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Abstract—Modern automotive embedded software is mostly
designed using model-based design tools such as Simulink or
SCADE, and source code is generated automatically from the
models. Formal proof using symbolic model checking has been
integrated in these tools and can provide a higher assurance
by proving safety-critical properties. Our experience shows that
proving properties involving time is rather challenging when they
involve long durations and timers. These properties are generally
not inductive and even advanced techniques such as PDR/IC3 are
unable to handle them on production models in reasonable time.

In this paper, we first present our industrial use case and
comment on the results obtained with the existing model check-
ers. Then we present our invariant generator and methodology
for selecting invariants according to physical dimensions. They
enable the proof of properties with long-running timers. Finally,
we discuss their implementation and benchmarks.

Index Terms—Software verification · Formal methods · Model
checking · SMT solving · Invariant generation · Time properties

I. INTRODUCTION AND MOTIVATION

Model-based design tools such as Simulink or SCADE
are massively used in today’s automotive embedded software
design. These tools provide a higher level of abstraction
compared to implementation code, and losen the coupling
between system and software design. In the near future, with
the advent of autonomous vehicles, car manufacturers could
be asked to provide more guarantees and confidence to those
systems by demonstrating the correctness of the software, at
least for the safety-critical part. Actually, in industries such
as aviation and railway, these guarantees are achieved by
obtaining a certificate from a certification authority claiming
that the software is safe (aviation) or that it is compliant with
the safety standard of the domain (railway). For some use
cases, it is possible to use formal methods for certification.
For example, Airbus illustrates the use of Deductive Proof
and Abstract Interpretation tools in [1]. Industrial experiments
were done by the Ariane group in [2], by Dassault Aviation
in [3], by Rockwell Collins in [4] and by other companies.
Formal methods such as the B Method and Model Checking
are used by some railway companies, and use cases are
presented in [5] and [6].

In a previous paper [7], we shared our experience about
applying tools that use formal methods (Abstract Interpre-
tation, SMT-based Model Checking and Deductive Proof)
on industrial software. As we are interested in automatic

verification of safety properties, we will focus on SMT-based
Model checking. Abstract Interpretation is well adapted for
proving the absence of runtime errors, and Deductive Proof
requires too much human intervention for our purpose.

We will use symbolic model checking to prove the cor-
rectness of properties about the deactivation of the cruise
control of a car. These properties are safety related invariants
about system requirements and are generally modeled as
observers [8]. Observers are described in the same language
as the model, and engineers can easily write them. When
proved valid, they provide a higher assurance level of software
correctness. Otherwise, the designer gets a valuable coun-
terexample that helps him correct his design. In our case,
we distinguish two kinds of safety properties, those that are
stateless invariants and those that involve timers.

For our use case, we used SCADE with its integrated prover
called Design Verifier (SCADE DV). We found that all our
properties were proved immediately except those that were
using long-running timers. For some models, it was impossible
to prove them within 24 hours. The commercial tools that
we used are black boxes and it is impossible to understand
the reason of this proof failure by putting them into debug
mode for example. As timers are something very common in
industrial models, this motivated us to convert our SCADE
model into Lustre [9], and then use some open source model
checkers to understand why they were not proved, and to
experiment new algorithms for proving this type of properties.

Our contribution, presented below, is about scaling the proof
of time properties on production models. We propose a general
improvement for invariant generators and a new methodology
for obtaining better performance and scaling. As a proof of
concept, we implemented it in the JKind model checker [10]
and tested it on our representative production model, as well
as on some production models from Rockwell Collins (now
Collins Aerospace). The result is that properties previously
very slow or impossible to prove are now proved within a few
seconds and in a completely automatic manner.

II. USE CASE PRESENTATION

In this section, we first present the algorithms we used
for proving properties then we present our model and the
properties to be proved.



A. Preliminaries

1) Induction-based Model Checking: An inductive ap-
proach called k-Induction was proposed in [11]. It consists in
proving that a property/specification is valid for all reachable
states of a system i.e. it is invariant. It proceeds in two
steps: firstly, it proves that the property is initially satisfied
by the k first states, secondly it proves that if the property
holds for k successive states it also holds for their successor.
Common inductive-based model checkers iterate over k and
send requests to SMT-solvers to check the validity of the k-
Induction. At iteration k, each variable is duplicated k times,
so the size of the SMT requests grows with the number of
iterations and their solving time grows exponentially with k.

