
HAL Id: hal-02322645
https://centralesupelec.hal.science/hal-02322645

Submitted on 27 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PROVING PROPERTIES OF DISCRETE-VALUED
FUNCTIONS USING DEDUCTIVE PROOF:

APPLICATION TO THE SQUARE ROOT
Vassil Todorov, Safouan Taha, Frédéric Boulanger, Armando Hernandez

To cite this version:
Vassil Todorov, Safouan Taha, Frédéric Boulanger, Armando Hernandez. PROVING PROPER-
TIES OF DISCRETE-VALUED FUNCTIONS USING DEDUCTIVE PROOF: APPLICATION TO
THE SQUARE ROOT. System Informatics, 2019, 14, �10.31144/si.2307-6410.2019.n14.p45-54�. �hal-
02322645�

https://centralesupelec.hal.science/hal-02322645
https://hal.archives-ouvertes.fr

Proving properties of Discrete-Valued Functions

using Deductive Proof:

Application to the Square Root

Todorov V., Taha S., Boulanger F., Hernandez A.

This article is available in open access on:
https://system-informatics.ru/files/article/todorov.pdf

For many years, automotive embedded systems have been validated only by testing. In the near future, Advanced
Driver Assistance Systems (ADAS) will take a greater part in the car’s software design and development. Furthermore,
their increasing critical level may lead authorities to require a certification for those systems. We think that bringing
formal proof in their development can help establishing safety properties and get an efficient certification process. Other
industries (e.g. aerospace, railway, nuclear) that produce critical systems requiring certification also took the path of formal
verification techniques. One of these techniques is deductive proof. It can give a higher level of confidence in proving critical
safety properties and even avoid unit testing.

In this paper, we chose a production use case: a function calculating a square root by linear interpolation. We use
deductive proof to prove its correctness and show the limitations we encountered with the off-the-shelf tools. We propose
approaches to overcome some limitations of these tools and succeed with the proof. These approaches can be applied to
similar problems, which are frequent in the automotive embedded software.

1 Introduction and Motivation

Today, the automotive industry relies mostly on a model-based approach for developing embedded
software. It consists in connecting common library blocks (operators) to design and simulate a model of
the behavior to be produced. It uses a higher level of abstraction than the code. Code with the behavior
of the model is then produced automatically. The most commonly used tools for software design are
Simulink, from the MathWorks, and Scade, from ANSYS.

The main advantage of this approach is that models can be simulated and debugged before code
generation. Thus, some of the errors are found and fixed earlier in the design process. On the other hand,
simulation shares many common points with testing and cannot prove that the calculation is correct.
Furthermore, the implementation of a model on a specific hardware can bring behaviors that have not
been seen before at design stage.

For the rest of our study we take as example a function calculating a square root. During the
design stage, the simulation can use a standard implementation of this function. However, in the imple-
mentation, we replace it with an optimized version because of hardware constraints. Fig. 1 shows this
approach. Our example is a discrete-valued function implementing the square root calculation, which
uses a linear interpolation table. In automotive applications, as on-board computers have limited power,
discrete-valued functions are frequently used in the implementation to avoid complex calculations.

In the near future, we expect that authorities will require a certification for highly critical software
in self-driving cars. Our motivation is to provide proofs of correctness for production code using formal
methods.

In a previous paper [29], we summarized some experiments about applying tools that use formal
methods to industrial software. In this paper, we give details about the application of deductive proof
to production code, the problems we encountered with off-the-shelf tools, and some approaches to solve
this type of problems. Our function has been implemented in C and we used Frama-C WP [16] for
proving its correctness. As some of the goals were impossible to prove with Frama-C and its solvers we
implemented it in SPARK (based on Ada) to prove it with GNATprove [7]. We discuss the results as
well as how other methods such as Abstract interpretation can be combined with deductive proof.

1

https://system-informatics.ru/files/article/todorov.pdf

Figure 1: Complex functions for simulation vs. discrete-valued ones for implementation

2 Deductive methods

2.1 Preliminaries

The foundations of the proof of logical properties on an imperative language program were put forward
by C. A. R. Hoare [15] in 1969. Based on the precise semantic of a computer program, Hoare proposed
to prove certain properties by mathematical deductive reasoning, generally at the end of the program.

He introduced a notation called the Hoare triple, which associates a program Q, start hypotheses P,
and expected output properties R:

P {Q} R

The logical meaning of this triple corresponds to: if P is true, then after executing program Q, R
will be true if Q terminates. The calculus of Hoare’s triples is, in general, undecidable.

