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Navigation in a multi-obstacle environment. From partition of the space
to a zonotopic-based MPC.

Daniel Ioan1, Sorin Olaru1, Ionela Prodan 2, Florin Stoican 3, Silviu-Iulian Niculescu1

Abstract— This paper pertains to the navigation in a multi-
obstacle environment and advocates the use of local zonotopic
approximations within the obstacle and collision avoidance
problem. The design problem is commonly stated in the
literature in terms of a constrained optimization problem over
a non-convex domain. Firstly, it will be shown that a partition
of the navigation space can be obtained using the notion of
convex liftings. This partition will offer the foundation for the
generation of a path from the current position to the destination
point. In order to efficiently describe the navigation on this path,
the feasible domain is described using zonotopes. The structural
properties of zonotopes with respect to the generic polyhedral
sets represents an advantage from the computational point of
view. The current paper treats the zonotopic approximations
from a control perspective, providing a set of conditions able
to safeguard the initial domain topology. Globally, an adapta-
tion of the generic collision avoidance problem is considered,
aiming to guarantee the feasibility and highlighting through
simulations and proof of concepts illustrations the advantages
offered by the use of a zonotopic representation.

I. INTRODUCTION

The recent proliferation of the real-world applications
involving unmanned vehicles has led to a growing interest
of the control community on developing reliable and ade-
quate collision-free control strategies within multi-obstacle
environment [1], [2].

There exist in the literature two main approaches dealing
with the path/trajectory planning in a non-convex feasible
space. The optimization-based methods state the problem
as a constrained optimization one either over a non-convex
domain (e.g. mixed-integer formulation [3], [4]) or with a
non-linear cost (e.g. potential field formulation [5], [6]). The
second class of approaches, the sampled (or graph) -based
methods, replaces the search of feasible paths with the search
of the shortest (w.r.t. a predefined criterion) path within
a graph whose nodes are randomly selected samples [7],
the most popular ones: PRM (probabilistic roadmaps) [8],
RRT (rapidly-exploring random tree) [9] and their variants.
Moreover, there are some techniques, like tunnel MILP [10],
which combines the previously two classes of methods.

Generally, regardless of the approach, a polytopic repre-
sentation of the obstacles is used. This allows, especially
for the first type of methods, an efficient characterization
of the non-convex and non-connected feasible domain as
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a union of convex regions through the corresponding hy-
perplane arrangements in a mixed-integer formalism. The
main drawback of this formalism is that the complexity of
the control problem is strongly dependent on the number
of obstacles. Nonetheless, various technical procedures were
developed recently in order to manage the complexity of the
formulation: cell merging [11], logarithmic formulations [12]
or the use of zonotopic approximations [13].

The later procedure provides rigorous complexity bounds
but may lead to infeasibility in the control problem. There-
fore, a question appears “How can we approximate the obsta-
cles with zonotopic sets while, simultaneously, safeguarding
the feasible paths of the initial problem?”. We propose
to address this question from two different perspectives.
We handle the approximation such that separation among
obstacles is preserved (thus avoiding changes in the domain
topology and subsequently, infeasibility in the motion plan-
ning procedure). In order to identify the obstacles which
need to be separated, the problem of finding a feasible
trajectory is decomposed into a two-phase algorithm capable
to generate feasible trajectories based on a partition of the
navigation space. The convex liftings will be instrumental in
the construction of a partition while the vertices and faces
of the partition will generate a path from the initial state to
the destination.

The use of zonotopes is motivated by their intrinsic
properties (here, but also in other control areas like: collision
detection [14], reachability analysis [15], fault diagnosis [16]
or guaranteed state estimation [17]). As well, there are tool-
boxes like CORA [18] able to manage their representation.

Specifically, the main contributions of this paper are the
following:

i) provide a partitioning of the feasible space;
ii) obtain a feasible path;

iii) ensure separation among the zonotopic approximations,
i.e., guarding the original space topology;

iv) propose a navigation strategy with obstacle avoidance
guarantees using local zonotopic approximations of the
obstacles.

