 6= L.

The resolution power enabled by a single resonance at ωm
can therefore be quantified by evaluating how fast the correla-

tion (9) decays away from the actual fault position. This can be

done in two steps, by first computing the correlation function

µ(ωm, ω̂m) between the responses of the mth resonance at

ωm of the actual fault position L and that at ω̂m for the tested

fault distance L̂,

µ(ωm, ω̂m) =

∫

dt ψ(t;ωm)ψ(t; ω̂m)
/

Aψ(ωm)Aψ(ω̂m),

(10)

where ψ(t;ωm) = e−t/τ cos(ωmt) is the time-domain re-

sponse of a single resonance, whose L2 norm Aψ(ωm) has

A2
ψ(ωm) =

τ

4

(τωm)2

(τωm)2 + 1
≃ τ

4
. (11)

For reflective loads, the lines can be expected to be resonat-

ing, with

ωm, ω̂m ≫ 1/τ (12)

for which (10) can be solved and simplifies into

µ(∆ω) =
1

1 + (∆ω τ/2)2
(13)

with ∆ω = ωm − ω̂m the mismatch between the resonance

angular frequencies for actual and tested fault positions. The

minimum mismatch ∆ω ≥ 2πBc for which µ(∆ω) decays by

at least 50 % is thus found for

Bc =
1

πτ
=
vδΓ

2πL
, (14)

which represents the coherence or resolution bandwidth of

the resonance response. The minimum frequency mismatch

Bc can be converted into a spatial resolution by measuring

the sensitivity S(ωm) with which an error in testing fault

positions L̂ close to L would shift the resonance frequency

f̂m = ω̂m/2π. From (6b),

S(ωm) =
dfm
dL

= −fm
L
, (15)

thus a resonance mismatch ∆ω ≃ 2πS(ωm)∆L. The mini-

mum mismatch distance Dc such that (13) falls off below 50

% is therefore

Dc(ωm) =
Bc

|S(ωm)| =
δΓ

2πfm/v
= λm

δΓ

2π
(16)

representing the spatial resolution afforded by each individual

resonance in TBM. It is worth noticing that the idea of defining

of the spatial resolution based on a resonance sensitivity to

fault position and its frequency resolution can be applied to

any power-distribution system, even when only numerical or

experimental results are available.

The loss factor δΓ, defined in (7), models the impact on

the spatial resolution of both propagation and termination

losses, which have indistinguishable effects. Therefore, only

termination losses will be explicitly discussed in the rest of the

paper, in order to reduce the number of parameters involved,

with no loss of generality in our conclusions. The spatial

resolution in (16) would depend on the fault distance L only

for significant propagation losses, compared to losses in the

line terminations, as discussed in [18]. This paper will not

explore this case, since it focuses on the spatial resolution of

TBM, thus close to the actual fault position.

B. Multi-resonance correlation

When the correlation (9) involves data spanning more than

one resonance, the resolution (16) no longer holds. It is

of practical interest to understand whether in this case the

spatial resolution improves with respect to using narrower

bandwidths.

The fault surge energy spectrum |Vf |2 will be neglected in

the following, assuming either a bandwidth narrow enough for

it to be approximatively flat, or equalization signal processing

applied to vm(t), as suggested in [10]. Under these conditions,

the numerator of (9) is proportional to

∫

dωH⋆(ω;L)H(ω; L̂) =
4

T 2

m2
∑

p,q=m1

∫

dωψ⋆(ω;ωp)ψ(ω; ω̂q)

(17)

i.e., the projection between the resonant responses H(ω) of

the line, included resonances of order [m1,m2].
Adjacent resonances are spaced by a distance ωm+1−ωm =

2π/T , thus the fraction of this spacing occupied by the peak

of the Lorentzian responses is of the order

2πBc/(ωm+1 − ωm) = δΓ/π ≪ 1 (18)

for a resonant line, hence resonances of different order have

a negligible projection. It is therefore possible to approximate

(17) by only looking at the projections between same-order

resonances, yielding a correlation

ρ(∆L) = N−1

m2
∑

p=m1

µ(2πS(ωp)∆L)

= N−1

m2
∑

p=m1

1

1 + (∆L/Dc(ωp))
2

(19)

with the single-resonance correlation µ(∆ω) given in (13) and

N = m2−m1+1 the number of resonances occurring within
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Fig. 2. Expected spatial resolution ρ(∆L) when testing fault positions from
data covering all resonances of order p ∈ [1, m2], with m2 = 1, 5, 25 or 125
(solid lines) predicted by (20), and for a single resonance p = m2 (dashed
lines) predicted by (13). The distance from the fault, ∆L, is normalized to
the spatial resolution expected for the first resonance, with order p = 1.

the tested bandwidth. The L2 norm AH is directly found from

(11), assuming equal decay times τ for the N resonances, with

A2
H ≃ Nτ2/4.

From (6b), for the case of practical interest where ϕT = 0
and ϕS = π1, the p-th order resonance has ωp = (2p− 1)ω1,

thus from (16) and (19)

ρ(∆L) = N−1

m2
∑

p=m1

1

1 + (∆L/Do
c)

2(2p− 1)2
(20)

with Do
c = Dc(ω1) the spatial resolution associated to the

first resonance of the line. Fig. 2 shows ρ(∆L) for m1 = 1
and m2 = 1, 5, 25, 125, where the condition ρ(∆L) = 1/2
is reached for distances about 2.1 times larger than the

corresponding Dc expected for a single resonance at the

high-frequency end, i.e., for p = m2. This systematic and

significant loss of spatial resolution is fundamentally due to the

lower resolution associated to low-frequency resonances, and

explains why including low-frequency data in the computation

of the correlation is not necessarily an optimal choice.