The proving by application of Hoare’s rules is an intellectual process and is not tool driven. It is
up to the author of the proof to define the correct properties between each instruction of the program
and to establish its demonstration by applying the different theorems. This activity is not adapted to
process thousands of lines of code in an acceptable time.

An initial automation of the process of proving programs was brought by the calculation of the WP
(Weakest Precondition) from Dijkstra [10]. The principle consists in automatically calculating the most
general property WP(S,P) holding before a statement S such that property P holds after the execution
of S :

WP (S, P) {S} P

The calculus of WP is defined for each instruction. The proof process consists in calculating WP by
going backward from the end of the program for which we want to prove P, up to the beginning. For
full correctness, S must terminate.

The returned predicate from the WP calculation can rapidly become rather complex. Efficient
(quadratic instead of exponential) verification condition generation (including WP generation) were
proposed in the following papers [27, 3, 13]. In order to automate the process, all modern tools based on
WP are using automatic theorem provers as back-end. We can cite, for example Alt-Ergo [8], Colibri1,
CVC4 [4], Yices2 [11], Z3 [9].

1Colibri: http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf

2

http://smtcomp.sourceforge.net/2018/systemDescriptions/COLIBRI.pdf

2.2 Tools for deductive reasoning

As we are interested in tools used by the industry, we present here only those that are mostly used
today: Atelier B2, Caveat [22], Frama-C WP and GNATprove.

2.2.1 Atelier B

Atelier B is a tool supporting the B method, which is a formal methodology to specify, build and
implement software systems. The B method was originally developed in the 1980s by Jean-Raymond
Abrial [2] and is based on first-order logic, set theory, abstract machine theory and refinement theory.
This method is suitable for a new development. As we reused existing C code, we did not use this
method.

2.2.2 Caveat and Frama-C WP

Caveat and Frama-C WP are tools for deductive reasoning on C programs. Caveat was introduced
at Airbus in 2002 to replace unit tests by unit proof and thus obtain a cost reduction and quality
improvement over this part of the development process. The tool with its back-end Alt-Ergo were
certified and recognized by the aviation certification authorities. Caveat analyzed C programs (with
some restrictions in terms of language constructs) and had its own specification language based on a
first order logic.

Frama-C is the academic open source tool developed by the same team as Caveat. Its WP module
verifies properties written in the ACSL3 language in a deductive manner. It implements the Weakest
Precondition calculus and targets multiple automatic solvers via the Why3 platform4.

2.2.3 GNATprove

GNATprove is a tool for deductive reasoning over SPARK (based on Ada) programs. Like Frama-C, it
uses the Why3 platform but SPARK supports bit-vector data types. A bit-vector is an array data type
for compactly storing bits. Most modern SMT-solvers support a theory of bit-vectors, which can help
solving problems using this data type. Furthermore, for properties that are not valid, GNATprove can
obtain a counterexample from the SMT solver.

3 Environment

We present in Fig. 2 our environment. We have C code, which is annotated with contracts using the ACSL
language. We use two different features of Frama-C WP. First, we use it to parse and then transform
the C code together with the contracts into verification conditions (VCs) that are directly sent to the
SMT solvers. Second, we also use Frama-C WP to transform the C code together with the contracts into
WhyML language files. The Why3 framework then transforms the WhyML files into VCs and addresses
the SMT solvers. The main difference between these two approaches is that the direct SMT-LIB output
was initially developed for the Colibri SMT solver, which does not support quantifiers. Thus, the direct
SMT-LIB output provides a set of quantifier-free formulas. The other way, through WhyML, allows for
richer theories and supports quantified formulas even within the specification contracts.

We used GNATprove to prove the equivalent code written in SPARK. This approach is similar to
using Frama-C with WhyML and quantified formulas. The advantage of SPARK for our use case is that
we can use bit-vector types for modular arithmetic and thus facilitate the proof.

Because we experienced some difficulties with the analysis of our C code, we also analyzed it with
an Abstract interpretation tool to get additional confidence.