2) Invariant generation: An invariant generation procedure
produces lemmas to allow the proof of properties that are
not k-inductive. An invariant can be totally inductive or k-
inductive for some k ≥ 2.

3) Property Directed Reachability: Property Directed
Reachability (PDR), which is also known as IC31, was devel-
oped initially for purely propositional systems and hardware
verification [12], [13]. Some generalization for SMT was
introduced in [14] and [15] for software verification. When
a property is not inductive, PDR uses the counterexample
provided by the SMT-solver to generate and/or strengthen the
invariants. A sequence of frames blocking the dangerous states
is constructed incrementally, mixing backward analysis of the
proof obligation and forward propagation taking into account
the initial states. Despite interval generation policies applied
to the SMT counterexamples, PDR only generates invariants
of simple forms that may not be strong enough to prove the
property.

In practice, inductive model checkers often use a combina-
tion of the above techniques.

B. Model and Environment

We illustrate the use of symbolic model checking to prove
the correctness of safety properties on a representative produc-
tion model of a cruise control function. This function manages
the speed of the car, switches to the right operating mode,
manages the user interface, detects faults and decides whether
the function should be turned on or off. It uses only linear
arithmetic over integers.

We used ANSYS SCADE Suite (Safety Critical Applica-
tion Development Environment) to design the model from
low-level software textual requirements. The properties to
be checked were also modeled in SCADE from high-level
system safety requirements. The proof was done with SCADE
DV [16], which is a symbolic model checker integrated in
SCADE. We chose SCADE for our experiments because it
has formal foundations [17] compared to Simulink, which
is more simulation oriented and without a single formal
background [18]. Actually, SCADE has a formal language
based on Lustre, thus we could compare its internal model
checker with other open source model checkers for Lustre.

1Incremental Construction of Inductive Clauses for Indubitable Correctness

At Groupe PSA, the embedded software is developed
according to a standard V-Model methodology. High-level
system requirements (HLR) are allocated to an Electronic
Control Unit (ECU). Then they are decomposed into low-
level software requirements (LLR) used to develop the code
(handwritten or model-based).

We present our use case environment on Fig. 1. It is
composed of a SCADE model, properties, and assumptions
when needed. We used multiple model checkers to compare
their performances (GATeL [19], SCADE DV [16], JKind [10],
Kind2 [20]), and addressed multiple SMT solvers in the
back-end (CVC4 [21], MathSAT [22], SMTInterpol [23],
Yices2 [24], Z3 [25]). GATeL has its own SMT called Colibri
developed at CEA. SCADE DV has its own SMT provided
by Prover Technologies. JKind can use CVC4, MathSAT,
SMTInterpol, Yices2 and Z3 via SMT-LIB [26]. Kind2, the
successor of PKind and Kind, can use CVC4, Yices2 and Z3
also via SMT-LIB. At the moment of our experiments, Kind2
was unable to use IC3 with Yices2.

Fig. 1. Verification using multiple model checkers and multiple SMT solvers

Fig. 2 shows the principal blocks of our SCADE model.
It contains an automaton for managing modes, a function
for enabling/disabling the cruise control and a function for
managing transitions. These components communicate with
each other. We want to prove the correctness of the model by
writing safety-properties as observers over the SCADE model.

C. Writing formal properties

As reported in [4], writing good formal properties shares
many similarities with writing good requirements and is as
much art as science. This report mentions that properties that
cut across an entire system often find the most errors and that
the best sources of formal properties are found in the safety-
related requirements for the system.

We therefore formalized properties from the safety-related
requirements, and extended them to all high-level requirements
(HLR) concerning the deactivation of the function. We have
safety-related requirements separated from the HLRs because
they are written by a safety engineer and the HLRs are written
by the function designer. We want to prove the validity of
all these properties i.e. no matter what happens, the cruise
controller will deactivate upon the specified conditions. Some
of these requirements are listed in Table I.