The remaining of this paper is divided as follows: Sec-
tion II presents some basic set-theoretic tools and briefly
introduces the formulation of optimization-based control
problem, Section III provides a mechanism able to generate
feasible geometric paths through the multi-obstacle environ-
ment, and Section IV presents a prototype control strategy
and treats the zonotopic approximations from the control
perspective. Furthermore, Section IV-D proposes a collision



avoidance strategy and evaluates the results on different
scenarios, while Section V draws the conclusions.
Notation: The Minkowski sum of two sets is denoted as
A ⊕ B = {x : x = a+ b, a ∈ A, b ∈ B}. CX(S) denotes
the complement of the set S over X ∈ Rd , and int(S) its
interior. For x ∈ Rd we denote ‖x‖2Q = x>Qx

II. PRELIMINARIES

A. Geometric prerequisites and the basic control problem

Typically, convex obstacles are modeled using polyhedral
sets [4]. Any polytope (i.e. a bounded polyhedron) has a dual
representation in terms of intersection of half-spaces:

P = {x ∈ Rd : s>i x ≤ ri,∀i}. (1)

or, equivalently, a convex hull of extreme points:

P = {x ∈ Rd : x =
∑

αjvj ,
∑

αj = 1, αj ≥ 0,∀i}, (2)

For further use, consider the collection of obstacles (depicted
in Fig. 3) as a finite union of polytopes:

P =

No⋃
j=1

Pj . (3)

In order to obtain a collision free trajectory for an agent
described by LTI dynamics through a multi-obstacle en-
vironment, a MPC (Model Predictive Control) strategy is
considered:

min
u

‖xk+Np|k − x̄ref|k‖2P +

Np−1∑
l=1

‖xk+l|k − x̄ref|k‖2Q+

+

Np−1∑
l=1

‖∆uk+l|k‖2R

 (4)

s.t. xk+l|k = Axk+l−1|k +Buk+l−1|k, (5a)
xk+l|k ∈ X , uk+l|k ∈ U , (5b)
xk+l|k /∈ P. (5c)

The agent dynamics are referenced by (5a) with x ∈ Rd
the state vector, u ∈ Rdu the input vector and the matrices
A, B of appropriate dimension. Furthermore, in (4) – (5) Np
is the prediction horizon, the weight matrices P (terminal
cost penalty), Q (output error penalty) and R (control
move penalty) are positive semi-definite and of appropriate
dimensions. The sets X and U are compact sets from Rd
and Rdu , respectively.

While the constraints (5a)-(5b) are inherent in any control
problem, the particularity of the anti-collision strategy comes
from the non-convex constraints (5c), whose formulation has
a substantial impact on the performances and formulation
of the control strategy. Hyperplane arrangements are used
to characterize these regions. Consider the collection of the
support hyperplanes from Rd associated with (3):

H = {Hi}i∈I , (6)

with Hi = {x ∈ Rd : s>i x = ri}. Each of these hyperplanes
divides the space in two disjoint regions:

R+
i =

{
x ∈ Rd : s>i x ≤ ri

}
, (7a)

R−i =
{
x ∈ Rd : −s>i x ≤ −ri

}
. (7b)

Hence, the space can be described as a collection of cells
using the hyperplane arrangement notion.

Definition 1 (Hyperplane arrangements – [19]): The
collection H partitions the space into a union of disjoint
cells A(σ), characterized by a sign tuple σ ∈ {−,+}N :

A(σ) =
⋂
i∈I
Rσ(i)
i . (8)

The hyperplane arrangement of cells covering the entire
space is described by the collection of all feasible sign tuples:

A(H) =
⋃

l=1...γ(N)

(σl), (9)

where σl ∈ {−,+}N is the sign tuple resulting from a non-
empty intersection of half-spaces and γ(N) is the number of
feasible cells. �

Labeling the feasible cells (8) into interdicted ΣP = {σ :
A(σ) ∩ P 6= ∅} or allowed ΣX\P = {σ : A(σ) ∩ P = ∅} we
rewrite the MPC problem (4), replacing the constraints (5c)
with:

xk+l|k ∈ A(σa), ∀σa ∈ ΣX\P. (10)

The constraints (10) have the advantage of a inclusion
type in comparison with (5c) but brings the complexity of
the enumeration of the components.

B. Motivation and problem statement

Generally speaking, the performance of the MPC problem
(4) covers several aspects:
(a) dynamic performance,
(b) convergence and recursive feasibility,
(c) complexity of the representation and anti-collision guar-

antees.
These aspects can be dealt with by properly adjusting the

tuning parameters appearing in the MPC formulation:
i) Np, the prediction horizon,

ii) the value(s) of x̄ref|k,
iii) the weight matrices P, Q and R.

While the dynamic performance is affected, mainly, by
the choice of parameters iii), the aspect (b) strongly depends
on the way we choose the parameters i) and ii). Ultimately,
complexity and anti-collision feature (c) is correlated with
the formal description of the non-convex and non-connected
constraints (5c).

In what follows we focus on providing a control strategy,
tackling the control problem (4) from the perspective of
objectives (b) and (c). Therefore, we propose a collision
avoidance strategy which is built on:

i) construction of a partition of X ⊆ Rd such that we have
a one-to-one relationship with obstacles (Section III-A),



ii) generation of reference trajectories with feasibility guar-
antees (Section III-B),

iii) a real-time MPC, enhanced by a zonotopic representa-
tion of the multi-obstacle environment (Section IV).

