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Low Complexity Controllers for Vibrations Damping in Drilling Systems

Islam Boussaada and Hugues Mounier and Silviu-Iulian Niculescu

Abstract— In oilwell drillstring systems, vibrations represent
an important source of economic losses; drill bit wear, pipes
disconnection, borehole disruption and prolonged drilling time,
are only a few examples of consequences associated with drilling
vibrations. In this paper a control-oriented model of torsional
vibrations occurring in rotary drilling process is proposed.
More precisely, a wave equations with weak damping term is
considered. An appropriate stabilizing controller with a reduced
number of parameters is proposed for damping such torsional
vibrations. Such a controller allows to further explore the effect
of multiple roots with maximal admissible multiplicity for linear
neutral system with a single delay. An illustrative example
completes the presentation.

I. INTRODUCTION
It is commonly accepted that most processes include

aftereffect phenomena in their dynamics and there exists an
abundant literature devoted to delay models in economics,
physiology, population dynamics, biology, chemistry, vis-
coelasticity, physics, information technologies, mechanics,
engineering sciences, etc, see for instance [26] and the
references therein.

It is well known that self-excited drillstring vibrations are
the main cause of loss of performance in the perforation
process for oil and gas; they provoke premature wear and
tear of drilling equipment resulting in fatigue and induced
failures such as pipe wash-out and twist-off [30].

Roughly speaking, self-excited vibrations can be explained
by the instability of an equilibrium in the dynamic system
description (see e.g. [28]). An unstable equilibrium point
implies that a small initial system perturbation will grow over
time until it manifests itself as the observable phenomena
of stick-slip, in the case of torsional vibrations, or bit-
bouncing, in the case of axial vibrations [1], [6], [8], [33].
The bit-bounce phenomenon, caused by axial vibrations, is
characterized by a repetitive loss of contact of the bit with the
rock formation. The stick-slip effect, provoked by torsional
vibrations, can be recognized by the successive occurrence
of two phases: stick (the bit stops rotating) and slip (the bit
is released from the stick phase with angular velocity higher
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than the nominal one) [27]. It has been reported that the
stick-slip phenomenon occurs for about fifty percent of the
drilling operation [25].

The harmful consequences of drillstring vibrations have
motivated extensive research to analyze them and to try to
mitigate their influence during drilling operations. In order
to reduce the costs of failures, extensive research effort
has been conducted in the last five decades to suppress
drillstring vibrations and several methodologies have been
proposed, both from practical and theoretical viewpoints, see
the references cited in the survey [29] and in [24], [35].

In general, classical controllers are not necessarily able to
stabilize delay systems. A common technique to avoid the
complexity of delay systems consists in approximating them
by finite-dimensional representations; however, neglecting
aftereffects is not an appropriate solution: in the best case
scenario it leads to the same degree of complexity in the
control design, in worst situations it is potentially harmful
for the system’s stability. All these remarks motivated us first
to provide a realistic control-oriented and relatively simple
time-delay model for representing the dynamical behavior
of the drilling vibrations. Next, we exploit the structure of
the model and propose a controller with a reduced number
of tuning gains (or parameters). Finally the controllers gains
are chosen such that the spectrum of the closed-loop system
has a a particular structure. Including multiple roots on the
real axis surprisingly, such a spectral distribution leads to
closed-loop stabilizing of the overall system. Such an idea
was already exploited in the case of retarded systems, but
not for neutral systems and it represents a novelty.

It is worth mentioning that the rightmost root for
quasipolynomial function corresponding to stable retarded
time-delay systems (also in the neutral case under some
assumptions) is actually the exponential decay rate of its
time-domain solution, see for instance [16] for an estimate
of the decay rate for stable linear delay systems. To the best
of the authors knowledge, the first time an analytical proof of
the dominancy of a spectral value for the scalar equation with
a single delay was presented in [17] and was further exploited
by the authors. More precisely, the dominancy property
is further discussed for scalar delay equations in [12] for
second-order systems controlled by a delayed proportional
is proposed in [18], [19]. Next, its applicability in damping
active vibrations for a piezo-actuated beam is proved and
in [20], [21] the regulation of the Mach number in a wind
tunnel is considered.

This note provides a new exploration of multiple roots
properties for time-delay systems of neutral type carried out
from wave equations with a weak damping term correspond-



ing to a viscous damping.
The paper is organized as follow. In Section II, a PDE

model describing the torsional vibration in oilwell rotary
drilling system is provided. Section III is devoted to the
control design for damping such vibrations. An applicative
illustrative example completes the paper. The paper ends by
Some concluding remarks end the paper.