2Atelier B: https://www.atelierb.eu
3ACSL specification language: https://frama-c.com/acsl.html
4Why3: http://why3.lri.fr/

3

https://www.atelierb.eu
https://frama-c.com/acsl.html
http://why3.lri.fr/

Figure 2: Environment for deductive proof on C and SPARK code

4 Experiment

We took the C code implemented in an on-board computer to prove its correctness using deductive proof.
The function calculates the square root Y of X by linear integer interpolation between two known points
(Xa, Ya) and (Xb, Yb) using the following formula:

Y = Ya + (X −Xa)
(Yb − Ya)

(Xb −Xa)

This code is used in an implementation on an on-board computer, which cannot use floating-point
numbers. We calculate the square root for numbers between 0.00 and 100.00 using an integer repre-
sentation. We consider it as a fix-point number (multiplied by 100 to have a precision of 2 digits after
the decimal separator), thus the input range is between 0 and 10000 (representing 0 and 100.00) and
the returned result is a linearly interpolated value between 0 and 1000 (to be interpreted as a number
between 0 and 10.00). We want to prove that the calculation is correct for a given precision.

We proceeded in two steps. First, we proved a simplified version of the code using only eight values
in the interpolation table (Fig. 3) and limited to the range [0, 1.00]. These values were a subset of the
full table present in the code, which contains 41 values. Then, we added the other values in the table and
updated the contracts to take into account the new bounds. To our surprise, this did not scale up with
Frama-C. We worked with the developers of Frama-C to understand why (we explain it in Section 5).

Figure 3: Square root calculation in [0, 1.00] by linear interpolation from eight known values

4

The code of our main function is given in Fig. 4. This function takes a number and returns its square
root using a table for some known values or interpolates a value when the number is between two known
points. Using the ACSL annotation language, we define two behaviors for this function: whenever the
number is less than 10000 the function is defined, otherwise it returns the maximum value i.e. 1000. For
more readability, we removed some intermediate values from the two tables.

As we have a loop, in formal verification we need to specify a loop invariant for it. A loop invariant
is a predicate (condition) that holds for every iteration of the loop (before and after the iteration). This
predicate should be strong enough and its automatic generation is generally a difficult problem.

With Frama-C we also need to define precisely which variables are modified (assigned) during the
loop. In our example, i is incremented on each iteration.

For the loop to be proved, we also need to write a variant function which is a function whose value
is monotonically decreased with respect to a (strict) well-founded relation by the iteration of the loop.
It is used to ensure the termination of the loop.

Then we rewrote the function in SPARK5 to see whether it would scale better. Fig. 5 presents the
SPARK code. The main difference between C and SPARK is that we can specify a bit-vector data type
in SPARK, which is then communicated to the SMT solver via Why3. For our use case, it helped the
solver to reason using modular arithmetic. Most SMT solvers used as back-end of Why3 have a theory
of bit-vectors. If we do not use bit-vectors, the SMT solver is reasoning by default using non-modular
arithmetic.

The proof of the simplified code succeeded on both Frama-C and SPARK. However, when using the
full table of 41 values, Frama-C failed where only SPARK succeeded.

We also analyzed our complete C code with Astrée [18] from AbsInt, a static analysis tool using
abstract interpretation, to prove some difficult goals. The abstract interpretation results can be used as
assumptions for Frama-C WP or bring more confidence for certification if Frama-C can reason on them.
We discuss the results in the next section.

5 Results

In this section, we explain the results and why Frama-C failed to scale-up from 8 to 41 values, and what
should be done to cope with this type of problems.

5Special thanks to Yannick Moy from AdaCore

/*@ assigns \nothing;

behavior in_range:

assumes number <= 10000;

ensures number-30 <= (\result)*(\result)/100 <= number+10;

behavior out_of_range:

assumes number > 10000;

ensures \result == 1000;

complete behaviors in_range, out_of_range;

disjoint behaviors in_range, out_of_range;

*/

uint16 IntSqrt(uint16 number) {

uint8 i = 0;

uint16 TabX[41] = {0,5,10,25,40,...,7500,8000,8600,9200,10000};

uint16 TabY[41] = {0,22,32,50,63,...,866,894,927,959,1000};

/*@ loop invariant 0 <= i <= 40 && number >= TabX[i];

loop assigns i;

loop variant 40-i; */

for (i = 0 ; i < 40 ; i++) {

if ((number >= TabX[i]) && (number <= TabX[i+1])) {

return(LinearInterpolation(TabX[i], TabY[i], TabX[i+1], TabY[i+1], number));

}

}

return TabY[40];

}

Figure 4: Annotated square root function for Frama-C WP automatic proof

5

5.1 From Frama-C to the SMT solver

To understand the reason why automatic proof failed for the full table, we have to detail the trans-
formations between the C code through Frama-C, Why3 and the solvers. First, Frama-C transforms
the C code and its ACSL contracts using the weakest precondition calculus into verification conditions
(VC) in the WhyML language. It also introduces additional goals to verify the absence of runtime errors
such as overflows. The WhyML output contains all the theories necessary for the proof and is sent to
Why3. Then Why3 transforms it into the language of the chosen prover. For our use case, the WhyML
transformation contained quantified formulas and had redefined some operators such as division using
uninterpreted functions.