The rest of the paper shows that this issue is more gen-

eral, with resonances that can abruptly loose resolution and

potentially limit the fault location accuracy if included in the

computation of the correlation.

C. Super-resolved fault location

The spatial resolution of each resonance is predicted by (16)

to potentially be a fraction of the wavelength λm, depending

on the value of the loss factor δΓ. The spatial resolution is

enabled by the resonant behavior of the line, and its inherent

sensitivity to a change in fault distance makes TBM, at the

scale of a single resonance, work in a way similar to Fabry-

Pérot interferometers, converting a change in length into a

change in the resonance frequency. This principle is rather

used the other way around in fault location, where the spatial

resolution is limited by the minimum change in tested fault

positions for which the resonant response H(ω) changes

significantly.

1i.e., for a high-impedance transformer at the probe end and a low-
impedance shunt fault, respectively.

Standard TWM and, equivalently, time-domain reflectome-

try methods, are subject to more fundamental limitations in

their spatial resolution, due to the Fourier transform uncer-

tainty principle [19, Sec. 3], which states that for a signal

whose spectrum has a standard deviation σf , its time-domain

standard deviation σt is bounded to be

σt ≥ 1/4πσf , (21)

implying that its time resolution can be improved only by

increasing its frequency bandwidth. Taking the case of a

signal with a flat spectrum over a bandwidth [0, fm], which is

proportional to sinc(2πfmt), its time support can be measured

by the time ∆t required to see its amplitude reduced by a

factor 50 % from its peak value, i.e.,

∆t =
1.89

2πfm
, (22)

which corresponds to a spatial resolution ∆x = v∆t, with v
the propagation speed along the line under test. Comparing it

with (16) finds
Dc

∆x
=

δΓ

1.89
(23)

which is significantly smaller than one for a resonant system,

for which δΓ . 1. Hence, a single resonance using TBM

can afford a better spatial resolution than with pulse-based

methods, such as time-domain reflectometry. Notice how the

fault surge signals used in TWMs do not have flat spectra, and

should therefore be expected to display a significantly lower

spatial resolution than (22).

The possibility of having Dc < ∆x is referred to in

imaging-method literature as super resolution, since it by-

passes the resolution limitation (21). This property was demon-

strated using results derived under two main assumptions: a)

significant resonances, as required by (12), i.e.,

Bc/fm ≪ 2 (24)

and b) separate resonances, which under (18) requires

δΓ ≪ π, (25)

which is the most stringent. Both are verified as soon as δΓ .
1, i.e., significantly smaller than one, but not necessarily neg-

ligible. Considering only termination losses in an impedance

Z , this condition requires that Z/Zo . 1/2, or Z/Zo & 2.

Moreover, (7) implies that δΓ . 1 only if propagation losses

are low enough, with 2αL . 1. Given that propagation losses

significantly increase with the frequency, TBM can present

super resolution most likely below the MHz range. Results of

TBM applied to lossy lines are found in the EMTR literature

[11], [12] and in [18], where the reported location accuracy is

consistent with the super-resolution property.

D. Simulation results

Numerical simulations were run using EMTP-RV, for a

single-phase lossless overhead line consisting of a conductor

10 mm in diameter, 7.5 m above a lossless ground, corre-

sponding to per-unit-length parameters L = 1.6 mH/km and

C = 6.95 nF/km and a characteristic impedance Zc = 480 Ω.
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Fig. 3. Resonant response H(ω, L̂) between the fault and the probe for a line of length L = 6 km, as a function of frequency and the distance between the

tested and actual fault positions, L̂− L. Dashed lines track the resonance frequency predicted by (6b).
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Fig. 4. Correlation functions for the transfer functions in a line with a fault
6 km from the probe, for three choices of test bandwidths, covering either a
single or multiple resonances, shown in Fig. 3. The spatial resolution of each
configuration is reported in the legend.

The fault impedance was set to ZS = 10 Ω [20] and the trans-

former termination to ZT = 100 kΩ [3], [21] corresponding

to reflectivities ΓS = −0.96 and ΓT = 0.99. All parameters

are considered to be frequency independent for the sake of

simplicity.

The transfer function between the fault surge Vf (ω) and the

measured voltage Vm(ω) at the line terminal were computed

for a fault 6 km away from the probe. Test positions around the

actual fault were also considered, spanning |∆L| ≤ 1 km on

both sides. The results were obtained for frequencies up to 1

MHz, in 10 Hz steps. Fig. 3 shows how resonances shift when

testing different fault positions L̂. Their spatial resolutions Dc

where estimated as explained in the Appendix and found to

be accurate to within ±1% of the values predicted by (16).

The correlation between the transfer function for the actual

fault position and those at each tested position L̂ were com-

puted for three different bandwidths, in order to verify the

effect of using data covering a varying number of resonances.

A continuous bandwidth from 10 to 105 kHz, covering four

resonances from A© to D© (cf. Fig. 3) is used as a reference

against which single-frequency results at compared: a) for

resonance B© at 37.4 kHz, testing the bandwidth 25-50 kHz

and resonance D© at 87.3 kHz, over the bandwidth 75-105

kHz. The results shown in Fig. 4 support the conclusions

given in Sec. II-B, with resonance D© presenting a resolution of

26 m, about half of the one obtained including low-frequency

a

Lf

Lb

Lo

ba
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bb

bbf

b
GS
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TG

eG fG

bG

probed
line

fault

la
te

ra
l
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transformer

transformer

v tm ( )

Fig. 5. Equivalent description of a single-phase network where the fault
occurs after a junction with a lateral branch.

data, for 10-105 kHz, equal to 56 m, in agreement with the

prediction of a resolution loss by a factor 2.1 predicted in

Sec. II-B. Resonance B© offers practically the same resolution

with 49 m, while requiring data acquired at half the maximum

frequency.