II. PDE MODELLING OF THE DRILLING VIBRATIONS

A. A Coupled Axial/Torsional Vibrations Model

It is well known that torsional vibrations contribute to
the excitation of axial oscillations. In fact, these self-excited
oscillations are intimately coupled together and may occur
simultaneously. Coupled axial-torsional excitations of a drill-
string of length L, described by the rotary angle Φ(s, t) and
the longitudinal position U(s, t) may be modeled by two
wave equations [4]:

∂2
zΦ(z, t) = c̃ 2∂2

t Φ(z, t), (1a)

∂2
zU(z, t) = c2∂2

tU(z, t), (1b)

with boundary conditions

GJ∂zΦ(0, t) = β∂tΦ(0, t)− uT (t) (2a)

GJ∂zΦ(L, t) = −IB∂2
t Φ(L, t)− T (∂tΦ(L, t)) , (2b)

and

EΓ∂zU(0, t) = α∂tU(0, t)− uH(t) (3a)

EΓ∂zU(L, t) = −MB∂
2
tU(L, t)− T (∂tΦ(L, t)) . (3b)

The spatial variable ”z” is chosen such that z = 0
denotes the top of the drillstring and z = L its bottom. The
propagation speeds of the axial and torsional waves vU , vΦ,
defined as: vU = c−1 and vΦ = c̃−1 can be computed from
the material parameters, namely the Young modulus E, the
shear modulus G and the density ρa, by means of

c =

√
ρa
E

and c̃ =

√
ρa
G
. (4)

In the boundary condition (3a), uH is the brake motor
control (upward hook force) and α∂Ut(0, t) represents a
friction force of viscous type (where α is the viscous friction
coefficient). In (2a), uT represents the torque produced by
the rotary table motor and β∂tΦ(0, t) − uT (t) designates
the difference between the motor speed and rotational speed
of the first pipe. It is assumed that the drilling system can
be controlled by the boundary force uH and the boundary
torque uT .

The model contains some geometrical parameters of the
drill string, that are assumed to be spatially and timely
constant. These comprise the drillstring’s cross-section Γ
and its second moment of area J , as well as the mass MB

and the inertia moment1 of the drill bit IB . The function T
considered in the bottom boundary conditions accounts for

1The inertia moment is such that IB = MB r2, where r is taken as the
averaged radius of drillpipe.

the frictional torque resulting from the interaction between
the drill bit and the rock.

It is important to point out that the boundary conditions
(2b) and (3b) corresponding to the bottom of the rod, involve
a frictional torque arising from the bit-rock interaction. The
modeling of the torque on the bit constitutes a crucial aspect
of the system description since it allows to reproduce the
vibrational phenomena. The reader can find the numerical
values of the model’s parameters in Appendix A.

B. Torsional Vibrations: A Neutral-type Time-delay Model

The wave equation model provides a realistic description
of the distributed system variables; however, in some cir-
cumstances, it is convenient to deal with a relatively simpler
model involving just the primary interest variables. This
section presents a direct procedure to derive, from the wave
equations, some equivalent input-output models described
by neutral-type time-delay equations relating the variables
at both ends of the drilling rod.

Integration along characteristics of the hyperbolic PDE
allows the association of a certain system of functional
differential equations to the mixed problem. More precisely,
a one-to-one correspondence may be established and proved
between the solutions of the mixed problem for hyperbolic
PDE and the initial value problem for the associated system
of functional equations [31]. By reducing a boundary value
problem to a neutral-type time-delay equation we are able to
exploit techniques from delay systems theory to gain insight
into the complexity involved in the analysis and simulation of
the corresponding PDE models. The PDE model we consider
accompanied with boundary conditions is given by:

∂2
zΦ(z, t)− γ ∂tΦ(z, t)− c2 ∂2

t Φ(z, t) = 0 (5a)
GJ∂zΦ(0, t) = β∂tΦ(0, t)− uT (t) (5b)

GJ∂zΦ(L, t) = −IB∂2
t Φ(L, t)− T (∂tΦ(L, t)) (5c)

which can be reducible to an I/O system. Namely, as de-
scribed in Appendix C, (5) reduces to a neutral system of
order 3 with a single delay τ = cL that can be written as:

(− βIB
αL2GJc

− IB
2αL

)
...
ΦL(t)+(

βIBαL
2GJc

− IBαL
2

)
...
ΦL(t− 2τ)

