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Closed-Loop Stability Analysis of Voltage Mode Buck Using a
Proportional Delayed Integral Controller

J.-E. Hernández-Dı́eza, C.-F. Méndez-Barrios∗a, S.-I. Niculescub & V. Ramı́rez-Riverac

Abstract— This paper focuses on the design of a P− δ I
controller for the stabilization of a buck dc/dc converter. The
basis of this work is a geometric approach which allows
to partition the parameters space into regions with constant
number of unstable roots. The main contribution of the paper
is that it provides an explicit tool to find P−δ I gains ensuring
the stability of the closed-loop system. In addition, the proposed
methodology enables the design of a controller with a desired
exponential decay rate σ . In order to illustrate the effective-
ness of the proposed controller, some numerical examples are
presented.

I. INTRODUCTION

The generation, conversion and transmission of electrical
energy has raised awareness of the relevance of power
electronics in today’s applications; among the most popular
applications we may consider those related to renewable
energies. This fact has established power electronics as an
important subject in electrical and electronics engineering.
The basic topologies in electrical conversion systems con-
cerns to ac/dc, ac/ac, dc/ac and dc/dc. This paper considers
a buck converter, which due to its remarkable efficiency and
simplicity is one of the most popular dc/dc converters in
power electronics.

On the other hand, in mechanical, electrical and electronics
engineering, control theory is also an important subject
with suitable applications in these fields. The automation
of industrial processes has established the importance of
control theory. Low-order controllers are one of the most
widely applied strategies to controlled industrial processes
(see, e.g., [1], [2], [3]). Such a “popularity” is mainly due
to their particular distinct features: simplicity and ease of
implementation.

Among low-order controllers, those of PID-type are
known to be able to cope with uncertainties, disturbances,
elimination of steady-state errors and transient response im-
provement (see, for instance, [4]-[5]). However, as reported
in [4], [6], the main drawbacks of PID controllers lies in
the tuning of the derivative term, which may amplify high-
frequency measurement noise. In fact, as mentioned in [1],
[3], [7] the above arguments advise to avoid the derivative
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action in most applications. In this work, it is studied a
variation of these controllers using a time delay as an extra
degree of freedom in the tunning of the control scheme.

It is important to point out that the presence of a delay
in the feedback loop of continuous-time systems is accom-
panied among others with oscillations and instability and
bandwidth sensitivity (see, for instance, [8], [9]). However,
on one hand, the Euler approximation of the derivative:

y′ (t)≈ y(t)− y(t− ε)

ε
,

for small ε > 0, seems to be the simplest way to replace the
derivative action by using its delay-difference approximation
counterpart [10], [11]. On the other hand, there exist some
situations when the delay may induce stability, as explained
in the classical example of [12], [13], where an oscillator is
controlled by one delay “block”: (gain, delay), with positive
gains and small delay values (a detailed analysis of such
an approach can be found in [14]). In addition, it has also
been reported that there exist situations where an appropriate
selection of the delay parameter may improve the system’s
response (see, for instance, [15]).

Inspired by the above observations, the design of low-
order controllers with delay as a control parameter have been
addressed in several works, for example, [11] (stabilizing
chains of integrators by using delays), [16] (multiple delay
blocks), [17] (bounded input,single delay), to mention a few.
In this paper, we propose the use of a P−δ I controller for
the stabilization of the buck dc/dc converter. This controller
is based in the well known PI controller adding a delay in the
integral process as shown below in its correspondent control
law:

u(t) = kpe(t)+ ki

∫ t

0
e(v− τ)dv, (1)

where kp,ki and τ are real parameters and e(t) is the error
signal of the control scheme.