III. IMPACT OF A LATERAL BRANCH

The previous section has shown how the spatial resolution

can be predicted by tracking the sensitivity and coherence

bandwidth of each system resonance. That analysis is here

extended to the configuration in Fig. 5, where fault transient

signals have to cross a junction with a lateral branch before

reaching the probe.

The introduction of a lateral could be expected to introduce

a significant increase in losses, with the transient now inter-

acting with the termination impedance of the lateral branch

and being attenuated along it. Higher losses could then be

expected to result in a loss of spatial resolution of TBMs. The

results shown in this section disprove this interpretation, since

a lateral branch does not necessarily lead to higher losses.

A potential loss of spatial resolution is indeed demonstrated,

even in case of very weak losses, but is rather explained by

a counterintuitive loss of sensitivity of the system resonances

to a change in the tested fault position.

In spite of the apparent simplicity of this network, the

introduction of a single lateral branch will be shown to

introduce a high degree of variability in the sensitivity and

frequency resolution of the resonances observed along the



6

probed line, phenomena predicted and explained by the pro-

posed theoretical derivation.

From the viewpoint of the probe monitoring a power net-

work, the only difference between the structures in Figs. 1 and

5 is that the fault, with reflectivity ΓS , along the probed line

is now substituted by an equivalent reflection coefficient Γe,
representing the rest of the network at the right of the junction.

The probed line has a length Lo and the fault is found at a

total distance Lo + Lf from the probe. The lateral branch, of

length Lb, is terminated by the same load ZT found at the

probed end, modeling a transformer.

A. Equivalent termination and effective lengths

The equivalent reflection coefficient Γe(ω) can be derived

by establishing a set of equations involving the forward and

backward voltage waves along each branch of the junction, as

defined in Fig. 5

af = Γfbf = ΓSe
jϕf bf

ab = Γbbb = ΓT e
jϕbbb

(b, bf , bb)
T = SJ(a, af , ab)

T

(26)

where SJ = 2/3− 1, is the scattering matrix of a three-way

junction [17, Sec. 4.7], with 1 the identity matrix and

ϕf =− 2βLf

ϕb =− 2βLb
(27)

the round-trip propagation phase shifts along the fault and

lateral branches, respectively, with β = ω/v the propagation

constant. Propagation losses along each branch would reduce

the reflection coefficients of their respective terminations,

requiring to substitute ΓS  ΓS exp(−2αLf ) for the branch

where the fault occurs, and similarly for the lateral. In the

following, because they are fundamentally equivalent to using

a different reflection coefficient, we do not explicitly discuss

propagation losses, in order to limit the number of parameters

in the analysis, with no loss of generality.

The equivalent reflection coefficient is obtained as Γe(ω) =
b(ω)/a(ω) by solving (26), yielding

Γe(ω) =
−1 + Γb(ω) + Γf (ω) + 3Γb(ω)Γf (ω)

3 + Γb(ω) + Γf (ω)− Γb(ω)Γf (ω)
. (28)

From (28) it is possible to straightforwardly verify how much

change in the loss factor should be expected by adding a

lateral. For the case of two branches with low input impedance,

e.g., with Γf = Γb = −0.9, the reflectivity seen from the

junction would actually increase to Γe = −0.95, while for two

high-impedance branches, e.g., with reflectivities equal to 0.9,

then Γe = 0.81, i.e., a lower reflectivity. The loss factor would

thus pass from 0.1 to 0.05 for the first case, while the second

would see it pass from 0.1 to 0.19. In both cases the conditions

required for super-resolved fault location in Sec. II-C would

still hold and would not lead to expect a significant loss in the

spatial resolution. This section will prove that a lateral branch

may result in a loss of spatial resolution not because of higher

losses, but rather because of a reduction in the sensitivity of

the system resonances to a change in the tested fault position.
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Fig. 6. Equivalent reflection coefficient Γe for a junction between two
laterals, terminated by loads of reflectivity ΓT = 0.99 (transformer) and
ΓS = −0.96 (shunt fault). (a) phase perturbation δ = ∂δϕe/∂ϕf , introduced
in (30) to explain change in the resonance sensitivity; (b) additional loss term
ln |ΓS/Γe|, introduced in (34). The dark red regions in (b) indicate higher
losses, with |Γe| ≪ |ΓS |, consistently with (35).

The resonance frequencies of the probed line are still

described by (6b), by replacing the fault coefficient ΓS with

Γe. It is convenient to expand the phase-shift angle ϕe of Γe
as ϕe = ϕf + ϕS + δϕe, in order to identify the apparent

change in phase-shift angle δϕe properly due to the junction,

as opposed to the phase-shift angle expected in case no lateral

branch were present.

The definition of resonance sensitivity (15) can be applied

to the present case, with respect to the fault distance Lf ,

S′(ωm) =
dfm
dLf

= −fm
Le
, (29)

leading to the definition of the effective distance Le(ω) by

analogy with (15). From (6b) and (29)

Le(ω) = (Lo + Lf)

(

1 +
∂δϕe
∂ϕf

)−1

, (30)

showing that the term ∂δϕe/∂ϕf measures how the lateral

branch alters the sensitivity of a resonance to the fault position.