III. FEASIBLE PATH GENERATION

A. Space partitioning
In what follows, we build a workspace partition which

relies on the obstacles.We introduce a couple of definitions.
Definition 2: A family of sets {Xi}i∈I verifying:
i) X =

⋃No

i=1Xi,
ii) int(Xi)

⋂
int(Xj) = ∅,∀i 6= j ∈ I,

is called partition of X ⊆ Rd. �
Definition 3: If the sets X and Xi,∀i in Def. 2 are poly-

hedral, then X =
⋃No

i=1Xi is called a polyhedral partition.�
With these definitions our objective is formulated in terms

of constructing X =
⋃No

i=1Xi with Pi ⊂ Xi, through a
convex lifting method [20].

Definition 4 (Convex lifting [20]): For a polyhedral parti-
tion {Xi}i∈I of a polyhedron X , a piecewise affine lifting
described by the function:

z(x) = a>i x+ bi, x ∈ Xi, (11)

is called a convex (piecewise affine) lifting, if z(x) is
continuous and convex over partition {Xi}i∈I of X . �

Remark 1: The lifting z(x) satisfies the continuity condi-
tion if a>i x+ bi = a>j x+ bj ,∀x ∈ Xi ∩Xj .

Remark 2: The function z(x) being convex over {Xi}i∈I
means that z(x) > a>j x+ bj , x ∈ Xi \Xj ,∀i 6= j ∈ IN �

For further use, we denote by {Xi}i∈I the partition
obtained through convex lifting, and, for the ease of the
presentation, the following assumption is in order.

Assumption 1: The compact set X is a polyhedron.
The actual construction of the convex lifting is done by

solving the convex optimization problem which follows:

min
ai,bi

No∑
i=1

J(ai, bi) =

No∑
i=1

[
a>i bi

] [ai
bi

]
(12a)

s.t. a>i v + bi ≤M,∀v ∈ V(Pi),∀i, (12b)

a>i v + bi ≥ a>j v + bj + ε,∀v ∈ V(Pi),∀i 6= j, (12c)

a>j ν + bj ≥ a>i ν + bi + ε,∀ν ∈ V(Pj)∀i 6= j. (12d)

where M is a sufficiently large (‘big-M”) constant, ε ≥ 0 a
given constant, and V(Pi) stands for the set of the vertices
of Pi,∀i = 1 : No in (3).

Remark 3: Compared to the standard construction from
[20], the problem (12) uses the vertices of the obstacle Pi
instead of vertices of the partition cell Xi. Moreover, while
the constraint (12b) represents an upper bound for the lifting,
the other two constraints are given by the characteristics of
the convex lifting, according to Def. 4. �

Next, we proceed to obtain the partition {Xi}i=1:No
from

its convex lifting. Therefore, gathering the solutions of (12),
we define the following “d+1”-dimensional polyhedron:

P =

{[
x
z

]
∈ Rd+1 :

[
a>i − 1

] [x
z

]
≤ −bi, i = 1 : No

}
.

(13)

Projecting the facets of P on X , we obtain the polyhedral
partition {Xi}i=1:No

:

Xi = proj(faceti(P),X ),∀i (14)

where faceti(P) stands for the i-th facet of the polyhedron
P , i.e. the inequalities describing P remains the same except
the i-th one which is converted in an equality. The properties
of the partition obtained in this manner are summarized by
the following proposition.

Proposition 1: If problem (12) is feasible, then the parti-
tion {Xi}i=1:No

has the following properties:
i) Pi ⊂ Xi,∀i

ii) Xi ∩ Pj = ∅,∀j 6= i.
Proof:

i) The feasibility of (12) implies that (12c) is checked.
Thus, considering (2), it means that for all x ∈ Pi we

have:
[
x
z(x)

]
=

[
x

a>i x+ bi

]
∈ P . In other words, the

lifting corresponding to Pi is included in faceti(P). By
projecting over X , it directly leads to the conclusion.

ii) By reduction to the absurd, let us suppose that there is
a value y ∈ Xi∩Pj . According to i) we have Pj ⊂ Xj .
That leads to y ∈ Xj and, from feasibility of (12c):

a>j y + bj ≥ a>i y + bi + ε. (15)

Moreover, y ∈ Xj means that y ∈ Xi ∩ Xj and
(Xi, Xj)-neighboring cells. By consequence, as stated
in Remark 1, we have:

a>i y + bi = a>j y + bj . (16)

Combining (15) and (16), gives ε ≤ 0, which contradicts
the initial condition ε > 0.