5.2 The difficult goal

There were 51 goals (verification conditions) to be proved and two of them were not proven. The most
difficult goal was about proving that the contract of the post condition in the linear interpolation
function had the same behavior as the code. We show it in Fig. 6.

Actually, contracts use mathematical arithmetic (without overflow), but code uses modular arith-
metic, where overflows may occur. For our use case, we used a 16-bit unsigned integer to store the
returned value of the interpolation.

5.3 Direct proof with SMT-LIB

Since 2 goals were not proven with the official Frama-C version, we obtained a new version that could
address directly SMT solvers using the SMT-LIB standard [5]. We proved our goals with Colibri, CVC4
and Yices2. We remarked that the SMT-LIB file did not contain quantifiers and did not redefine operators
such as division. We concluded that this approach scaled and worked better for problems with nonlinear
arithmetic such as interpolation functions. Furthermore, some SMT solvers such as Yices2 do not support
quantification.

type Unsigned is mod 2**32;

subtype uint16 is Unsigned range 0 .. 65535;

type UINT16_ARR is array (Positive range <>) of uint16;

Max : constant := 10_000;

function LinearInterpolation(Xa, Ya, Xb, Yb, X : uint16) return uint16 is

Result : uint16;

begin

if Xa /= Xb then

Result := Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa);

else

Result := Ya;

end if;

return Result;

end LinearInterpolation;

function IntSqrt(number : uint16) return uint16

with Global => null, Contract_Cases =>

(number <= Max => IntSqrt’Result * IntSqrt’Result / 100 + 30 >= number and number+10 >= IntSqrt’Result

* IntSqrt’Result / 100, number > Max => IntSqrt’Result = 1000) is

TabX : UINT16_ARR(1 .. 41) := (0,5,10,25,40,...,8000,8600,9200,10000);

TabY : UINT16_ARR(1 .. 41) := (0,22,32,50,63,...,894,927,959,1000);

begin

for I in 1 .. 40 loop

pragma Loop_Invariant (for all J in 1 .. I => number >= TabX(J));

if number in TabX(I) .. TabX(I+1) then

return LinearInterpolation (TabX(I), TabY(I), TabX(I+1), TabY(I+1), number);

end if;

end loop;

return TabY(41);

end IntSqrt;

Figure 5: SPARK code for automatic proof with GNATprove

6

5.4 Experience with the Why3 SMT output files

We wanted to understand what was the impact of the redefined division using uninterpreted functions
and of quantified formulas, so we modified manually the SMT request sent to the solver. First, we
removed the specific functions about division and used the standard SMT-LIB div operator. Then, the
proof succeeded with CVC4 but only if using nonlinear logic containing bit-vectors. Disabling bit-vectors
from that logic resulted in a failure to prove the formula. On the other hand, the quantifier-free SMT
output did not need bit-vector logic to be proved.

5.5 Abstract interpretation

Because it is difficult to understand how the SMT solvers proved the difficult goal, we used Astrée to
prove the absence of overflow in the returned value of the linear interpolation function. This proof can
then be used as hypothesis in Frama-C WP. Astrée could find the dependency between Yb and Ya and
estimate a precise interval for (Yb−Ya). The same was done for (Xb−Xa) and (X−Xa). Thus a precise
interval was calculated for Y in [0, 10000], which fits in a 16-bit unsigned integer without overflow.

6 Methodology

In this section, we propose a methodology based on our experience to solve problems using discrete-
valued functions such as linear interpolation. Our use case is a simple one and we could have tested it
for each value in the domain of validity of the function. However, in practice, there are more complex
discrete-valued functions implemented with linear interpolation tables called lookup tables. These func-
tions are often called by other discrete-valued functions. The number of cases to test can be the product
of the cardinalities of the domains of the individual functions. We propose to use the methodology shown
below in Fig. 7 in order to prove those functions.