Fig. 2. Cruise controller SCADE model’s principal blocks

TABLE I
SYSTEM REQUIREMENTS USED FOR MODEL CHECKING

REQ-01 A simple press on the Cancel button shall disable
the cruise controller.

REQ-02 Switching off the ignition shall disable the cruise
controller.

REQ-03 In order to respect the safety objectives when the
brake pedal sensor is not working: a deceleration
(Decel) under a defined threshold value (T2) and the
brake pedal not seen pressed during 2 seconds shall
turn off the function.

REQ-01 and REQ-02 are typical stateless invariants that are
well handled and easy to prove with the actual model checkers.

REQ-03 uses time. When time is increased in the property
and in the model, this makes the proof difficult because the
number of states explodes. For our experiments, we modeled
this property at three different levels:

• We name PG the global property that is checked at the
bounds of the whole system (1300 lines of Lustre code
and 78 nodes), see Fig. 3.

• Then we keep the model of the whole system but we
rewrite PG into PL, which is the same property expressed
locally on the bounds of the node that implements the
authorization function, see Fig. 4.

• Finally, we isolate the node that implements the autho-
rization function (320 lines of Lustre code and 3 nodes)
to reduce the state-space, and call PI the property to be
checked, which is the same as PL, only the context is
different, see Fig. 5.

The inductive model checkers that we considered imple-
ment slicing algorithms such as the cone of influence (COI).
Roughly, the cone of influence of a property is the structural
part of the design on which the property depends. Before
starting an analysis, the COI is computed in order to remove
the parts of the design that have no influence on the property

under analysis. We decided to check the PL property in
order to see the efficiency of the slicing algorithms, and also
to use it for compositional analysis, see section II-D. It is
equivalent to PI but has some sort of environment that can
give preconditions and reduce its state space.

In the case of PI (Fig.5), we noticed that two things made
the proof difficult. Firstly, trying to prove a property over a
long period of time, such as 2 minutes instead of 2 seconds,
takes too much memory or time for some model checkers. We
call this property PI-X where X is the number of 50 ms time
steps (for example, 2 seconds represent 40 steps). Secondly,
we want to check the difficulties that a model checker would
have when checking a valid property that does not match
exactly what the code does. We consider two variants of PI-X
depending on the deceleration threshold:

• PI-X-T2: (Decel < T2 ∧ X) ⇒ PI is the original
property;

• PI-X-T1: (Decel < T1 ∧ X) ⇒ PI has a stronger
precondition because T1 < T2, thus it is a weaker
property, which is valid when PI-X-T2 is valid.

Fig. 3. Property PG-40 expressed on the bounds of the model

Fig. 4. Property PL-40 expressed on a sub-node



Fig. 5. Property PI-40 expressed on an isolated sub-node

Our final goal was to prove the global property PG (in-
volving the entire model) directly, but we noticed that for
long-running time properties it was impossible to scale. We
decomposed it in two smaller properties and used a compo-
sitional approach to prove the property on the entire model.
Property PL (expressed locally on the node implementing it)
was used for compositional reasoning as discussed in the next
section.

D. Compositional approach

A compositional approach reduces the complexity of the
verification of a big model by dividing it into 2 or more
components. We divided our model into two components as
shown on Fig.6:

Fig. 6. Compositional approach for properties PL and PLH

• C1 (pink): The authorization function takes into account
the inputs of the model and produces an intermediate
result.

• C2 (brown): The rest of the model that produces outputs
which uses the intermediate result.

Then we used two properties applied on C1 and C2, that
put together, are equivalent to the global property PG:

• PL (pink): Property PL is expressed locally on the node
implementing the authorization function. It takes into ac-
count the inputs of the whole model and the intermediate
output.

• PLH (brown): The local output of the authorization
function is used to prove the global model output.