Remark 4: The feasibility of (12) implies the existence of
a convex liftable partition of the workspace X and provides
a versatile tool for the construction of a partition based on
the obstacles. It should be mentioned that the infeasibility
of (12) does not exclude the existence of either a convex
non-liftable or non-convex liftable partition [20]. �

Illustrative examples

Fig. 1 depicts the partition cells for two different multi-
obstacle environments. We note that there exist a one-to-one
relationship between obstacles and partition cells. As a side
remark, the construction based on lifting is extremely fast
and, thus, can be evaluated for moving obstacles (however,
this case is out of the scope of the present paper).

B. Geometric path generation

The constructive result from the previous subsection holds
for Rd. For the clarity of the presentation, in this subsection
we restrict the scope to the d = 2 case and aim to guarantee a
path for any pair of initial and final points in the workspace.

For the purpose of obtaining collision-free geometric path
through a multi-obstacle environment, we define a weighted
graph Γ = (N , E , f), f : E → R, based on the partition



(a) No = 7 (b) No = 31

Fig. 1: Space-partitioning as in (14).

{Vi}i=1:No
of the workspace X . Hence, the nodes of Γ are

the vertices of the polyhedral cells:

N =

No⋃
i=1

V(Xi),

the edges E are the hyperplanes connecting the selected
vertices (i.e. the facets of the partition cells), and the function
f is given by the Euclidean distance between the incident
nodes of the edge. For illustration, we have depicted in Fig. 2,
the graph corresponding to the polyhedral partition in Fig. 1b.
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(a) Γ̃(N , E, f)

−14−12−10 −8 −6 −4 −2 0 2 4 6 8 10 12 14

−10

−5

0

5

10

15

(b) Path(xi, xf )

Fig. 2: Graph Γ and the shortest path Path(xi, xf ).

Proposition 2: Γ is a connected planar graph.
Proof: Since {Xi}i=1:No

is a partition of X having the
properties described in Def. 2, it results that there exists no
intersection among the facets of partitions cells Vi, except
the vertices, and, by consequence, among edges of the graph
(i.e. the graph is planar). Moreover, there exists a sequence
of facets which links any two vertices of the partition {Xi}.
Hence, there exists a path through the graph between any
two nodes in N (i.e. the graph is connected).

Finding the shortest path through the graph between the
start and final points xi, xf ∈ X\P means adding them to the
graph and finding the closest edge such that the connection
to it does not intersect any obstacles:

(j⊥, x⊥)(xi) = arg min
j∈Ifi

min
x∈facetj(Xi)

‖x− xi‖ (17a)

s.t. αx+ (1− α)xi /∈ Pi, xi ∈ Xi, (17b)

where Ifi is the number of facets of Xi. These projections
of the points over the closest edges are also new nodes
of the graph. Thus, the graph Γ properties are preserved
by the new graph Γ̃(xi, xf ). Afterward, on account of

Γ̃(xi, xf ) properties, a graph search algorithm (e.g. Dijkstra’s
Algorithm [8]) is employed and the shortest path between xi
and xf is obtained. For example, in Fig. 2, the green nodes
are the components of the shortest path.

Remark 5: The existence of a shortest path through the
graph Γ̃(xi, xf ) between any pair (xi, xf ) ∈ (X\P)×(X\P)
is guaranteed for the reason that the the graph Γ̃(xi, xf ) is
connected for any pair (xi, xf ). For further use, we denote
the shortest path between xi and xf as Path(xi, xf ) =
(x̄0 = xi, x̄1 = x⊥(xi), . . . , x̄n = x⊥(xf ), x̄n+1 = xf ),
the ordered set of points forming the shortest path. �

IV. FROM POLYHEDRAL TO ZONOTOPIC MPC FOR
COLLISION AVOIDANCE

Let us consider the feasible path Path(xi, xf ) through
the environment given by the method detailed in Section III.
Our aim is to incorporate it in a optimization-based collision
avoidance strategy, e.g, the MPC problem (4).