First, we need to isolate all the functions we want to prove together and annotate the code with
contracts specifying the behavior expected from each function. Then, we can try to prove it in Frama-C
via Why3. If the proof succeeds, we can stop. Otherwise, we can try to use the direct SMT-LIB output
of Frama-C WP with the SMT solvers. As we have seen, this approach removes quantifiers and uses
native mathematical operators. If it does not succeed, for some goals (VCs) we can try to prove them
using abstract interpretation tools. If this method does not succeed, we need to use a proof assistant to
prove the difficult goals.

typedef unsigned short uint16;

typedef unsigned char uint8;

/*@

requires 0 <= Xa <= 10000 && 0 <= Xb <= 10000;

requires 0 <= Ya <= 1000 && 0 <= Yb <= 1000;

requires Yb > Ya && Xb >= Xa;

requires Xa <= X <= Xb;

ensures Xa != Xb ==> \result == (Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));

ensures Xa == Xb ==> \result == Ya;

assigns \nothing;

*/

uint16 LinearInterpolation(uint16 Xa, uint16 Ya, uint16 Xb, uint16 Yb, uint16 X)

{

if (Xa != Xb) {

return(Ya + (X - Xa) * (Yb - Ya) / (Xb - Xa));

} else {

return(Ya);

}

}

Figure 6: Annotated interpolation function for Frama-C WP automatic proof

7

Figure 7: Methodology for proving Discrete-Valued Functions

7 Related work

Our work concerns the formal verification of the square root function used for embedded automotive
applications and using fixed-point numbers. Embedded software generally needs to be optimized be-
cause of the limited power of the micro-controllers. We used deductive proof engines (Frama-C and
GNATprove) that create verification obligations discharged mostly automatically by SMT solvers. For
our application, we only need to calculate square root for a predefined interval and the precision of
our lookup table is enough to satisfy the requirements. We could use other methods such as Newton
method but it would be more resources consuming. To the best of our knowledge, a linearly-interpolated
fixed-point square root algorithm has not been the subject of formal verification work. In this section,
we give a survey on some related work about the correctness proof of square root algorithms for machine
representation and for standard mathematical functions in general.

The problem of the specification and validation of standard functions is also discussed in [17]. Even if
a standard for representing floating-point numbers has been defined (IEEE 754), this standard does not
provide requirements for the specification of standard functions. This paper is a systematic presentation
of ideas from other studies about the formal specification and testing of standard mathematical functions.
The author does not use automatic proof assistance.

We think that the first floating-point algorithms verifications were motivated by some hardware
bugs such as the Pentium FDIV bug discovered in 1994. For example, in 1998 Russinoff used the ACL2
theorem prover to verify the square root algorithm in the K7 microprocessor [24]. Later, in 1999 he
also verified the square root microcode of the K5 microprocessor [23]. In 2000, researchers from Intel
Corporation verified the square root algorithm used in an Intel processor with the Forte system that
combines symbolic trajectory evaluation and theorem proving [1]. In 2002, IBM presented a research
paper about the formal verification of the IBM Power4 processor that uses Chebyshev polynomials to
calculate square root [25]. The team used the ACL2 theorem prover to mechanically verify the square root
algorithm. In 2002, Bertot et al. verified the divide-and-conquer part of GMP’s square root using the Coq
proof assistant [6]. In 2003, Harrison published his work about a square root algorithm verification using
HOL Light [14]. This particular algorithm used for floating-point numbers was provided by Intel for a
new 64-bit architecture called Itanium to replace some less efficient generic libraries. The main benefits of
using theorem proving for the verification of this algorithm were reliability and re-usability. Actually, its
proof involved Diophantine equations that were very tedious and error-prone to do by hand. The author
argues that all the proof process should be done in the same tool – the proof assistant – because it uses
a strict logical deduction process. In 2011, Shelekhov proposed a specification and verification of square
root using PVS [26]. The paper concludes that synthesis of programs of the standard functions such as
floor, isqrt, and ilog2 is found to be less tedious than the deductive verification of these programs. In 2016,
Oracle presented a research work about the formal verification of a square root implementation [21].
They used ACL2 and interval arithmetic to verify the low-level Verilog descriptions of the floating-
point division and square root implementations in the SPARC ISA, and discovered new optimizations
(lookup table reductions) while doing so. In 2018, Intel Corporation presented a research paper about
the proof of correctness of square root using a digit serial method (DSM) and a theorem prover (HOL-