E. Results analysis

In this section, we comment on the results obtained for PG,
PL and PI with a small number of time steps (40, which is
equivalent to 2 seconds) and with a large number of time
steps (2400, equivalent to 2 minutes). We also used two
different values for the properties deceleration threshold: T1
and T2, where T1 < T2. Experiments were run on an Intel®

Xeon® CPU E5-2609 v2 @ 2.50GHz and 64 GiB of memory
with SCADE DV, Kind2 1.1.0 and JKind 4.0.1. We used all

available SMT-solvers with Kind2 and JKind but found that
Kind2 generally works best with Z3 (4.7.1) and JKind with
Yices2 (2.5.2). Our results listed below are obtained with these
solvers. Kind2 does not support PDR/IC3 with Yices2 and thus
cannot be compared to JKind with Yices2, which supports
it. The timeout option of the model checkers was set to 2
hours (wall-clock time). The results obtained by GATeL were
unsound and we do not comment on this model checker in the
rest of the paper.

1) Invariant generation is mandatory: Our first experiment
was to disable PDR and invariant generation processes and we
found that this type of time properties were not k-inductive
even for 2-step models. We needed additional invariants to
strengthen the property.

2) PDR/IC3 only for small timers and models: Our results
show that PDR is a good strengthening algorithm only for
small numbers of time steps and small models. With the
time span of properties and the size of the model, there is
a combinatorial explosion.

3) Threshold impact: The deceleration threshold T1 af-
fected essentially SCADE DV. We noticed that Kind2 and
JKind had no problem with it, even if it slowed down the
proof. The SMT solvers behind them have stronger theories
on integers. The threshold T2 affected essentially Kind2, as
long-running timers were impossible to prove with it.

4) Subnode property PI: Increasing the time span from 40
to 2400 steps for the small model with property PI took more
time with Kind2, but resulted in a timeout for JKind. JKind
and Kind2 use a different implementation of the template-
based invariant generation techniques described in [27]. Even
when the PDR process produces the proof, it sometimes uses
invariants provided by the invariant generator, we noted it
PDR+Invgen in the results below.

5) Compositional approach with property PL: We used
property PL combined with PLH to decompose the complex
property PG into two simpler problems. Proving PL is almost
equivalent to PI when using slicing because it eliminates the
code that is not concerned by the property. JKind was unable
to prove the long time PL property, and Kind2 showed that for
the T1 threshold it was possible to prove it using its invariant
generator, but not for T2.

6) Global property PG: Our final goal was to prove the
global property PG, taking into account the entire model with
a long-running timer (2400 steps). We encountered some dif-
ficulties with SCADE to prove it when using the T1 threshold,
and Kind2 was unable to prove it with the T2 threshold. JKind
was unable to prove long-running timers at all. This motivated
us to try to understand these difficulties.

Table II and Table III present the results obtained with
different number of time steps and thresholds. The measured
time is in seconds of wall-clock time. As Kind2 and JKind
run multiple engines such as PDR, k-Induction and invariant
generation in parallel, we put the engine that provided the first
result. The second one helped the first with a useful invariant.



TABLE II
RESULTS USING DECELERATION THRESHOLD T1

SCADE DV Kind2 / Z3 JKind / Yices2
PI-40 2972 141.7 | PDR+Invgen 10.7 | Invgen
PI-2400 Timeout 139.6 | PDR+Invgen Timeout
PL-40 Timeout 156.8 | Invgen 12.6 | PDR
PL-2400 Timeout 1353 | PDR+Invgen Timeout
PG-40 Timeout 373.7 | Invgen 7064 | PDR
PG-2400 Timeout 155.2 | Invgen Timeout

TABLE III
RESULTS USING DECELERATION THRESHOLD T2

SCADE DV Kind2 / Z3 JKind / Yices2
PI-40 3 3.8 | Invgen 0.8 | Invgen
PI-2400 2 8.1 | Invgen Timeout
PL-40 7 23.9 | Invgen 12.5 | PDR
PL-2400 11 Timeout Timeout
PG-40 9 1370 | Invgen 51.2 | PDR
PG-2400 11 Timeout Timeout

III. APPROACH AND CONTRIBUTION

Although our model used linear arithmetic over integers, we
noticed that increasing the time span of our global property
based on REQ-03, e.g. from 2 seconds to 2 minutes, made the
proof with SCADE DV fail in a reasonable time (24 hours).
To understand the problem, we translated the SCADE model
with its properties into the Lustre language, and used open
source SMT-based model checkers, putting them into debug
mode to analyze the situation.