−(
β

2αL
+
GJc

2αL
)Φ̈L(t)+(

GJc

2
αL−

βαL
2

)Φ̈L(t− 2τ)

−(2
GJc

2αL
ζ +

β

2αL
)Φ̇L(t)

+(2
GJcζαL

2
− βζαL

2
)Φ̇L(t− 2τ)

+
ζ2GJc

2αL
ΦL(t) +

ζ2GJc

2αL
ΦL(t− 2τ)

=
1

2
(αLΦ̈L(t− 2τ)+α−1

L Φ̈L(t))×

T ′(αLΦ̇L(t− 2τ)+α−1
L Φ̇L(t))

−(αLΦ̈L(t− 2τ)− α−1
L Φ̈L(t))×

T ′(αLΦ̇L(t− 2τ)−α−1
L Φ̇L(t))

− u̇T (t− τ)− ζuT (t− τ).
(6)



It is important to point out that the delay τ represents the
time that the torsional wave takes to travel from one to the
other extremity of the drillstring, see for instance Appendix
B & C.

III. LOW COMPLEXITY CONTROLLER DESIGN

The multiplicity induced-dominancy (MID) property was
underlined in [12], [18] for retarded time-delay systems and
were exploited in several applications [19], [20], [21]. The
controller we propose for suppressing torsional vibrations is
of the form uT (t) = κ1 ΦL(t − τ) where the delay is the
same as the one intrinsic to the model. This provides a new
extension in the applicability of MID property for time-delay
systems of neutral type carried out from wave equations with
a weak damping term corresponding to a viscous damping.
The design approach we consider is a frequency-domain
method that consists in intentionally forcing the characteristic
equation to have multiple negative spectral values. Under
appropriate conditions, such a multiple root may be the
dominant one among the spectrum, guaranteeing thus the
stability of the closed-loop system.

Let us first, recall some important facts. In frequency
domain, we deal with linear functional differential equations
only. Thus, we consider the linearization of (6), which gives:

(− βIB
αL2GJc

− IB
2αL

)
...
ΦL(t)+(

βIBαL
2GJc

− IBαL
2

)
...
ΦL(t− 2τ)

−(
β

2αL
+
GJc

2αL
)Φ̈L(t)+(

GJc

2
αL−

βαL
2

)Φ̈L(t− 2τ)

−(2
GJc

2αL
ζ +

β

2αL
)Φ̇L(t)+(2

GJcζαL
2

− βζαL
2

)Φ̇L(t− 2τ)

+
ζ2GJc

2αL
ΦL(t) +

ζ2GJc

2αL
ΦL(t− 2τ)

=
1

k̄
(αLΦ̈L(t− 2τ)+α−1

L Φ̈L(t))

− 2

k̄
(αLΦ̈L(t− 2τ)− α−1

L Φ̈L(t))

− u̇T (t− τ)− ζuT (t− τ),
(7)

since the friction force at the bottom denoted by T is
modeled in [22] by the following odd function: T (x) =

2k̄x
k̄2+x2 , for which corresponds the local approximation:

T (x) =
2

k̄
x+O

(
x3
)
,

See also [23] for further discussion on friction models in
rotary drilling systems.

Consider now a controller uT (t) = κ1 ΦL(t − τ), then
u̇T (t) = κ1 Φ̇L(t− τ) and system (8) writes in closed-loop
as: 

a3

...
ΦL(t) + b3

...
ΦL(t− 2τ)

− a2Φ̈L(t)

+ b2Φ̈L(t− 2τ)

− a1Φ̇L(t) + b1Φ̇L(t− 2τ)

+ a0ΦL(t) + b0ΦL(t− 2τ) = 0,

(8)

where:

a3 = − βIB
αL2GJc

− IB
2αL

, b3 =
βIBαL
2GJc

− IBαL
2

,

a2 =− β

2αL
− GJc

2αL
− 3

k̄αL
, b2 =

GJc

2
αL−

βαL
2

+
αL
k̄
,

a1 = −GJc
αL

ζ − β

2αL
, b1 = κ1 +GJcζαL −

βζαL
2

,

a0 =
ζ2GJc

2αL
, b0 = κ1ζ +

ζ2GJc

2αL
where

c =

√
ρa
G
, ζ =

γ

2c2
, αL = e−cLζ , τ̃ = 2τ = 2cL,

(9)
and the numerical values of the remaining parameters are
given in Table I in Appendix.

Such a system is of neutral type and it can be rewritten
as a quasipolynomial including one delay using the Laplace
transform. 