8

Light) [12]. A DSM is an algorithm that determines the digits of a real number serially, starting with
the leading digit. In 2019, Melquiond et al. presented a paper about the formal verification of the GMP
library’s algorithm for calculating the square root of a 64-bit integer using Why3 [19]. This algorithm
can be seen as a fixed-point arithmetic algorithm that implements Newton method. The authors used
the WhyML modeling language to implement GMP’s algorithm together with its specification and then
the Why3 tool to prove its correctness automatically. The resulting proved WhyML model was then
extracted to correct-by-construction C code, which was binary compatible to the one from GMP. The
authors reported that this work took a few days. They also used ghost code in WhyML to simplify the
verification conditions.

The studies about standard mathematical functions and in particular square root specification and
validation cited above are all platform-dependent. A new approach proposed by Shilov et al. consisted
in a platform-independent verification of standard mathematical functions. In [28], this approach was
applied to the square root function and combines a manual (pen-and-paper) verification of a base case
that proves the algorithm’s correctness with real numbers to provide a proof-outline for the verification
of the algorithm for machine numbers. The function implements Newton method and uses a lookup
table for initial approximations. The specification is done in terms of total correctness assertions with
use of precise arithmetic and the mathematical square root and the verification is done in Floyd-Hoare
style. A proof of correctness of the algorithm is given for a fixed-point arithmetic and for a floating-point
arithmetic. The primary purpose of the paper is to make explicit the properties of the machine arithmetic
that are sufficient to perform the verification presented in the paper. Computer-aided implementation
and validation of the proof using ACL2 was partially done, the complete ACL2 implementation was left
for future studies.

8 Conclusions

In this paper, we have presented our experiments with automatic deductive proof of correctness of a
discrete-valued function calculating a square root by interpolation. We used Frama-C WP and GNAT-
prove to prove the correctness of the function, but we encountered some difficulties with the nonlinear
formula of the linear interpolation. Three non-standard approaches worked well for us: the use of bit-
vectors in SPARK, the direct SMT-LIB quantifier-free output of Frama-C and the static analysis with
Astrée. Bit-vectors are well supported in most modern SMT solvers and are well suited for problems that
involve modular arithmetic, but scaling is sometimes difficult. For our use case, SMT requests without
quantifiers performed and scaled better because there was no need for bit-vectors. Abstract Interpre-
tation analysis gave more confidence in proving that there was no overflow in the linear interpolation
calculus. We have proposed a methodology to use a combination of these different methods until the
proof is done. We also show that using industrial use cases with off-the-shelf tools does not always scale,
but if we work with researchers, we can find a solution and improve the tools.

Using deductive methods is very promising in an industrial context for safety-critical applications.
It can replace unit tests as shown in [20] and thus decrease cost while increasing quality. It is also an
intellectual activity that brings more satisfaction for engineers compared to testing.

References

[1] Aagaard, M. D., Jones, R. B., Kaivola, R., Kohatsu, K. R., Seger, C.-J. H.: Formal verification of iterative
algorithms in microprocessors. Proceedings Design Automation Conference (DAC 2000), pp. 201–206, (2000)

[2] Abrial, J.R.: The B-book: assigning programs to meanings (1996)

[3] Barnett, M., Leino, K.R.M.: Weakest-precondition of Unstructured Programs. SIGSOFT Softw. Eng. Notes
31(1), 82–87 (2005)

[4] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi’c, D., King, T., Reynolds, A., Tinelli, C.:
CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) (CAV’11). LNCS, vol. 6806, 171–177. Springer (2011)

[5] Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D., Dutertre, B., Fontaine, P., Ganesh,
V., Griggio, A., Grundy, J., Jackson, P., Oliveras, A., Krstić, S., Moskal, M., Moura, L.D., Sebastiani, R.,
Cok, T.D., Hoenicke, J.: The SMT-LIB Standard: Version 2.0. Tech. rep. (2010)

[6] Bertot, Y., Magaud, N., Zimmermann, P.: A Proof of GMP Square Root. Journal of Automated Reasoning,
vol. 29, no. 3–4, pp. 225–252, (2002)

[7] Chapman, R.: Industrial Experience with SPARK. Ada Letters XX(4) (2000)

9

[8] Conchon, S., Coquereau, A., Iguernlala, M., Mebsout, A.: Alt-Ergo 2.2. In: SMT Workshop: International
Workshop on SMT. Oxford, United Kingdom (2018)