A. SCADE to Lustre transformation

As SCADE has a textual language inherited from Lustre,
we developed a tool based on an XSLT transformation called
SCADE2Lustre. We used SCADE to convert our model into
the SCADE textual language and then we transformed this
textual representation of our model into Lustre code using
our SCADE2Lustre tool. As JKind does not support SCADE
automata, we rewrote our automaton in Lustre and checked
using JKind and Kind2 that we had the same proof results as
those obtained by SCADE DV.

B. Understanding the problem

We analyzed our model with different numbers of time
steps, different algorithms such as k-Induction, PDR/IC3 and
invariant generation, at different levels of abstraction (proper-
ties PG, PL, PI). We also used different model checkers and
different SMT solvers as back-ends. We found use cases with
long-running timers in production models that all available
model checkers were unable to prove. In order to understand
the problem we decided to use and modify JKind for its par-
ticular implementation of Inductive Validity Cores (IVC) [28].
We used IVC to get the invariants that had enabled the proof.
It was useful for understanding what candidates we needed to
generate for the proof.

1) k-Induction: The basic idea behind k-Induction is to
make use of invariants that are not 1-inductive. With the
increase of k, there is a combinatorial explosion, so it can

run for a very long time. It was the case for our property
involving time because it was not k-inductive for a small k.
This is why we needed a smarter invariant generator to help
strengthen the property before k goes too high.

2) PDR/IC3: PDR can strengthen the property, but the
number of invariants it constructs from the property explodes
when the time span of the property and the size of the model
increase. Because of the interval generation, most invariants
are useless for our proof and just slow down the proof process.
Furthermore, these invariants appear to find relations only
between variables and constants but not between multiple
variables. For long-running time properties on production
models, PDR suffered from the same combinatorial explosion
problem as k-Induction.

3) The JKind invariant generator: JKind uses a template-
based lemma generation, as described in [27], for its in-
variant generation procedure. In order to obtain invariants
to strengthen the proof, JKind creates a list of candidates
representing literals. Four different types of candidates are
generated automatically:

• Boolean candidates: all boolean system variables and
their negations e.g. a and not a where a is a boolean.

• Init candidates: integer variables are compared with ≥
and ≤ operators to their initial values e.g. (i ≥ 0), (i ≤ 0)
where 0 is the initial value of i.

• Subrange candidates: variables of an integer subrange
type are compared for equality to all the values in the
subrange, e.g. (s = 0), (s = 1), (s = 2) for s ∈ [0..2].

• Enum candidates: variables of an enum type are com-
pared for equality to all the values of the enum.

The invariant generator checks all propositional formulae
(with boolean operators) involving these literals, whether they
are invariants or not. The number of formulae grows exponen-
tially with the number of literals. To avoid this combinatorial
explosion, JKind reduces its candidates to those listed above
and no relational candidates (explained in subsection III-C)
are considered.

All these candidates were not strong enough for proving our
long-running timer properties.

C. Contribution

JKind uses multiple cooperative engines in parallel, includ-
ing k-Induction, PDR and template-based invariant generation.
We worked on the improvement of the invariant generation.
We noticed that our property used a constant value for the
number of time steps and the code also used a constant for it.
The same was true for other clauses in the property. We needed
invariants that could provide information about the relation
(essentially a comparison) between constants and variables
of the property and constants and variables of the model. In
order to find relations between the property and the model, we
propose two new additional categories of relational candidates
(atoms):

• INT × INT: for all integer variables in the model and the
property, add a comparison relation with the ≥ operator,
e.g. V ariable1 ≥ V ariable2



• INT × CONST: for all integer variables and constants in
the model and the property, add comparison relations with
the ≥ and ≤ operators, e.g. V ariable1 ≥ Constant1;
V ariable1 ≤ Constant1

We implemented this new invariant generation algorithm
in JKind and applied it to a sub-node of our model with a
large number of time steps (property PI-2400). We were able
to prove the property within a few seconds although it was
impossible to prove before. Once we could prove the property,
it was possible to use IVC to find the invariant that had enabled
the proof. We used it to understand what were the most useful
candidates we needed to generate for the proof.