Evaluating Γe in (28) for ΓT = 0.99 and ΓS = −0.96 as for

the single-line in Sec. II-D, Fig. 6(a) shows how ∂δϕe/∂ϕf
evolves as a function of the fault and lateral branch phase-

shift angles (27), with the large central region of values close

to -1 corresponding to an apparent distance Le ≫ Lo + Lf ,

with Le → ∞ for ϕb → −π. Fig. 7(a) represents the loss of

sensitivity of with respect to the case with no lateral, i.e.,

S/S′ = Le/(Lo + Lf ). (31)

Positive values of ∂δϕe/∂ϕf are also observed for two small

drop-shaped regions in Fig. 6(a), for which (30) rather pre-

dicts an increased sensitivity. Evidence of these two opposite

phenomena is presented in Sec. III-B.

Updating the original definition (14) of the coherence

bandwidth first requires to acknowledge that the probe-fault

distance there appearing represented the propagation delay T
in (6a) and the loss factor (7). A distinct apparent distance

L′
e is therefore introduced, modeling changes in the apparent

propagation delay, rather than the resonance sensitivity. As

proven below, L′
e 6= Le in presence of a lateral branch.

For a fault along a single line at a distance Lf , a propagation

phase shift ϕf = −2βLf would follow. When a junction is
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Fig. 7. Impact of a lateral branch with termination reflectivity ΓT = 0.99
on the location of a fault with reflectivity ΓS = −0.96. (a) sensitivity loss
Le/(Lo +Lf ), defined in (31) and (b) spatial resolution gain Dc/D′

c , with
respect to the case where no junction is present.

present ϕe replaces ϕf , and a similar expression of the phase

shift can be sought, writing ϕe = −2βδL′
e + ϕ′

e. Here δL′
e

is the apparent distance between the junction and the fault,

explaining the overall propagation phase shift, while ϕ′
e is the

portion of ϕe not explained by a propagation delay.

The apparent distance δL′
e is therefore given by

δL′
e(ω) = −v

2

∂ϕe
∂ω

= −v
2

∂(ϕf + δϕe)

∂ω
= Lf −

v

2

∂δϕe
∂ω

,

(32)

with an overall apparent distance from the probe

L′
e(ω) = Lo + δL′

e = Lo + Lf

(

1 +
∂δϕe
∂ϕf

)

. (33)

The importance of defining two effective lengths can be

appreciated for the cases when the lateral branch presents

a low input impedance to the junction, potentially shunting

the fault line. Fig. 6(a) shows this case for ϕb = −π, with

∂δϕe/∂ϕf → −1. In this case, a change in the tested fault

position would have little effect on Γe, reducing sensitivity of

the resonances observed along the probed line, consistent with

Le ≫ Lo + Lf predicted by (30). With the lateral shunting

the fault branch, transients recorded by the probe would decay

with a time constant dictated by Lo, consistent with (33)

predicting L′
e → Lo.

The effective loss factor2 for the probed line terminated by

a junction is obtained from (7) by also substituting ΓS with

Γe, thus

δΓ′ = − ln(|ΓeΓT |) + 2αLo = δΓ + ln(|ΓS/Γe|)− 2αLf ,
(34)

with δΓ the dissipation factor expected without the lateral

branch, as given in (7).

Eq. (34) predicts an incremental loss ln(|ΓS/Γe|). This term

is shown in Fig. 6(b), where it appears that the lateral branch

is more likely to lead to lower termination losses from the

probe viewpoint, indicated by the blue region. This result is

explained by the fact that |ΓT | > |ΓS |, so that the lateral

branch can enforce a higher reflectivity at the junction when

it partially shunts the faulty branch. In this case, the frequency

resolution of the system resonances, measured by Bc, would

appear to be improving.

2measuring the apparent dissipation of the system as seen from the probe

The opposite phenomenon occurs in the red regions, where

the equivalent reflectivity at the junction becomes lower than

that of the fault branch, indicating higher losses. This behavior

is maximal in the dark red regions, with a significantly

lower reflectivity at the junction that could be interpreted as

an increase in power dissipation, even with both branches

terminated by reflective loads. This outcome, which Fig. 6(b)

shows to have low probability, is not explained by a potential

joint dissipation from both lateral and fault branches, but

is rather the result of destructive interference from reflected

waves ab and af , as defined in Fig. 5.

Indeed, (28) even admits |Γe| = 0, i.e., a perfectly matched

probed line at the junction end, corresponding to an apparent

total dissipation, for

Γb =
1− Γf
1 + 3Γf

, (35)

corresponding to a single point within the dark red regions

of Fig. 6(b). The possibility of observing |Γe| ≃ 0 amounts

to a risk of missing the presence of the fault at certain

frequencies, since the probed line could no longer sustain a

resonance in this case. Sec. III-B presents direct evidence of

this counterintuitive phenomenon.

From (7), (14), (33) and (34), the coherence bandwidth

updates to

B′
c(ωm) =

vδΓ′

2πL′
e

= v
− ln(|ΓeΓT |) + 2αLo

2πL′
e

, (36)

which, together with (29), leads to a spatial resolution

D′
c(ωm) =

vδΓ′

2πL′
e

Le
fm

= λm
δΓ′

2π

Lo + Lf
(1 + δ) (Lo + Lf(1 + δ))

,

(37)

where δ = ∂δϕe/∂ϕf . This result converges back to (16) as

soon as δ → 0. In any other case, D′
c is no longer independent

from the fault position, as was the case in (16) for a single

line, as indeed observed in Sec. III-B.