L(s) = P (s) +Q(s)e−sτ̃ ,

P (s) =

3∑
i=0

aks
k,

Q(s) =

3∑
i=0

bks
k,

(10)

The main result can be resumed as follows.

Proposition 1. The linearized system (8) subject to the
controller uT (t) = κ1 ΦL(t−τ) has the following properties
in closed-loop :
• The maximal multiplicity of any root of the quasipoly-

nomial L given in (10) with arbitrary coefficients
(ak, bk)0≤k≤3 is bounded by 7.

• If bk < 1 ∀ 0 ≤ k ≤ 3 and such a maximal multiplicity
is reached, then the corresponding spectral value is real,
negative and dominant.

Sketch of the proof: Exploring the multiplicity 7 suggests
to consider the quasipolynomial L as well as its first six
derivatives. More precisely, setting L(s) = 0 allows to
eliminate the exponential term and writing it as a rational
function in s. Taking this into account allows to say that
the vanishing of the first six derivatives of L represents an
algebraic 2 system of six equations. Solving them, gives
a single solution in one free parameter. Such a solution
is then substituted in the first elimination equation which
gives the value of the remaining parameter and then the
complete solution (without free parameters). Substituting
such a final solution in the seventh derivative of L shows
that L(7)(s0) 6= 0. To show the dominancy of s0 one uses
the principle argument. The condition on bk < 1 guarantees
the asymptotic axis of spectrum chain is either in the open
left half-plane or is the imaginary axis, see [7].

IV. ILLUSTRATIVE EXAMPLE

Since the system’s parameters are initially fixed, then the
maximal multiplicity cannot be reached. We will apply the

2polynomials in s parametrized by ak and bk



Fig. 1. The spectral values’ distribution for equation (8) is illustrated
using QPmR toolbox from [15]. The four rightmost roots correspond to
non oscillating solution are emphasized (a double root at s = −3, a simple
root near s = −0.5 and a simple root near s = −1.3.

idea outlined in the previous section

Proposition 2. If the system parameters are chosen in Table
I and

b0 =0.850229 a1 − 1.212251 a2 − 0.378553 a3

− 0.432124 a0 − 54 b3 + 9 b2,

b1 =6 b2 + 0.134694 a1 + 0.042061 a2 − 1.464620 a3

− 0.094469 a0 − 27 b3 and the gain

κ1 = −2854.883393,

then s0 = −3 is a double root for (10). Furthermore, in such
a case the trivial solution is asymptotically stable.

Remark. It is important to observe that, even if the multiple
root is not dominant, the closed loop-system is asymptoti-
cally stable. Figure 1 illustrates the spectral distribution of
the characteristic function (10) with the parameters defined
in Table 1 and Proposition 2.

V. CONCLUDING REMARKS

This paper presents a PDE modeling of torsional vibration
in rotary drilling system. Such a model is then reduced to a
third-order neutral equation with a single delay. for which a
reduced complexity delayed stabilizing controller is proposed
for an appropriate pole-placement of the closed-loop system.
The obtained controller acts for damping oscillation of the
wave equation.
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APPENDIX A: NUMERICAL VALUES OF THE MODEL’S
PARAMETERS

See Table 1.

TABLE I
NUMERICAL VALUES OF SOME OF THE DRILLING SYSTEM PARAMETERS.

Symbol Parameter Numerical value
L String length 1000 m
G Shear modulus 79.3 × 109 N m−2

Γ Drillstring’s cross-section 35 × 10−4 m2

J Second moment of area 1.19 × 10−5 m4

IB Lumped inertia at the BHA 89 Kg m2

ρa Density 8000 Kg m−3

β Angular momentum 2000 N m s
γ Damping constant 6,05296343 10−7 Nms

rad
k̄ Constant of the friction top angle 2.6 10−3

APPENDIX B: WAVE EQUATION WITH A WEAK DAMPING
TERM

A torsional model improving (1a) accompanied with the
boundary conditions (2) is given by:

∂2
zΦ(z, t)− γ ∂tΦ(z, t)− c2 ∂2

t Φ(z, t) = 0 (11a)
GJ∂zΦ(0, t) = β∂tΦ(0, t)− uT (t) (11b)

GJ∂zΦ(L, t) = −IB∂2
t Φ(L, t)− T (∂tΦ(L, t)) (11c)

The temporal Laplace transform of (11a) yields

(∂2
z − γs− s2c2)Φ̂(z, s) = 0

leading to the characteristic equation ξ2 − γs− s2c2 = 0 or
equivalently, ξ =

√
γs+ s2c2.