Next, we wanted to prove the entire model with a long time
property (property PG-2400). With our new invariant genera-
tor, we had the needed candidates but for the entire model their
number was too big. We noticed also that numerous candidates
did not make sense, e.g. when comparing a variable about
speed to a constant about deceleration, or comparing counters
with non counter elements. To get interesting invariants, we
propose to use the physical type (speed, deceleration, counter,
etc.) of the variables and the constants, and to keep only
candidates that compare elements of the same physical type.
We explain this in details in the next section.

1) Physical types methodology: A physical quantity is a
physical property that can be quantified by measurement. A
physical quantity can be expressed as the combination of a
number and a unit. For example, in the physical world, we
measure the quantity of speed using the unit ms−1 and its
derivations. The same is true for other physical quantities.
In the automotive and other industries, most of the external
interfaces of a function represent a physical quantity (speed,
deceleration, battery voltage, etc.) and has a physical unit.

At the code level, information about units is lost and only
numbers are present. Fortunately, at the software architecture
design level, the physical units are present. As most of the
software is designed using model-based design tools, this
information can be used for model verification. We propose to
use this semantic information to have a deeper understanding
of the variables and to generate less invariant candidates while
increasing their usefulness. As a methodology, we propose the
introduction of physical types at the model level for tools such
as Simulink or SCADE. Instead of using a base representation
types such as int, we declare a type for each physical quantity,
e.g. tSpeed, tDeceleration, tVoltage, tCounter etc. Then all the
variables and constants are typed according to their appropriate
physical type. Actually, these new types are just aliases of the
base representation types, but they carry more semantics for
our algorithm. Thus we can recognize data of the same phys-
ical type and reason on them using the appropriate relations,
see Fig. 7.

For our use case, we defined physical types in SCADE
during the design phase. Then, we used them for all the
constants and variables of the model. This takes little when
done during the design stage. As types are immediately
evaluated and shown on the SCADE model, it also gave a
better readability during the review of the model. Once the

Fig. 7. Constants and variables partitioned by their physical types

model was validated, we converted it into Lustre code using
our SCADE2Lustre converter, which preserves types.

2) Timers patterns: We wanted to optimize further our
algorithm, and to push only the most relevant candidates. By
analyzing the useful candidates from the minimal invariants
used for the proof (see IVC above), we noticed that all the
variables that were useful were assigned a previous value (they
correspond to state variables). We propose to eliminate vari-
ables that are not assigned a previous value, which correspond
to combinatorial variables for which SMT solvers are very
efficient, so invariant generation is not necessary. An example
of state and combinatorial variables is shown on Fig. 8

Fig. 8. The interesting variables for proving properties about time are those
that encode a state. The others are dismissed.

3) Implementation in JKind: We introduced our improve-
ment on a GitHub branch of JKind2 called “invgen-timers”.
We modified JKind to be able to preserve the original Lustre
types because they were lost after inlining. We introduced an
option “-inv_gen_level” proposing more and more candidates
when the level increases:

• Level 0: Default JKind level before our improvements
• Level 1: Use the physical types methodology with INT ×

INT and INT × CONST relational candidates, restricted
to state variables (variables with an assignment of a value
from a previous state). This level performs best if our
physical types methodology is applied.

• Level 2: Uses INT × INT and INT × CONST rela-
tional candidates no matter their type, restricted to state-
variables. This level works for models that do not use
physical semantic types.

• Level 3: Uses INT × INT and INT × CONST relational
candidates including state-variables and combinatorial
variables. This level can be used if the other levels do
not provide the necessary invariants.

The idea behind this new option is to provide different amount
of invariants so that the user can begin with the lowest level. If

2JKind on GitHub: https://github.com/agacek/jkind

https://github.com/agacek/jkind


the property cannot be proved with it, the next level could be
used until the property is proved. Beginning with the highest
level may degrade the performance for properties where a
lower level would be sufficient.