The impact of the lateral branch on the accuracy of fault

location is quantified in Fig. 7(b), in terms of the resolution

gain Dc/D
′
c: a value larger than one would mean that the

spatial resolution D′
c, in presence of the lateral branch, is

0.01 0.03 0.1 0.3 1   3   10  
0

0.2

0.4

0.6

0.8

1

Fig. 8. Cumulative distribution function of the resolution gain Dc/D′

c , ob-
tained for several choices of line termination and fault reflection coefficients.
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Fig. 9. Resonant response for the single-junction network in Fig. 5, with Lo = 4 km, Lf = 2 km and Lb = 3 km, as a function of frequency and tested
fault position. Dashed black lines track the resonance frequencies predicted by (6b) when no lateral branch is present, while red dash-dot lines show those
expected when the lateral branch shunts the fault branch, e.g., it has a much lower input impedance.

better (i.e., with a smaller support). In most cases D′
c > Dc

(blue region), with the lateral branch degrading the spatial

resolution, by reducing the sensitivity of the system resonances

(cf. Fig. 7(a)), without a corresponding increase in dissipation

(cf. Fig. 6(b)). Yet, Fig. 7(b) also predicts the existence of

smaller regions where the junction could have a beneficial

impact, improving the spatial resolution (darker red regions).

Fig. 8 summarises these results by means of the cumulative

probability distribution (cdf) of the values taken by the reso-

lution gain Dc/D
′
c, for several choices of line termination and

fault reflectivities. A spatial resolution improved by a factor

Dc/D
′
c > 2 is found only 3 % of the time in all the cases

considered, whereas the risk of seeing it degraded by a factor

larger than two passes is between 33 % and 51 %, indicating a

significant risk of resolution loss with respect to the single-line

case.

It can be remarked how a higher probability of resolution

loss is not systematically observed for more dissipative termi-

nations, with very similar results obtained for a very weakly

dissipative configuration (|ΓS | = 0.999, |ΓT | = 0.999) and a

significantly more dissipative one (|ΓS| = 0.95, |ΓT | = 0.9).

These results support the thesis that resolution is mostly lost

due to a reduction in the sensitivity of the resonances caused

by the lateral branch.

Coherently with these observations, the effective distance

Le can be shown to be a good estimator of the spatial

resolution loss, as soon as Le ≫ Lo+Lf , i.e., when the lateral

is partially shunting the fault branch. In this case, |Γe| ≃ |ΓT |,
for which (36) converges to

B∞
c =

vδΓ′′

2πLo
(38)

with δΓ′′ = − ln(|ΓT |2) + 2αLo. Hence, (37) simplifies into

D∞
c ≃ λm

δΓ′′

2π

Le
Lo
. (39)

Therefore, resonances sharing the same Le present a spatial

resolution improving with the frequency, as found for a single

line in (16), but worsening for higher values of Le. Hence,

estimating Le from the sensitivity of a resonance to the fault

position would help to identify resonances with poor spatial

resolution that might better be filtered out when processing

fault transient spectra.

B. Numerical results

EMTP-RV numerical simulations were run for the network

in Fig. 5, for Lo = 4 km, Lf = 2 km and Lb = 3 km, for a

maximum frequency of 1 MHz, with the same line parameters

used in Sec. II-D for a single line, using terminations with

reflectivities ΓS = −0.96 for the shunt fault and ΓT = 0.99
for the transformers. The fault is found at the same distance

from the probe in both cases, with the only difference being

the introduction of the lateral branch. The main advantage of

this choice of analysis is that any change in the behavior of

the system and the fault location accuracy can be traced back

to the introduction of the lateral. As discussed in Sec. III-A,

propagation losses can be considered by simply reducing the

modulus of the reflection coefficients ΓS and ΓT chosen for

the terminations of the faulty and lateral branches, with no

approximation in the results.

Fig. 9 tracks the resonances of the transfer functions be-

tween fault and probe, for tested fault positions close to the

actual one. Theoretical results for the case without lateral

branch, first shown in Fig. 3, are reported for comparison

(black dashed lines), highlighting the perturbation introduced

by the lateral branch. When the system resonances occur close

to those of the lateral (red dashed lines), they are hardly

sensitive to the fault position, e.g., B© and H©, indicating that

the lateral is partially shunting the fault branch. The resonance

E© can be seen to practically vanish at the fault position,

corresponding to the destructive-interference condition (35).

The effective length Le and frequency resolutionB′
c of each

resonance for the actual fault position were estimated as

described in the Appendix. Fig. 10 shows their wide range

of variation and their apparent random behavior. The effective

length Le, measuring the sensitivity of each resonance to

change in the tested fault position, appears to be potentially

much larger than the actual probe-fault distance. The fre-

quency resolution B′
c is shown to mostly swing between B∞

c

and Bc. These two values correspond to the extreme cases

where either the lateral branch or the faulty branch control

the equivalent termination impedance at the junction, with one

of them presenting a significantly lower impedance than the

other. Higher losses are also found in Fig. 10, e.g., for the first

resonance, with a larger B′
c. This configuration corresponds to

the light red regions in Fig. 6(b).

Fig. 10 also reports theoretical results predicted by (30),
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Fig. 10. Effective fault distance Le (a) and coherence bandwidth B′

c (b) for
the single-junction network in Fig. 5, estimated from the models introduced
in Sec. III-A based on two distinct effective lengths, here validated by results
estimated from EMTP-RV simulations, as explained in the Appendix.
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Fig. 11. Correlation functions for the transfer functions of the single-junction
network in Fig. 5, obtained from EMTP-RV results covering only a single
resonance at the time (cf. 9). The resolution gain Dc/D′

c predicted for each
resonance is shown in the legend.