[9] De Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver. TACAS’08/ETAPS’08, Springer-Verlag, Berlin,
Heidelberg (2008)

[10] Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of Programs. ACM 18(8),
453–457 (1975)

[11] Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification. 737–744. Springer,
Cham (2014)

[12] Ferguson, W. E. et al.: Digit Serial Methods with Applications to Division and Square Root, IEEE Trans-
actions on Computers, vol. 67, no. 3, p. 449?-456, (2018)

[13] Flanagan, C., Flanagan, C., Saxe, J.B.: Avoiding Exponential Explosion: Generating Compact Verification
Conditions. SIGPLAN Not. 36(3), 193–205 (2001)

[14] Harrison, J.: Formal Verification of Square Root Algorithms. Formal Methods in System Design 22(2), p.
143–153, (2003)

[15] Hoare, C.A.R.: An Axiomatic Basis for Computer Programming (1969)

[16] Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C: A software analysis
perspective. Formal Aspects of Computing 27(3) (2015)

[17] Kuliamin V.V.: Standardization and testing of implementations of mathematical functions in floating point
numbers. Programming and Computer Software 33(3), pp.154–173, (2007)

[18] Mauborgne, L.: Astrée: Verification of Absence of Runtime Error. In: Jacquart, R. (ed.) Building the
Information Society: IFIP 18th World Computer Congress Topical Sessions 22–27, Toulouse, France, pp.
385–392. Springer (2004)

[19] Melquiond, G., R. Rieu-Helft: Formal Verification of a State-of-the-Art Integer Square Root. 2019 IEEE
26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 2019, pp. 183–186

[20] Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal Verification: DO-178C Alter-
natives and Industrial Experience. IEEE Soft. 30(3) (2013)

[21] Rager, D.L., Ebergen, J., Nadezhin, D., Lee, A., Chau, C.K., Selfridge, B.: Formal verification of division
and square root implementations, an Oracle report. 16th Conference on Formal Methods in Computer-Aided
Design, pp. 149–152, (2016)

[22] Randimbivololona, F., Souyris, J., Baudin, P., Pacalet, A., Raguideau, J., Schoen, D.: Applying Formal
Proof Techniques to Avionics Software: A Pragmatic Approach. In: Proceedings of the Wold Congress on
Formal Methods in the Development of Computing Systems. Springer-Verlag, London (1999)

[23] Russinoff, D. M.: A Mechanically Checked Proof of Correctness of the AMD K5 Floating Point Square Root
Microcode. Formal Methods in System Design 14(1), pp.75–125, (1999)

[24] Russinoff, D. M.: A Mechanically Checked Proof of IEEE Compliance of the Floating Point Multiplication,
Division, and Square Root Algorithm of the AMDK7 Processor. J. Comput. Math. (UK), 1, (1998)

[25] Sawada J., Gamboa R.: Mechanical Verification of a Square Root Algorithm Using Taylor’s Theorem.
Lecture Notes in Computer Science. Vol. 2517. pp. 274–291, (2002)

[26] Shelekhov, V. I.: Verification and synthesis of addition programs under the rules of correctness of statements.
Automatic Control and Computer Sciences, vol. 45, no. 7, pp. 421–427, (2011)

[27] Shilov, N.V., Anureev, I.S., Bodin, E.V.: Generation of correctness conditions for imperative programs.
Programming and Computer Software 34(6), 307–321 (2008)

[28] Shilov, N.V., Kondratyev, D.A., Anureev, I.S., Bodin, E.V., Promsky, A.V.: Platform-independent Speci-
fication and Verification of the Standard Mathematical Square Root Function. Modeling and Analysis of
Information Systems 25(6): 637-666, in Russian, (2018)

[29] Todorov, V., Boulanger, F., Taha, S.: Formal Verification of Automotive Embedded Software. In: Proceed-
ings of the 6th Conference on Formal Methods in Software Engineering. pp. 84–87. FormaliSE’18, ACM,
New York, USA (2018)

10

	Introduction and Motivation
	Deductive methods
	Preliminaries
	Tools for deductive reasoning
	Atelier B
	Caveat and Frama-C WP
	GNATprove

	Environment
	Experiment
	Results
	From Frama-C to the SMT solver
	The difficult goal
	Direct proof with SMT-LIB
	Experience with the Why3 SMT output files
	Abstract interpretation

	Methodology
	Related work
	Conclusions
	References