A. Prototype polytopic MPC for collision avoidance

Firstly, we propose a motion planning strategy which
exploits, besides the existence of a feasible path, the poly-
topic representation of the obstacles and offers feasibility
guarantees. To this end, we rewrite (4) in a simpler form:

u∗MPC3
= arg min

(
‖xk+1|k − x̄1|k‖2Q1

+‖xk+2|k − x̄2|k‖2Q2
+ ‖xk+3|k − x̄3|k‖2Q3

)
(18)

s.t. xk+l|k = Axk+l−1|k +Buk+l−1|k, (19a)
xk+l|k ∈ X , uk+l|k ∈ U , (19b)

xk+l|k /∈ P̃(k) (19c)

where P̃(k) = {Pi ∈ P : i s.t. Path(xk, xf )∩Xi 6= ∅} is
a significantly reduced set of obstacles. Form (19) provides
feasibility guarantees but does not certify the convergence.
This feature can be enforced if we consider two more MPC
problems with the same constraints as in (19):

u∗MPC2
= arg min

(
‖xk+1|k − x̄1|k‖2Q1

+‖xk+2|k − x̄2|k‖2Q2

)
, (20)

u∗MPC1
= arg min

(
‖xk+1|k − x̄1|k‖2Q1

)
, (21)

and select the input to be applied via optimization (22):

u∗MPC = max
i=1:3

i (22a)

s.t.
(
x⊥(x∗k+1), proj(x⊥(x∗k+1), faceti⊥(Xk))

)
∩ Pi 6= ∅

(22b)

where x∗k+1 = Axk +Bu∗MPCi
.

Theorem 1: If Path(xk, xf ) exists and the control law
uMPC in (22) is recursive feasible then it guarantees the
convergence xk → xf .

Sketch of Proof : All the points x̄i|k are either on the
boundary of Xk or outside of it. The cost function is
designed to minimize the tracking error with respect to
three points and, thus, in the absence of constraints (19b)-
(19c), the trajectory will leave Xk, crossing the boundary in
finite time as long as xf /∈ Xk. The recursive feasibility



assumption ensures the compatibility of (19b). However,
(19c) can threaten the convergence if the state converges to
a point on the boundary of Pk. The existence of a trajectory
converging to the borders of Xk is guaranteed by the exis-
tence of Path(xk, xf ). Nevertheless, this trajectory might
not be generated by u∗MPC3

which weights the tracking
at multiple stages and, thus, violating (22b). In order to
enforce the satisfaction of (22b), the receding optimization
will be enhanced with u∗MPC2

and u∗MPC1
. The last one

represents an explicit choice of a control converging to the
boundary of Xk. Thus, the feasibility of (22b) preserves the
subsequence of edges in Path(xk, xf ) and the path length (in
terms of Euclidean distance) will play the role of a candidate
Lyapunov function.

Remark 6: Constraint x /∈ P̃(k), is reformulated as an
inclusion, as in (10). Thus, the complexity of enumeration
is substantially reduced, i.e. the number of cells generated
by the reduced set of hyperplanes is significantly smaller
compared to the one generated in the general case (6). �

Hereinafter, the number of anti-collision constraints is
reduced in term of number of obstacles and the only
computational advantage can be obtained by decreasing the
complexity of the obstacles’ representation. Thus, in the
next subsections we will use a particular class of polytopes,
commonly known as zonotopes, which are endowed with a
third representation due to their generic symmetry property.

B. Zonotopic approximations and complexity bounds.

Definition 5 (Zonotopes-[21]): A zonotope is a centrally
symmetric polytope, which can be described as a Minkowski
sum of line segments. In its generator representation a
zonotope Z(G, c) is described by center c ∈ Rd and
generators G =

[
g1 . . . gm

]
∈ Rd×m:

Z(G, c) = {c+

m∑
i=1

ξigi : ‖ξ‖∞ ≤ 1}. (23)

Zonotopes own several properties of practical interest [22]:
i) are closed under Minkowski sum:

Z(G1, c1)⊕Z(G2, c2) = Z(
[
G1 G2

]
, c1+c2); (24)

ii) are symmetric, up to their center:

−Z(G1, c1) = Z(G1,−c1). (25)

The half-space representation can be obtained from the
generator form of a zonotope (23), as follows [15]: to each
sequence of d − 1 generators 1 ≤ j1 < j2 . . . jd−1 ≤ m
corresponds the pair (hi, ki) ∈ Rd × R, where:

hi⊥gjl ,∀jl ∈ {j1 . . . jd−1}, ki =
∑

jl /∈{j1...jd−1}

∣∣h>i gjl∣∣ . (26)

Adding the center from generator representation, a zonotope
is formulated as:

Z(G, c) =
⋂

1≤j1<...jd−1≤m

{x ∈ Rd : |hi(x− c)| ≤ ki}. (27)

Moreover, using the support function [23] (and its interesting
application regarding the inclusion condition) in combination

with the definition of a zonotope, the inclusion Z(c,G) ⊆ P ,
with P defined as in (1), is checked iff:

s>i c+
∑
j

∣∣s>i gj∣∣ ≤ ri ∀i, j. (28)

Moreover, the inclusion of a polytopic set P , defined as
in (2), into a zonotope Z(G, c) holds iff∣∣h>i (vj − c)

∣∣ ≤ ki ∀i, j. (29)

Considering Def. 5 and (23) we refer to a family of
zonotopes parametrized after their centers c` ∈ Rd and
scaling factors ∆` ∈ Rm×m applied to a common generator
“seed” (an a priori given matrix G ∈ Rd×m):

Z = {Z(G∆j , cj), j = 1 . . . No}. (30)

∆` is a diagonal matrix whose diagonal elements are equal
/ distinct1. The k-th diagonal element is noted as δjk . This
approach threads the line between complexity and feasibility.