The proposed approach in this paper includes a deep
analysis of the closed-loop characteristic equation, which
considers only a delayed term due to the controllers nature.
This involves problems such as stability and σ -stability. The
organization of the remaining part of the paper is given as
follows: Section II discusses the modelling of a buck DC/DC
converter. Section III is the most important contribution of
this paper and it concerns to the stability criterion of the
closed-loop system and in which are shown the main results
of this work. Section IV shows some illustrative results for
the application of the methods developed in this paper and
some simulation results enhancing the advantages of using
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Fig. 1. Topology of the buck DC/DC converter [18].

a delayed control scheme. Finally, some concluding remarks
and future work are addressed.

II. PRELIMINARY RESULTS

Figure 1 depicts the classical topology of a Buck dc/dc
converter, where vs and vo are the supply and output voltage,
respectively. This configuration contains four basic elements:
inductor (L), capacitor (C), diode (D) and a controlled switch
(Q). Furthermore, a resistive load R is assumed. Then,
considering a fixed DC voltage supply vs, the main idea is to
use the switching pattern of D in order to adjust the output
voltage vo. The most widely used switching technique is the
PWM scheme, which consists of creating a switching pattern
of D at a fixed frequency f with an activation period ton such
that the duty cycle of the PWM is given as U := f · ton.

Motivated by the remarks presented in [18], a linear
control formulation can be provided by assuming that all
variables have a constant value and a fluctuating part, i.e.,

vs(t) = Vs + ṽs(t), (2)
vo(t) = Vo + ṽo(t), (3)
io(t) = io + ĩo(t), (4)
u(t) = U + ũ(t). (5)

Since a resistive load is assumed, then from a control theory
perspective, the problem can be formulated as the task to
reduce the variations at the output voltage ṽo(t) despite
of possible disturbances in the supply voltage ṽs(t) and
variations in the load by adding a correction factor ũ(t) to
the nominal duty cycle U .

The dynamic model of the buck DC/DC converter is
derived assuming that the system runs in a continuous-
conduction mode (CCM). The dynamic model is obtained
by defining two operation modes for the switching device
Q: ON(µ = 1) and OFF(µ = 0). Applying Kirchoff’s law
to both equivalent circuits, a switched model is derived.
Consequently, by considering a PWM switching pattern,
an averaged state-space model can be obtained (see, for
instance, [19]), where the averaged states [x1,x2] := [iL,vo]
are defined as:

x1 :=
1
T

∫ t

t−T
iL(h)dh, and x2 :=

1
T

∫ t

t−T
vo(h)dh.

Integrating the switch state µ over the commutation period
T , a new control variable u := 1

T
∫ t

t−T µ(h)dh is defined and
it represents the duty cycle. Then, the averaged model of the

buck DC/DC converter considering variations in the supply
voltage vs is given as:

ẋ1 = −x2

L
+

Vs + ṽs

L
u,

ẋ2 = −x1

C
− x2

RC
. (6)

Remark 1: It is worth mentioning that this averaged
model can describe the nature of the system only if the
commutation frequency f is sufficiently large.

Now, the relations in the converter for the mean values
(Vs,Vo, Io,U) are derived from (6) by setting the derivatives
equal to zero, which leads to:

IL =
Vo

R
, Vo =UVs. (7)

Finally, taking a linear approximation from (6) around the
nominal conditions, two transfer functions with respect to
the variations in the output voltage ṽo are defined as:

G1(s) :=
ṽo(s)
ũ(s)

=Vs

1
LC

s2 + 1
RC s+ 1

LC

, (8)

G2(s) :=
ṽo(s)
ṽs(s)

=U
1

LC

s2 + 1
RC s+ 1

LC

. (9)

In this paper, a linear control approach is considered for
ensuring stability in the closed-loop system. We focus in
a classical control scheme using a delayed controller based
on the well known PI controller. More precisely, we add a
delay in the integral process as an extra degree of freedom
for closed-loop response manipulation. We define this as the
P−δ I controller given by:

C(s) := kp + ki
e−τs

s
, (10)

where k := [kp,ki]
T are the controller gains and τ is a fixed

time-delay. We aim to analyze the stability of the system
through the closed-loop transfer function:

T (s) =
C(s)G1(s)

C(s)G1(s)+1
. (11)

III. CONTROL SCHEME DESIGN

As established above, we are interested in finding the
stability regions in the (kp,ki)-parameters space considering
a fixed delay-value τ . To this end, let us consider the open-
loop transfer function G1(s) (8), along with the P− δ I
controller (10). The control law corresponding to this scheme
can be described by:

ũ(t) = kpe(t)+ ki

∫ t

0
e(v− τ)dv, (12)

where the error signal is defined as:

e(t) := 0− ṽo(t) =Vo− vo(t), (13)

Notice that this is basically a classical PI controller in which
the error signal is delayed a finite constant amount of time τ

before integrating it. As mentioned before, the main reason
for adding this delayed action to this controller is to study the
behavior of the closed-loop response as τ is varied. In other



words, to have an extra degree of freedom in the tunning of
a PI-alike controller.

In order to study its stability, from the closed-loop transfer
function (11), the characteristic equation of the closed-loop
system rewrites as:

C(s)G1(s)+1 = 0, (14)

which straightforwardly lead us to:

∆(s) :=
LC
Vs

s3 +
L

VsR
s2 +

(
1
Vs

+ kp

)
s+ kie−τs = 0. (15)

In order to simplify the analysis, in the remaining part of the
paper we will adopt the following notation:

a :=
LC
Vs

, b :=
L

RVs
, c :=

1
Vs

. (16)

In this way, we can rewrite the characteristic equation as:

∆(s) = as3 +bs2 +(c+ kp)s+ kie−τs = 0. (17)

It is well known that the stability of the closed-loop system
is directly related to the location of the roots of (17) (see, [9],
for further details). More precisely, the closed-loop system is
stable if and only if all the roots of the characteristic equation
are located in the LHP (Left-Half Plane) of the complex
plane. The following section introduces the methodology
proposed in this paper for tunning the parameters (kp,ki,τ)
based in this observations.

A. Tunning Methodology

Let τ ∈R+ and σ ∈R+∪{0} be fixed values, we introduce
the following set:

T (σ) :=
{

k ∈ R2 |∆(σ + iω) = 0,∀ω ∈Ω
}
, (18)

with Ω⊂R+, some appropriate set of frequencies character-
ized in Proposition 2. Roughly speaking, this set contains all
gain vectors k := [kp,ki]

T such that the characteristic equation
of the closed-loop system (17) has at least one root on a
vertical line in σ on the complex plane. In other words, Ω

includes all the frequencies for which the gains k ∈R2 define
some σ -crossing points, that is, points located in the complex
plane on the line ℜ{s}= σ .

With this notation, it is clear that all possible gain vectors
k such that the system has at least one root in the RHP (right-
half plane) or in the imaginary axis of the complex plane can
be characterized by:

T̄ + :=
⋃

σ∈R+∪{0}
T (σ). (19)

Therefore, all stabilizing controllers k are contained in the
following set:

T̄ − := R2 \ T̄ +. (20)

It is worthy to notice we are focus in a particular region of
the parameters-space of k. This process is explained below.

First of all, it is necessary to enhance the importance of
the set T (0). This set contains all possible gain vectors k
such that the characteristic equation (17) has at least one
root on the imaginary axis. That is the set of all crossing

points, in other words, T (0) is nothing else that the so-called
“stability crossing curves” (see, e.g. [20], for the definition).
Bear in mind the fact that any continuous variation of k such
that k 6∈ T (0) implies that no roots exchange through the
imaginary axis can be achieved. It is easy to observe how
these stability crossing curves partition the parameters-space
in regions in which any choice of k implies that (17) has a
finite number of roots on the RHP of the complex plane.