Since the damping coefficient is assumed to be sufficiently
small γ � 1, then

ξ = ±cs
√

1 +
γ

c2
1

s
= ±

√
1 +

η

d
,

where η = γ
c2 . This allows to:

ξ = ±
(
cs+

cη

2

)
+ o(η),

Thus, ξ = ±(cs + cζ) with ζ = η
2 = γ

2c2 which
corresponds to the following characteristic equation:

ξ2 − c2(s+ ζ)2 = 0

or equivalently: ξ2−c2s2−2c2ζs−ζ2 = 0 itself corresponds
to the following partial differential equation

∂2
zΦ(z, t)− 2c2ζ∂tΦ(z, t)− c2 ∂2

t Φ(z, t)− ζ2Φ(z, t) = 0.
(12)

Taking ξ = ±c(s+ ζ), the general solution of (12) is given
by

Φ̂(z, s) = ecz(s+ζ) µ̂1(s) + e−cz(s+ζ) µ̂2(s)

= eczseczζ µ̂1(s) + e−czse−czζ µ̂2(s) (13)

which is to be compared to the solution of (12) with
ζ = 0 (the undamped wave equation) corresponding to the



d’Alembert solution eczs µ̂1(s)+e−czs µ̂2(s). In conclusion,
in the case of a weak damping term, the solution of the un-
damped equation represents a relatively good approximation
for the solutions of the wave equation with damping term,
see for instance [2].

APPENDIX C: CARRYING-OUT A FLAT OUTPUT FOR THE
PDE MODEL

The PDE model we consider accompanied with boundary
conditions is given by:

∂2
zΦ(z, t)− γ ∂tΦ(z, t)− c2 ∂2

t Φ(z, t) = 0 (14a)
GJ∂zΦ(0, t) = β∂tΦ(0, t)− uT (t) (14b)

GJ∂zΦ(L, t) = −IB∂2
t Φ(L, t)− T (∂tΦ(L, t)) (14c)

which can be reducible to : Knowing that the general solution
of (14) can be expressed as

Φ̂z = Ĉzµ̂1 + Ŝzµ̂2,

Φ̂′z = c2(s+ ζ)2Ŝzµ̂1 + Ĉzµ̂2,

where Φ̂z is nothing but the Laplace transform of Φz =
Φ(z, t) and Φ′z is nothing but ∂zΦz and

Ĉz = cosh(c(z − L)(s+ ζ)),

Ŝz =
sinh(c(z − L)(s+ ζ))

c(s+ ζ)
,

and Ĉ ′z = c2(s+ ζ)2Ŝz, Ŝ′z = Ĉz.
Finally, since ĈL = 1 and ŜL = 0, then, Φ̂L = µ̂1 and

Φ̂′L = µ̂2.
Let us now reconstruct a basis or a flat output of the model

(5), see for instance [3], [32], [34]. The considered boundary
conditions (2) rewrite

GJΦ′0 = βΦ̇0 − uT (t)

GJΦ′L = −IBΦ̈L − T
(

Φ̇L

)
,

(15)

which shows that ΦL is a basis or flat output, see [5]. Indeed,
one has

µ1 = ΦL,

µ2 = − IB
GJ

Φ̈L −
1

GJ
T
(

Φ̇L

) (16)

which allow us to express the variables at the top Φ0, Φ̇0, Φ′0
:

Φ0 = C0ΦL −
1

GJ
S0

(
IBΦ̈L + T

(
Φ̇L

))
,

Φ′0 = c2
(
d

dt
+ ζ

)2

S0ΦL −
C0

GJ

(
IBΦ̈L + T

(
Φ̇L

))
,

Φ̇0 = C0Φ̇L −
1

GJ

d

dt
S0

(
IBΦ̈L + T

(
Φ̇L

))
.

(17)
To establish the operators expressions, let us set αL = e−cLζ

and δ̂L = e−cLs with (δLw) = w(t− Lc). Then

Ĉ0 = cosh(cL(s+ ζ)) =
1

2

(
α−1
L δ−1

L + αLδL
)
,

Ŝ0 = − sinh(cL(s+ ζ))

c(s+ ζ)
=
ecLζe−cLs

2c

1− e−2cL(s+ζ)

s+ ζ
.