Replacing gk with gk · δjk in (26), the half-space repre-
sentation of the j-th zonotope from (30) is given by:

hi s.t. hi ⊥ gk,∀k ∈ {k1 . . . kd−1}, (31a)

ki(∆j) =
∑

k/∈{k1...kd−1}

∣∣h>i gk∣∣ δjk , (31b)

where i enumerates the

p(d,m) =

(
m

d− 1

)
(32)

combinations of d − 1 distinct generators selected from the
list of m available ones (i.e., 1 ≤ k1 < · · · < kd−1 ≤ m).

For further use we gather the support hyperplanes resulted
from (31) into the collection

H̃ = {H(hi,±ki(∆j))},∀j = 1 . . . No, i = 1 . . . p(d,m).
(33)

Parametrization (31), with set P defined as before (1)-(2),
allows to reformulate the inclusion conditions (28), (29) in
a linear form with respect to parameters cj , ∆j :

Z(G∆j , cj) ⊆ P : s>i cj +

m∑
k=1

∣∣∣s>i gk∣∣∣ · δjk ≤ ri, ∀i, (34a)

P ⊆ Z(G∆j , cj) :
∣∣∣h>i (vk − cj)

∣∣∣ ≤ ki(∆j), ∀k. (34b)

The overall goal is to provide adequate over-approximations
(30) for the multi-obstacle environment (3). That is, seek
a (inherently symmetric) zonotope Z(G∆j , cj) enclosing
the known (usually non-symmetric) polytope Pj such that
a specific measure parametrized after cj , ∆j is minimized:

(∆j , cj)
∗ =arg min

∆j ,cj
C(∆j , cj) (35a)

s.t. Pj ⊆ Z(G∆j , cj). (35b)

Although several measures can be considered [] with differ-
ent performances, in this paper we opted to use the measure

1If not explicitly stated otherwise, we consider the later case since the
former is a simplification of the later.



which provides the most accurate (tightest) approximation,
specifically the one given by the volume (see the Appendix):

C(∆j , cj) =
∑

1≤k1<···<kd≤m

∣∣det(Gk1...kd)
∣∣ · ∏
k∈{k1,...,kd}

δjk . (36)

Considering the problem (35) and the collection of obsta-
cles (3), we define the operator:

Z∗(P) = {Z(G∆∗j , c
∗
j ), j = 1 . . . No}. (37)

Collection (33), based on (30) induces the hyperplane ar-
rangement2 A(H̃). Preliminary work provides a cell count
with explicit dependence on m, the number of generators
and No, the number of obstacles:

r(A) =

d∑
k=0

(
p(d,m)

k

)
· (2No)k, (38a)

b(A) =

∣∣∣∣∣
d∑
k=0

(−1)k
(
p(d,m)

k

)
· (2No)k

∣∣∣∣∣ . (38b)

where r(A) is the total number of regions, and b(A) the
number of bounded regions. Furthermore, these explicit
expressions allow to derive a bound for the number of
generators in the zonotopic representation.

Corollary 1: Assuming n∗o support hyperplanes in (3), for
any m ∈ N+ which verifies:

d∑
k=0

(
p(d,m)

k

)
· (2No)k ≤

d∑
k=0

(
n∗o
k

)
, (39)

the arrangement A(H̃) has fewer cells than A(H).
While Corollary 1 holds for Rd, for d = 2 and d = 3

there exists a particularization of the results which leads to an
analytic formula for the largest number of the generators m
such that A(H̃) has fewer cells than A(H). For example, in
Fig. 3a we have No = 7 hyperplanes and n∗o = 34 supporting
hyperplanes. Computing the bounds for the number of cells
(38) and using Corollary 1, we obtain the largest value of
m for which the approximation is less complex : m =
b2.92...c = 2. This leads to values r(A) = 225, significantly
less than 407 if the 2m · No = 28 hyperplanes would have
been in general position and less than 419, the number of
cells when considering the initial representation3.