Second, notice that if some element of T (σ) with σ >
0 is located inside one of this regions implies that the
characteristic equation (17) has at least one unstable root
in the RHP of the complex plane. Therefore, this can be
labeled as an unstable region. Finally, any region which is
not unstable is a subset of T − and can be labeled as a
stability region.

B. Main Results

The following results summarized in this section work as
tools for describing the behavior of the roots of the char-
acteristic equation of the closed-loop system. As mentioned
above, the first result presented in this section characterize
the pairs (kp,ki) such that the characteristic equation of the
closed-loop system (17) has at least one root on a desired
vertical line (ℜ{s}= σ) of the complex plane. This is useful
for two reasons, first, to construct an approximation of the
set T̃ − by discriminating the regions of the parameters
space partitioned by T (0) with some elements of the set
T̃ +. Second, assuming that we found an stability region, to
develop a tracking of the rightmost root of the characteristic
equation, as is shown in detail in Section IV.

Proposition 1: Let τ ∈ R+ and σ ∈ R be fixed values.
Then, the characteristic equation (17) has at least one root
in s = σ + iω , iff:

kp = −ℜ(σ ,ω)+
ω sin(τω)−σ cos(τω)

σ sin(τω)+ω cos(τω)
ℑ(σ,ω), (21)

ki =
σ2 +ω2

σ sin(τω)+ω cos(τω)
ℑ(σ ,ω)eτσ , (22)

where the functions ℜ and ℑ stands for the real and imagi-
nary part of G−1

1 (σ + iω):

ℜ
{

G−1
1 (σ + iω)

}
= a(σ2−ω

2)+bσ + c, (23)

ℑ
{

G−1
1 (σ + iω)

}
= 2aσω +bω, (24)

with ω ∈Ωi where the set Ωi is defined by:

Ωi := {ω ∈ R |ω cot(τω)+σ 6= 0} , (25)

where n ∈ Z. Furthermore, it has a single root in s = σ iff
P(σ) 66= 0 and:

ki =−σ
(
kp +G−1

1 (σ)
)

eτσ . (26)
Furthermore, we present an additional proposition for

computing the stabilizing interval of the delay value given a
stabilizing triplet (kp,ki,τ).

Proposition 2: Let (kp,ki,τ
∗) be a stabilizing triplet, then,

the closed-loop system is asymptotically stable for any delay
value τ ∈ [τ∗,τc), where:

τc = min
{

τ ∈ R
∣∣τ(ω∗)> 0,ω∗ ∈Ωp

}
, (27)



in which τ(ω∗) is computed as:

τ(ω∗) =
1

ω∗

[
arg

{
ki

iω∗(kp +G−1
1 (iω∗))

}
+(2n+1)π

]
, (28)

for n ∈ Z and where the set Ωp is defined as the set of all
real roots of the following equation:

|ki|2−ω
∗2 |kp +G−1

1 (iω∗)|2 = 0. (29)

IV. ILLUSTRATIVE AND SIMULATION RESULTS

All results of this section were obtained by means of the
“SimPowerSystems” toolbox in the “Simulink” environment
of the software “Matlab”. The parameters used in the simu-
lation are summarized in Table I. The tests presented in this
section are designed to regulate the output voltage vo(t) to a
nominal value of Vo := 20V . Recall that the control scheme
has the task to regulate the variations of the output voltage
ṽo(t) to zero in order to satisfy the following: vo(t)→Vo. The
control law proposed for the achievement of this objectives
is given by:

u(t) =U + ũ(t), (30)

with:
ũ(t) = kpe(t)+ ki

∫ t

0
e(v− τ)dv, , (31)

where the error signal is defined as:

e(t) = 0− ṽo(t) =Vo− vo(t), (32)

and the nominal value U is obtained directly from (7).