Setting σ̂β,h = 1−e−h(s−β)
s−β with (σβ,hw) (t) =∫ t

t−h e
β(t−τ)w(τ)dτ , we have:

S0 = −
δ−1
L σ−ζ,2cL

2cαL
,(

d

dt
+ ζ

)
S0 =

αLδL − α−1
L δ−1

L

2c
,

d

dt
S0 =

αLδL − α−1
L δ−1

L

2c
− ζS0.

(18)

We are now able to establish a top to bottom relation which
allows to write our PDE system as an I/O system. Indeed, the
input -output system, with input uT and output ΦL which is a
flat output. As a matter of fact, using the boundary condition
(15) and substituting the expression of Φ̇0 and Φ′0 from (17)
one obtains:
GJc

2
(
d

dt
+ ζ)

(
αLδL − α−1

L δ−1
L

)
ΦL

− 1

2

(
αLδL + α−1

L δ−1
L

) (
IBΦ̈L + T

(
Φ̇L

))
=
β

2

(
αLδL + α−1

L δ−1
L

)
Φ̇L

− β

GJ

(
1

2c

(
αLδL − α−1

L δ−1
L

)
− ζS0

)(
IBΦ̈L + T

(
Φ̇L

))
− uT .

(19)
All these steps allow to alleviate the PDE system into a delay
system. Let us first set :

D =
d

dt
+ ζ,

∆ = αLδL + α−1
L δ−1

L ,

∆̃ = αLδL − α−1
L δ−1

L .

Then equation (19) rewrites

GJc

2
D∆̃ΦL −

1

2
∆
(
IBΦ̈L + T

(
Φ̇L

))
=
β

2
∆Φ̇L −

β

GJ

(
∆̃

2c
− ζS0

)(
IBΦ̈L + T

(
Φ̇L

))
− uT

(20)
To avoid handling distributed delays (i.e. S0 above), one
makes use of (18):

DS0 =
∆̃

2c
,

and apply D on both sides of (20) :

GJc

2
D2∆̃ΦL −

1

2
D∆

(
IBΦ̈L + T

(
Φ̇L

))
=
β

2
D∆Φ̇L −

β

GJ

(
D∆̃− ζ∆̃

2c

)(
IBΦ̈L + T

(
Φ̇L

))
−DuT

(21)
which is a neutral system of order 3 with a single delay
τ = cL that can be written as:

GJc
2 αLΦ̈L(t − 2τ) − GJc

2 α−1
L Φ̈L(t) + 2GJc2 ζαLΦ̇L(t −

2τ) − 2GJc2 ζα−1
L Φ̇L(t) + ζ2GJc

2 αLΦL(t − 2τ) −
ζ2GJc

2 α−1
L ΦL(t) − 1

2IBαL
...
ΦL(t − 2τ) − 1

2IBα
−1
L

...
ΦL(t) −

1
2 (αLΦ̈L(t − 2τ) + α−1

L Φ̈L(t))T ′(αLΦ̇L(t − 2τ) +



α−1
L Φ̇L(t)) = β

2αLΦ̈L(t−2τ)+ β
2α
−1
L Φ̈L(t)+ βζ

2 αLΦ̇L(t−
2τ) + β

2α
−1
L Φ̇L(t) − βIBαL

2GJc

...
Φ(t − 2τ) +

βIBα
−1
L

2GJc

...
Φ(t) −

(αLΦ̈L(t−2τ)−α−1
L Φ̈L(t))T ′(αLΦ̇L(t−2τ)−α−1

L Φ̇L(t))−
u̇T (t− τ)− ζuT (t− τ).

which gives by collecting terms of the same order:



(− βIB
αL2GJc

− IB
2αL

)
...
ΦL(t)+(

βIBαL
2GJc

− IBαL
2

)
...
ΦL(t− 2τ)

−(
β

2αL
+
GJc

2αL
)Φ̈L(t)+(

GJc

2
αL−

βαL
2

)Φ̈L(t− 2τ)

−(2
GJc

2αL
ζ +

β

2αL
)Φ̇L(t)+(2

GJcζαL
2

− βζαL
2

)Φ̇L(t− 2τ)

+
ζ2GJc

2αL
ΦL(t) +

ζ2GJc

2αL
ΦL(t− 2τ)

=
1

2
(αLΦ̈L(t− 2τ)+α−1

L Φ̈L(t))T ′(αLΦ̇L(t− 2τ)+α−1
L Φ̇L(t))

−(αLΦ̈L(t− 2τ)− α−1
L Φ̈L(t))T ′(αLΦ̇L(t− 2τ)−α−1

L Φ̇L(t))

− u̇T (t− τ)− ζuT (t− τ).
(22)
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