(33) and (36), confirming the accuracy of the model proposed

in Sec. III-A to explain the impact of a lateral branch. The

importance of defining two distinct effective lengths is thus

confirmed: using Le instead of L′
e to estimate B′

c would lead to

significant errors. Furthermore, the pivotal role of ∂δϕe/∂ϕf
is confirmed, explaining the change in the both sensitivity to

fault location and frequency resolution of the resonances.

The practical impact of the changes in the behavior of the

system resonances can be better appreciated in Fig. 11, which

shows the correlation (9) between the transfer functions for

the actual and tested fault positions, computed over band-

widths covering a single resonance at the time, in order to

highlight differences in their individual spatial resolutions. The

gain in spatial resolution Dc/D
′
c of each resonance, defined

with respect to the single-line theory, is also reported there.
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Fig. 12. The five-junction network considered in Sec. IV, based on single-
phase lines. Each node is at a distance of 1 km and the nominal fault positions
are tagged P1 to P6. The probe is marked by the tag 0. Each lateral branch
is terminated by a load with reflectivity ΓT = 0.99, while the fault has a
reflectivity ΓS = −0.96.

Resonances A© and B© have practically identical correlation

functions, although B©’s occurring at a higher frequency would

be expected to afford a higher resolution: a resolution gain

about 0.61 is found instead. A similar phenomenon is observed

for resonance H©. Marginal resolution improvements, smaller

than 5 %, are also reported for A© and F©. These results confirm

the significant and seemingly random loss of resolution power

that can be experienced in case a junction is present.

IV. SPATIAL RESOLUTION IN NETWORKS

Since Sec. III takes as vantage point the probe, it can be

readily applied to more complex networks. While closed-form

results of Le and L′
e as functions of the fault distance are

no longer valid, the general behavior of spatial resolution in

presence of a complex network can be expected to undergo

the same phenomena pointed out in Sec. III-B, in particular

the significant risk of resolution loss, caused by a loss of sen-

sitivity of the system resonances to the tested fault positions,

rather than increased losses from added lateral branches.

In order to prove this point, the five-junction network in

Fig. 12 was simulated using EMTP-RV, from DC up to 1 MHz,

considering the same line parameters used with the single-line

and single-junction configurations, using terminations with

reflectivities ΓS = −0.96 for the shunt fault and ΓT = 0.99
for the transformers at the end of each lateral branch. The

probe is at the end of a line, marked by the tag 0 and six fault

positions were considered, marked as P1 to P6, distributed

at a distance ranging from 6 to 17 km from the probe. The

rationale being to understand whether an increasing number of

junctions between probe and fault leads to major differences

with respect to the case of a single junction. Given that the

shunt fault would practically severe the network into two parts,

depending on the fault position only a few junctions will

affect the transient, e.g., a fault in P1 would see five junctions

interacting with the fault transient, while a fault in P4 would

have only three. As in previous simulations, for each fault

position, other tested positions were simulated around each

fault, constituting the dictionary used by correlation methods

(and in general by TBM) to locate a fault.
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Fig. 13. Effective fault distance Le (a) and coherence bandwidth B′

c (b)
for a fault at position P5 in the network in Fig. 12. Results estimated from
EMTP-RV simulations, as explained in the Appendix.

The effective length Le and frequency resolution B′
c were

estimated from the simulation results, as described in the

Appendix. Fig. 13 shows results obtained for a fault at the

position P5, confirming that even with five junctions involved,

the frequency resolution is not systematically degraded, as

would be expected for increased dissipation along the larger

number of branches. Rather, the range of variation of B′
c

closely agree with that observed and predicted in Sec. III for a

single junction. Cases of higher apparent losses are observed

just for a minority of the resonances, with B′
c attaining 160 Hz,

instead of the 133 Hz predicted if no junction were present.

Also similar to the case of a single junction, the sensitivity of

the system resonance can be strongly reduced, as witnessed

by the large values of Le, often exceeding hundreds of km.

These results were further processed, in order to test the

validity of the asymptotic model (39), which relates the spatial

resolution D′
c of a resonance to its effective length and

sensitivity. Fig. 14 presents the results obtained for a fault at

P5. First, it confirms the inverse dependence existing between

the spatial resolution D′
c and the frequency of resonance, as

predicted by the single-line theory (16), for values of Le not

much larger than the direct fault-probe distance, here equal to

16 km. This agreement implies that at these frequencies lateral

branches present a high input impedance at their associated

junctions, and therefore have a negligible impact on the spatial

resolution. But as soon as Le ≫ 16 km, (39) predicts a loss of

resolution proportional to Le, consistent with the numerical re-

sults, which are divided into three sets of resonances covering

different ranges of values of Le. The shaded areas in Fig.14

indicate the regions of spatial resolution predicted by (39).

These results confirm that a large ratio between the effective

length Le and the direct probe-fault distance would indicate

a risk of significant resolution loss. Le can be estimated from
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Fig. 14. Spatial resolution D′

c of each resonance obtained from EMTP-RV
results for a fault at the position P5 for the configuration in Fig. 12, as a
function of frequency. Data are sorted according to their effective length Le.
Theoretical results (red dashed line) were computed for a single-line 16 km
long, i.e., with no lateral branches.
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Fig. 15. Empirical cdf distribution of the resolution gain Dc/D′

c for the
network in Fig. 12, computed from EMTP-RV simulations, for six fault
positions, P1 to P6. The dashed line is the theoretical cdf shown in Fig.
8 for a single-junction network, for the same choice of ΓS and ΓT .

the reference data required by TBM for different test fault

positions, without further simulations.