IV. RESULTS AND BENCHMARKS

In this section, we examine the results obtained by our
invariant generation algorithm and methodology using physical
types compared to the results obtained with the official ver-
sions of JKind and Kind2. We also used JKind’s and Kind’s
benchmarks to find use cases about timers and compare per-
formances. Finally, we asked Rockwell Collins for use cases
about timers and found that some properties on production
models, which were not proved before with JKind, were now
proved within a few seconds thanks to our improvements.

A. Our use cases

We summarize here the results obtained with our cruise
controller model.

In tables IV and V we present the results in seconds obtained
using our methodology (JKind new) based on physical types
compared to the previous results (Kind2 and JKind official
versions).

TABLE IV
RESULTS USING OUR NEW INVGEN AND TYPES FOR THRESHOLD T1

SCADE DV Kind2 JKind (official) JKind (new)
PI-40 2972 141.7 10.7 0.2 | Invgen
PI-2400 Timeout 139.6 Timeout 0.2 | Invgen
PL-40 Timeout 156.8 12.6 4.7 | Invgen
PL-2400 Timeout 1353 Timeout 5.3 | Invgen
PG-40 Timeout 373.7 7064 4.3 | Invgen
PG-2400 Timeout 155.2 Timeout 4.8 | Invgen

TABLE V
RESULTS USING OUR NEW INVGEN AND TYPES FOR THRESHOLD T2

SCADE DV Kind2 JKind (official) JKind (new)
PI-40 3 3.8 0.8 0.1 | Invgen
PI-2400 2 8.1 Timeout 0.1 | Invgen
PL-40 7 23.9 12.5 4.2 | Invgen
PL-2400 11 Timeout Timeout 4.2 | Invgen
PG-40 9 1370 51.2 4.2 | Invgen
PG-2400 11 Timeout Timeout 4.4 | Invgen

We notice that JKind new (Level 1) outperforms the official
versions of the other model checkers for both deceleration
threshold values T1 and T2.

B. JKind benchmark

JKind provides with its source files, 56 Lustre programs
with properties to be proved. We used it to compare the
performance of our different algorithms with the official one.
We did not find long-running timers in this benchmark and the
new levels of invariant generation we introduced in JKind did
not bring better results. We suppose that this benchmark was
tuned for the current JKind version, as there are no unsolvable
problems in it (everything can be proved or invalidated).

C. Kind benchmark

We also used a suite of 1047 Lustre programs developed
as a benchmark for Kind [29]. Most of them were very small
and not containing timers. Their properties were proven in
less than a second. However, we found some programs that
were using timers. We present their results in Table VI using
our implementation of the three different levels of invariant
generation (L1, L2 and L3), compared to the JKind and Kind2
official versions. The timeout was set to 10 minutes, Z3 was
used with Kind2 and Yices2 with JKind.

TABLE VI
RESULTS USING OUR NEW INVGEN ON KIND BENCHMARK

Program Kind2 JKind JKind-L1 JKind-L2 JKind-L3
P1 Timeout 13.2 4.3 9.2 6.6
P2 Timeout 9.9 7.9 10.3 4
P3 Timeout 13.2 9.4 7.6 13.6
P4 Timeout 6.5 8.7 10.1 3.8
P5 Timeout 9.1 58.7 6.9 5.6
P6 Timeout Timeout Timeout 1.7 1.3
P7 Timeout Timeout 1.8 1.4 Timeout
P8 19.3 50.4 6.3 4.4 7.7
P9 0.4 1.3 1.3 0.2 0.2

The full names of these programs are:
• P1: DRAGON_11.lus
• P2: DRAGON_11_e1_2450.lus
• P3: DRAGON_11_e1_2450_e1_5887.lus
• P4: DRAGON_11_e1_2450_e2_1483.lus
• P5: DRAGON_11_e2_5396_e3_282.lus
• P6: durationThm_3_e3_442_e6_113.lus
• P7: durationThm_3_e7_334_e8_369.lus
• P8: microwave05.lus
• P9: twisted_counters.lus
This benchmark does not use physical types. All the vari-

ables and constants are of type integer, real or boolean. Our
level 1 invariant generator is more suitable when physical types
are used. However, we can see that levels 2 and 3 performed
well on these programs containing counters.