TABLE I
PARAMETERS OF THE SYSTEM

Symbol Value Unit
R 3 Ω

L 180×10−5 H
C 40×10−6 F
Vs 40 V
f 20×103 Hz

Consider a fixed time delay τ = 1.6×10−3 in the P−δ I
controller shown in (10) along with the parameters shown
in Fig. I. In order to find the set of gains (kp,ki) that
guaranties the stability of th closed-loop system we partially
compute the set T̃ − described in Section III-A. First, using
Proposition 1 we compute the sets T (0), which as men-
tioned before partition the parameters space in regions with
a constant number of roots of the characteristic equation (17)
on the right-half plane of the complex plane. Second, using
this proposition, we also compute some of the sets σ with
σ > 0, if a curve of these sets crosses any partitioned region
indicates that any choice of parameters inside this implies
that the characteristic equation has at least a root in the right-
half plane of the complex plane, and therefore, is an unstable
region. As can be seen from Fog. 2, using this criteria we
are able to discriminate the unstable region and finally find
a stability region for this fixed delay. An expanded view of
this stability region is shown in Fig. 3.

Fig. 2. Stability Analysis in the Parameters Space

Fig. 3. Expanded View of the Stability Region

Now, from Fig. 3 we choose the gains pair k∗ = (kp,ki) =
(10,5), a stabilizing controller for τ = 1.6× 10−3. Using
Proposition 2 we compute the critical delay value τc =
3.1494, which implies that the closed-loop system is stable
for any delay value in the interval (τ,τc). Furthermore, using
Proposition 1 we develop what is known as the σ stability
analysis. Using this proposition we compute some curves
of the sets T (σ) with σ < 0, particularly with σ = −1
and σ − 2, this results are shown in Fig. 4. Notice that
here we enhance three different regions R1, R2 and R3.
Consider region R2 Since this region is bounded by the
curves obtained from the sets T (−1) and T (−2), this
indicates that a variation inside this region implies that no



root is crossing through the vertical lines ℜ{s} = −1 and
ℜ{s} = −2. Then, the rightmost root is contained in this
band and therefore, the maximum exponential decay related
to σ is bounded for values of σ ∈ (−2,−1). A similar
conclusion can be stated for mathcalR1 with σ ∈ (−1,0)
and for mathcalR3 with σ ∈ (−2,−3).

Fig. 4. σ Stability Analysis in the Parameters Space

Finally, using the controllers parameters described above
k∗ = (10,5) and τ = 1.6× 10−3 we test the closed-loop
control scheme. This result are shown in Fig. 5, in which
we depict a comparison between a normal PI controller
(τ = 0) and the delayed control scheme proposed. For this
particular set-up it is of interest enhance how the closed-loop
response can be manipulated by adding this delayed action.
Both responses regulate to 20V as expected, however, the
addition of the time delay to the control scheme allow us to
reduce the ripple of the output of the system.

V. CONCLUDING REMARKS

A methodology for the design of a P− δ I controller
applied to the stabilization of a buck DC/DC converter is
presented. In addition, the behavior of the roots of the
characteristic equation, as the controller gains are varied is
analyzed. The results go beyond the stabilization problem,
particularly, the closed-loop performance analysis via the
solution to the σ -stability problem. Illustrative and simu-
lation results are presented for the implementation of the
methodology proposed as for the advantage of using a
delayed control scheme. Finally, the design methodology can
be applied and developed straightforwardly, showing that the
presented results are easy to implement.

VI. FUTURE WORK

First, one of the most interesting aspects of this paper
is the manipulation of the closed-loop response by adding
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Fig. 5. Closed-Loop Response Comparison with τ = 0 and τ = 1.6×10−3.

a delayed action in the control scheme, experimental tests
must be developed to analyze the potential advantages for
this converter. Second, we would like to enhance the fact
that the stability region shown in Section IV appears to
be unbounded. In terms of the differential equation related
to this system this is perfectly accurate. However, in a
real scenario this type of switching circuits have an extra
constraint, the control law must be bounded (u(t)∈ [0,1]). An
open problem for this system is to find the subregion inside
the stability region such that this constraint is considered.
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