Noting Dc the spatial resolution expected from the single-

line theory (16), i.e., neglecting lateral branches, the resolution

gain Dc/D
′
c was finally computed, in order to assess whether

it depends on the number of junctions and laterals. The cdfs

of Dc/D
′
c obtained for the six fault positions P1 to P6 are

shown in Fig. 15. These results present very similar features,

suggesting that the number of junctions have a minor impact

on the variability of the spatial resolution. Interestingly, the

first distribution shown in Fig. 8 for the single-line theory,

corresponding to the same terminations used in the network in

Fig. 12, closely reproduces the main features of the cdfs. These

results confirm that the models derived in Sections II and III

apply also to complex networks, and that a sizeable fraction

of their resonances present a significant loss of resolution.

Moreover, these results confirm that the main mechanism
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Fig. 16. The three-phase line of length LT simulated with EMTP-RV, with
each phase terminated by identical loads with reflectivity ΓT = 0.99, and a
phase-to-ground fault of reflectivity ΓS = −0.96 at a distance L along phase
c. Fault-probe transfer functions were computed for each phase, marked a to
c.

behind resolution loss is the reduction of sensitivity to the

tested fault position, studied in detail in Sec. III. Hence, the

network topology has little impact on the statistical behavior

of spatial resolution, which is rather explained by phenomena

occurring at the level of a single junction, with negligible

cumulative effects.

V. PHASE-TO-GROUND FAULT IN A THREE-PHASE

OVERHEAD LINE

A case of practical importance for power transmission is

represented by three-phase overhead lines. Shunt faults can

take a number of different configurations, by appearing across

phases as well as toward the ground [20], thus making a direct

extension of the theory proposed in Sec. II difficult.

This section will focus on the case of a phase-to-ground

fault, involving a single phase, as depicted in Fig. 16 , which

is the most likely shunt fault configuration [20, Sec. 3]. For this

case, the phase along which the fault occurs can be regarded

as an extension of the single-line configuration studied in

Sec. II, with the two remaining phases coupling to it. This

configuration thus bears a similarity with those of a single

line perturbed by lateral branches: here the perturbation would

rather be introduced by electromagnetic coupling between

multiple conductors. Clearly, in this case it is no longer

possible to assume that a shunt fault cuts a line into two

separate parts, since aerial and ground modes supported by

three-phase lines involve several conductors. The ability of

TBM to identify along what phase the fault occurred will not

be discussed, since it has already been investigated in EMTR

literature [9].

EMTP-RV simulations were setup using a constant-

parameter description based on the line cross-section described

in Fig. 17, for a soil conductivity of 10 mS/m, with per-unit-

length inductance and capacitance matrices

L =





1.76 0.83 0.86
0.83 1.76 0.83
0.86 0.83 1.76



mH/km

C =





9.41 −2.66 −3.05
−2.66 9.10 −2.66
−3.05 −2.66 9.41



nF/km

(40)

a

b

c

1
5
 m

0
.9

 m

0.8 m

homogeneous soil

~~

Fig. 17. Cross section of the three-phase overhead line. All conductors have
a diameter equal to 18.4 mm.

and a 2 Ω/km per-unit-length resistance for all three conduc-

tors. Conduction losses were explicitly included this time, for

reasons that will be clarified later. Propagation speeds were

found to be equal to 2.99× 108 m/s for the aerial modes and

2.82× 108 m/s for the ground mode. The line parameters for

the single-phase line involving only phase c, where the fault

occurs, were also computed, finding propagation losses with

α = 2.38× 10−6 m−1 and a 480 Ω characteristic impedance.

Transfer functions between the fault and the voltages at the

left-end of each conductor were computed with EMTP-RV for

a line of length LT = 10 km and a fault at distance L = 6 km.

Fig. 18 shows the transfer functions between the fault and the

left end of phase c. Three sets of resonances are superimposed,

expected for single-phase lines: a) a 6 km long, relating to

the portion of phase c at the left of the fault (black dashed

lines), b) a 4 km long for the portion at the right of the fault

(blue dashed lines) and c) a 10 km line based on phase a,

or equivalently b (red dashed lines). These results are used

as references helping to interpret the resonances of the faulty

three-phase line. Clearly, it is not suggested that the three-

phase line will feature identical resonances: these single-phase

results are meant to approximatively identify distinct sources

of resonant responses. These resonances were computed from

(6b) using propagation speeds for aerial modes for the 10 km

line and that for the ground mode for the two lines involving

the phase-to-ground fault.

Results in Fig. 18 lead to several conclusions. First, reso-

nances expected if only phase c were present (black dashed

lines) accurately represent the resonances of the three-phase

line, as long as resonances for the other two sets are not

overlap, as for resonances A© and B©. Conversely, C© and D©,

as well as H© and I©, are the result of the interaction with

resonances with for a 10 km single-phase line (red dashed

lines), leading to their splitting along a steeper trajectory,

i.e., less sensitive. This phenomenon was already highlighted

for a single-junction configuration, and identified as the main

mechanism of loss of sensitivity to the fault position. Similarly,

resonances for the 4 km portion of phase c (blue dashed lines)

lead G©, I© and L© to bend toward them, again with a clear

loss of sensitivity at the fault position.