D. Rockwell Collins use cases

At Rockwell Collins, Lustre is used as an intermediate
language to make formal proofs of high-level properties. Some
models have properties with long-running timers. First, they
provided us with a representative version of their production
model with a property using 6000 time steps that was impos-
sible to prove before. We proved it in a few seconds. Then
we shared our new version of JKind with them so that they
try it on their internal production models that they could not
share with us. They told us that it proved in a few seconds
properties that were not proved before.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an algorithm that brings an
improvement to invariant generation, enabling the automatic
proof of properties involving long-running timers, which are
present in most embedded software. This algorithm consists in



injecting new relational invariant candidates to enrich the in-
variant generation. However, if too few candidates do not allow
concluding, too many candidates can slow down the proof and
lead to timeouts. That is why we propose a new methodology
using physical types (speed, deceleration, etc.), which restricts
the number of candidates to only those that make sense (e.g.
deceleration variables compared to deceleration constants or
speed variables compared to other speed variables) and may
therefore be useful for the proof. Our algorithm is applicable to
all forms of inductive model checkers. We have implemented
it as part of the open source model checker JKind. We have
shown that it outperforms the official versions of JKind, Kind2
and SCADE Design Verifier on benchmarks and on several
industrial use cases.

With this paper, we also want to show a way to improve the
state of the art in formal methods. When using real production
models we do not have access to advanced academic model
checkers and solvers because industrial companies essentially
use black box tools that cannot be put in a debug mode or
modified. If the proof is not possible, it is very difficult to
understand why. We used the Lustre language as an inter-
mediate language between the black box tools and the open
source model checkers. This allowed us to understand what
was missing to automatically strengthen the proofs, and to
implement our new algorithm in JKind as a proof of concept.

The presented method for generating invariants is working
fine when the counter in the property and the counter in the
model evolve at the same rate and sequentially. This is the
most common case for industrial models. There can exist
models that increment counters at different rates. For the
moment, these models need additional invariants provided by
the user as assertions.

Our invariant generation technique and methodology using
types could also be applied to a more difficult problem:
proving properties on nonlinear systems. Modern SMT solvers
take into account some nonlinear theories, but it is time
consuming to obtain models for complex nonlinear queries.
We plan to investigate how the nonlinear barrier could be
removed using invariant generation.
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A. Oliveras, S. Krstić, M. Moskal, L. D. Moura, R. Sebastiani, T. D.
Cok, and J. Hoenicke, “The SMT-LIB Standard: Version 2.0,” Tech.
Rep., 2010.

[27] T. Kahsai, Y. Ge, and C. Tinelli, “Instantiation-based Invariant Discov-
ery,” in Proceedings of the Third International Conference on NASA
Formal Methods, ser. NFM’11, Berlin, 2011, pp. 192–206.

[28] E. Ghassabani, A. Gacek, and M. W. Whalen, “Efficient Generation of
Inductive Validity Cores for Safety Properties,” in Proc. of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2016. New York: ACM, 2016, pp. 314–325.

[29] G. E. Hagen and C. Tinelli, “Scaling Up the Formal Verification of
Lustre Programs with SMT-Based Techniques,” in FMCAD 2008.

https://hal.inria.fr/hal-01666470
https://www.springer.com/gp/book/9783319249520

	Introduction and Motivation
	Use case presentation
	Preliminaries
	Induction-based Model Checking
	Invariant generation
	Property Directed Reachability

	Model and Environment
	Writing formal properties
	Compositional approach
	Results analysis
	Invariant generation is mandatory
	PDR/IC3 only for small timers and models
	Threshold impact
	Subnode property PI
	Compositional approach with property PL
	Global property PG


	Approach and Contribution
	SCADE to Lustre transformation
	Understanding the problem
	k-Induction
	PDR/IC3
	The JKind invariant generator

	Contribution
	Physical types methodology
	Timers patterns
	Implementation in JKind


	Results and Benchmarks
	Our use cases
	JKind benchmark
	Kind benchmark
	Rockwell Collins use cases

	Conclusions and Future Work
	References