C. Zonotopic approximations with corridors

However, all the improvements in the complexity, pre-
sented in the above subsection, are related only to the
geometry and they were not analyzed from the dynamics
perspective. For the sake of illustration, we proceed to find
the zonotopic approximations Z for the collection (3) solving
the problem (35) for the criterion (36) with an empirically

chosen value of the common seed: G =

[
1 0
0 1

]
. In Fig. 3

we remark that the zonotopic approximations corresponding
to P3 and P4 intersect which may lead to infeasibility in the

2For compactness, whenever clear from the context we use notation A.
3The differences are more significant for d = 3 but for the clarity of the

presentation we tackled here exclusively the d = 2 case.
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Fig. 3: Zonotopic approximation for the multi-obstacle envi-
ronment

control strategy. Hereinafter, we treat the problem of closing
corridors or passageways.

Definition 6: A corridor between i-th and j-th obstacles
is called obstructed iff:

Pi ∩ Pj = ∅ and Zi ∩ Zj 6= ∅, (40)

where Zi, Zj represent the zonotopic approximations of Pi
and Pj ( Pi ⊆ Zi and Pj ⊆ Zj). �

There are two possible ways to elude the overlapping
and, thus, to maintain the corridors open. Both share a
common feature: a separating hyperplane constraint in the
optimization problem (35). In the sequel, the hyperplane
separating the polytopes Pi and Pj is denoted as Hij =
{x ∈ Rd : h>ijx = kij}, with its corresponding half-spaces
R+
ij and R−ij . It is obtained from the edges of the partition
{Xi}i=1:No

in (14), i.e., Hij represents the common facet
between any two neighbor cells of the partitioning (Xi, Xj).

The first approach imposes an additional constraint: the
approximation to stay above or below a separation hyper-
plane. The decision between above or below is made based
on the position of the center of the polytope relative to this
given separation hyperplane. In other words, we impose:

Z(Gj∆j , cj) ⊂ R+
ij or Z(Gj∆j , cj) ⊂ R−ij , ∀i. (41)

The reformulation of (41) as an lp is straightforward: all
vertices of the zonotopic approximation have to stay on the
same side of the separation hyperplane as its center.

Remark 7: The vertices of the zonotopes can be readily
obtained (28) and the complexity of the dual representation
is manageable with respect to the polytopes. �

Thus, the optimization problem (35) takes the form:

min
∆j ,cj

C(∆j , cj)

s.t. Pj ⊆ Z(G∆j , cj) (42a)

Z(Gj∆j , cj) ⊂ R±ij ,∀i. (42b)

As was stated above, the choice between R−ij and R+
ij

(42b) depends on position of the center. The constraint
(42b) is formulated recalling the inclusion condition of a
parametrized zonotope into a polytope (34).

Theorem 2: Corridor constraints are convex with respect
to the zonotopic over-approximations.



Proof: Taking into account that the separation constraints
(42b) are linear, the convexity of the feasible space regarding
zonotopic over-approximation is straightforward

Remark 8: Certainly, (42b) enforces the corridors but it
represents an additional structural constraint and impacts
the feasiblity of the zonotopic over-approximations. For
example, let us consider the case depicted in the Fig. 4, where
we take a triangle in R2 and proceed to over-approximate
with a parametrized zonotope with G given by the Euclidean
unit vectors. The problem (42) is infeasible. �
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Fig. 4: The feasibility of (42).

Despite the limitation highlighted in Remark 8, there exists
a strong constructive result for the existence of a zonotopic
over-approximation which satisfies the corridor constraints.

Proposition 3: Any polyhedral set (1) can be approxi-
mated by a zonotopic set (23) with corridor type of con-
straints (41) by an adequate choice of generators G.
Proof: The idea is to generate a face of the zonotopic over-
approximation aligned to the separating hyperplane. This is
done by spanning the separation hyperplane with a subset of
the generators. More precisely, we should obtain any basis
for the subspace described by the separating hyperplane. This
basis represents a valid subset of generators for the zonotopic
set. The result is constructive if we consider a full rank
orthogonal matrix Q with Q =

[
h>sep Q1

]
. If G includes

a basis of the space perpendicular on separating hyperplane,
i.e. Q1 then the problem (42) is feasible (as in Fig. 4b).

A key issue with this approach is that we cannot guarantee
the monotonicity of the over-approximations with respect to
the number of the generators. By adding a generator as in
the proof of Corollary 3, we solve an obstructed corridor
and, at the same time, we may obstruct others which were
initially unobstructed. An important theoretical result which
guarantees the separation in a d-dimensional space for a
number of “d+ 1” over-approximations is presented next.