The transfer functions were then processed as explained

in the Appendix in order to extract the effective length and

spatial resolution of each resonance. These are shown in

Fig. 19 for phase c, where it can be seen that the coupling

between the three phases results into effective lengths that

can be significantly larger than the actual fault distance L = 6
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Fig. 18. Resonant response for the three-phase line in Fig. 16 observed from the left end of phase c, for LT = 10 km and L = 6 km, as a function of
frequency and tested fault position. Dashed lines track the resonance frequencies predicted by (6b) for a single-phase line considering only phase c: a) for
the 6 km portion at the left of the fault (black) and b) the 4 km line at its right (blue). Dash-dotted red lines represent the resonance frequencies expected for
a 10 km single-phase line, as for phase a, with no fault.
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Fig. 19. Effective length (a) and frequency resolution B′

c (b) estimated from
simulations of the three-phase line described in Fig. 16, for a probe on phase
c.

km, denoting a loss in sensitivity. The frequency resolution is

also affected, but mostly improves with respect to the value

of Bc = 460 Hz found for the reference single line only

involving the portion of phase c at the left of the fault. Hence,

also in this case, coupling with the other conductors does

not result in equivalent higher losses, which would otherwise

systematically result in B′
c > Bc.

The gain in spatial resolution with respect to a single line is

shown in Fig. 20 and are similar to those reported in Figs. 10

and 13 for one or more lateral branches, apart for a higher

statistical dispersion towards values smaller than one. No

significant difference was found between the results obtained

for the three phases, of which two are reported in Fig. 20.

The similarity between these results and those for laterals is

not entirely surprising, given the above observations about the

loss of sensitivity caused by the interaction between separate

resonances.

Propagation losses were explicitly included in this case in

order to highlight the role of the portion of line at the right of
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0
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Fig. 20. Empirical cdf of the spatial resolution gain Dc/D′

c for the three-
phase line in Fig. 16. Results for probes on phase a and c, computed for a
length LT = 10 and 20 km.

the fault. When doubling the length of the line to LT = 20 km,

the main difference in the results is an increase in the effective

length in Fig. 19 and in the spatial resolution loss, in Fig. 20.

These effects can be interpreted by noticing how the portion

of line after the fault presents resonances of its own, coupled

(and thus interfering) with those of the probed left portion.

When increasing LT , propagation losses increase only in the

right portion. Their impact can be estimated by computing the

loss factor (7) derived for a single line, including propagation

losses, which passes from 0.062 for LT = 10 km, to 0.109
for LT = 20 km, for which the spatial resolution would thus

be expected to worsen by a factor 0.109/0.062 ≃ 1.76. This

factor closely matches the average ratio between results in Fig.

20 for a 10 and 20 km lines.

It can be concluded that electromagnetic coupling to other

conductors leads to a loss of spatial resolution similar to that

observed from laterals, explained by a loss of sensitivity to the

fault position. The main difference is given by the coupling

to the portion of line at the right of the fault, which may

increase overall losses, thus affecting the spatial resolution

of TBM. It is worth noticing how these conclusions do not

necessarily apply to other fault configurations, where more

than one conductor would be shunted, potentially resulting in

reduced interactions between the pre- and post-fault portions

of the line. This would also modify propagation losses, which
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strongly depend on the relative excitation of aerial and ground

modes.

VI. CONCLUSION

The spatial resolution of fault-location methods using

transient-based methods (TBM) was discussed, explaining the

mechanisms behind their potentially super-resolved location,

for the case of a single-phase line. The spatial resolution was

proven to improve with the degree of resonance of the line,

identifying losses as the main parameter controlling spatial

resolution of each resonance.

Changes in these results when adding lateral branches were

then studied, first theoretically for a single-junction configura-

tion, demonstrating that spatial resolution is degraded because

of a loss of sensitivity of the system resonances with respect to

the fault position, and not because of higher dissipation, which

would have led to a systematic degradation of the frequency

resolution. In fact, the latter was rather shown to decrease in

a large majority of the resonances. Similar results were found

when the number of junctions increases, as well as for a three-

phase line, with no evidence of a systematic degradation in the

frequency resolution, while a clear loss of sensitivity to the

fault position was observed. This phenomenon was shown to

occur at frequencies where separate parts of a network or a line

would have presented resonances of their own: e.g., fault and

lateral branches, or the different conductors of a three-phase

line.

Given that the paper highlights that resonance sensitivity

to a fault position is a fundamental location mechanism in

TBM, this issue should be closely monitored when designing

TBM. Numerical simulations are therefore not only necessary

to generate reference transients for TBM, but also in design

phases in order to estimate their effective location accuracy

and potentially filter out resonances that present lower spatial

resolution and could thus hamper the overall spatial resolution.

APPENDIX

EXTRACTION OF RESONANCE PARAMETERS

The parameters ωm and τm of a resonance can be estimated

from the modulus of its frequency response ψ(ω;ωm, τm) by

first identifying the angular frequency ωo where it reaches its

peak, for which

ω2
o = ω2

m − 1/τ2m. (41)

The frequency ωα at which |ψ(ωα)/ψ(ωo)| = α2, with α < 1,

can then be used in order to define a second equation in the

two unknown parameters, starting from (8). Applying (41) in

this second condition and rearranging it yields

ω2
α = ω2

o + 2(β/τm)
√

ω2
o + 1/τ2m, (42)

with β =
√
1− α2/α, from which

τ2m =
(

ω2
o +

√

ω4
o + 2a

)

/a, (43)

where a = (ω2
α − ω2

o)
2/2β2. The coherence bandwidth Bc of

the resonant response is then obtained from (14).

The sensitivity S(ωm) of a resonance to the fault position

is found as in (15), approximated by a numerical derivative

that requires running simulations not only at the actual fault

position L, but also L ± δx, where δx ≪ L. The effective

length is then given by Le = ωm/2πS(ω), following its

definition in (29), while the spatial resolution is found as

Dc(ωm) = Bc/S(ωm).
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