Theorem 3: In Rd, the maximum number of joint con-
straints for corridors with feasibility guarantees is d+ 1. �
Proof: Let P1, . . . , Pd+1 be the obstacles and Pi a generic
element of this collection. If Pi ∩Pj = ∅,∀i 6= j, then there
exist d separation hyperplanes hij and a zonotope satisfying
wij ≤ ‖h>ijx‖ ≤ wij ,∀x ∈ Pi. Obviously, wij and wij can
be chosen in order to avoid the intersection with one side of
the separation hyperplane.

Corollary 2: For any “d + 1” obstacles, there exists a
“box” approximation which guarantees the separation.

Proof: Firstly, we construct the matrix G such that the
resulting over-approximation to have the facets parallel with
the “d + 1” separating hyperplanes (for each separating
hyperplane we choose the vectors which span the space
perpendicular on that hyperplane). There exists a zonotopic
over-approximation which can be adjusted either through a
proper scaling factor or through a displacement of the center.

Illustrative example
We depicted in Fig. 5 the results of a procedure which

combines the advantages given by Theorem 2 and Corol-
lary 3. This procedure performs well in simulations, but
it cannot provide theoretical guarantees on the separation
among the zonotopic over-approximations within a generic
multi-obstacle environment.
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Fig. 5: Maintaining corridors procedure over example in
Fig. 3

As was stated above, the strong result from Theorem 3 is
restricted to d+ 1 obstacles. In order to cope with a generic
obstacles distribution (in terms of their number and positions)
we use a strategy able to select these d+1 obstacles for each
given state based on the results from Section III and on the
prototype MPC strategy from Section IV-A.

D. Generic collision avoidance strategy and examples
The proposed motion planning strategy through a multi-

obstacle environment can be summarized by the following
steps:

Algorithm 1 The motion planning strategy.

1: {OFF-LINE} Compute {Xi}i=1:No
in (14).

2: {OFF-LINE} Construct the graph Γ based on
{Xi}i=1:No

3: Add start and goal to the graph and find the shortest path
through the graph → Path(xi, xf ).

4: Select the points x̄i|k, i = 1 : 3 and the corridors
they defined with the corresponding local zonotopic
approximation ensuring the corridors.

5: Solve the MPC problem (18) by replacing (19c) with
xk+l|k /∈ Z∗(P̃(k)).

For illustration, let us consider an agent described by the
dynamics (5a) in Rd:

A =

[
Od Id
Od − µ

M Id

]
, B =

[
Od
MId

]
,



where µ = 3 and M = 60. The agent’s state and input are
constrained: X = {x : −15 ≤ xi ≤ 15,∀i = 1 . . . 2d} and
U = {u : −1 ≤ ui ≤ 1,∀i = 1 . . . 2d}.

In order to obtain a collision free trajectory for the agent
through the complex4 multi-obstacle environment depicted in
Fig. 2 we firstly employed the strategy (4) with enhancement
(10), considering the entire set of obstacles and imposing a
large prediction horizon (Np = 40). The resulting trajectory
(the red one from Fig. 6a) did not converge to the final
position, the agent remaining on the boundary of an obstacle.
However, applying the Algorithm 1 we obtain a trajectory,
which attains xf . Moreover, Fig. 6b depicts the local zono-
topic approximation corresponding to the first sequence of
x̄i|k, i = 1 : 3, and the highlighted obstacles represent the
union of all sets P̃(k) whose approximations were used in
the control problem at a certain moment.
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Fig. 6: Simulation results for the environment Fig. 2

V. CONCLUSIONS
The obstacle avoidance problem was treated aiming to

ensure the convergence and feasibility and, concurrently, to
reduce the complexity of the original problem. Based on
convex lifting and graph theory we have generated feasible
reference trajectories which were furthered employed in the
collision avoidance strategy. Additionally, zonotopic over-
approximations were used to cover efficiently the non-convex
region of interest and a series of theoretical results were
proposed to address the issues related to their impact on the
control problem.

APPENDIX
Volume of the parametrized zonotopes

The zonotopes volume has an explicit formulation [24]:

Vol(Z(G, c)) =
∑

1≤j1<j2...jd≤m

∣∣det(Gj1...jd)
∣∣ (43)

where Gj1...jd denotes the matrix composed from columns
of indices j1 . . . jd from G. Replacing gk with gk ·δjk in (43)
leads to

Vol(Z(G∆j , cj)) =
∑

1≤k1<···<kd≤m

∣∣∣det(Gk1...kd ·∆k1...kd
j )

∣∣∣ .
Noting that det(M ·N) = det(M) · det(N) and that ∆j is
a diagonal matrix with positive elements gives (36).

4in the sense of the number of the obstacles, No = 33
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