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Parametrized Hyperplane Arrangements for Control Design with
Collision Avoidance Constraints

Daniel Toan!, Sorin Olaru!, Tonela Prodan 2

Abstract—This paper concerns the problem of collision
avoidance in a dynamical multi-obstacle environment. The
design problem is commonly stated in the literature in terms
of a receding-horizon constrained optimization problem over
a non-convex domain. Preliminary results based on hyper-
plane arrangements lead to a mixed-integer formulation of
the problem. This formalism is adequate for a static multi-
obstacle environment, but may be impractical in a dynamical
context. Nevertheless, this shortcoming can be alleviated by
considering an additional analysis step and by an appropriate
proper choice of the representation of the environment in a
time-varying framework. The present paper tackles this issue
by using zonotopes and discussing their parametrization in a
collision avoidance type of application.

I. INTRODUCTION

Collision-free control of autonomous agents within a
multi-obstacle environment is at the forefront of research
interests in the control community [1] and takes multiple
forms according to the surveillance, rescue or monitoring
type of application. Moreover, the navigation through dy-
namical environments is a challenging task because of the
complexity issues, the intrinsic quality of the information
shared within the system or the practical controlability or
physical limitations to be dealt with.

The classical modeling approaches (graph- or sample-
based [2]), usually characterized by heuristic aspect, have
been included in the control strategies proposed for the
resolution of the collision avoidance problem. MPC (Model
Predictive Control) is an often used strategy in this domain.
Being an optimization-based control strategy, MPC has the
capability to cope either directly [3], [4] or indirectly [5],
[6] with the inherently non-convex collision avoidance con-
straints.

In what follows, we concentrate on a direct method,
formulating the MPC problem as a receding horizon Mixed-
integer Program (MIP). More precisely, we consider convex
polyhedral sets in order to model the obstacles and to char-
acterize the resulting non-convex feasible domain as a union
of cells, via hyperplane arrangements [7]. Nevertheless, in
many practical applications, as autonomous overtaking [8] or
coordination of vehicles at intersections [9], we have to deal
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with dynamical obstacles. Therefore, the resulting hyper-
plane arrangement is time-varying. Since a re-computation
of the arrangement at each time instant may be impractical
in terms of complexity, the question to be addressed is: How
can one use hyperplane arrangements for the resolution of
the collision avoidance problem in dynamical environments?.
A possible solution may be based on parametrized polyhedra
[10] and/or by choosing a particular class of polyhedra,
zonotopes [11]. The fundamental idea of such an approach
is to concentrate the generators of the shape in a compact
form (notable by exploiting the property of symmetry - in
the zonotopic case) and to separate them from the parameters
affected by the time-variation.
The main contributions of this paper are the following:

i) provide a detailed analysis of evolution of the hyper-
plane arrangements corresponding to a dynamical multi-
obstacle environment;

ii) formulate an optimization problem correlated with sym-
metry properties for time-variant collision avoidance
constraints.

The theoretical contributions are exemplified in a proto-
type control design problem with avoidance-like objectives.
Notation: The Minkowski sum of two sets is denoted as
AoB={z: z=a+b,a€ Abe B}.Cx(S) denotes the
complement of the set S over X € R? . Any polytope (i.e.
a bounded polyhedron) has a dual representation in terms of
intersection of half-spaces or convex hull of extreme points:
P={z:sfa <rVi}={z:2=>3aqv,Ya =
l,a; > 0,Vj}. The set of all sign N-tuples is noted
{— 4+ := {(b1,...,bx): bie{—,4+}.Vi=1,...,N}.
For z € R? we denote Hx||2Q =z'Qx.

II. PRELIMINARIES

Consider a finite collection of time-varying hyperplanes
from R?:

H(k) = {Hi(k)}iez (1

where k is the time instant, H;(k) = {x € R? : s]/2 =
r;(k)} and Z = {1... N}. Each of these hyperplanes divides
the space in two disjoint regions:

RE(k)={z eR: £s]a < xry(k)}. 2)

Next, the space can be partitioned into cells using the
hyperplane arrangement notion.

Definition 1 (Hyperplane arrangements — [12]): The
collection H(k) partitions the space into a union of



disjoint cells A(o, k), characterized by a sign tuple
ceX={-+V:

Ao, k) = (\R{D (k). 3)

i€z
The hyperplane arrangement of cells covering the entire
space is described by the collection of all feasible sign tuples:

AR = | Alerk), e
1=1...2N

where o; € ¥ is the sign tuple resulting from an intersection
of half-spaces. ¢
For the sake of illustration, we depicted in Fig. 1 an
arrangement with four hyperplanes in R?, highlighting one
of the half-spaces corresponding to H4 and two cells (4).

~

sjw=r; N\

sTo=n va

Fig. 1: Hyperplane arrangement A(X, k).

Remark 1: As can be seen in Fig. 1, there exist sign tuples
o for which the cell (3) represents a empty intersection of
half-spaces. Therefore, (4) is not necessarily the enumeration
of all existing sign combinations, but only of those corre-
sponding to non-empty intersections.

Consider the collection of obstacles (e.g., blue regions in
Fig. 2) represented as a union of polyhedral sets

N,
Py = |J P(k), )
j=1

with the particularity that each element P; is time-varying
and no a priori information is available on the dynamics
governing their time-variation.

By employing a MPC (Model Predictive Control) strategy,
we aim to obtain a collision free trajectory for an agent,
described by the LTI dynamics: 27 = Ax + Bu, through a
multi-obstacle environment (as the one in Fig. 2).

Np—1 Np—1

m‘}n|${+Np|k||%>+ Z ||$£+l|k”2Q+ Z Hu;‘fﬂ‘kﬂf{ (6a)
1=1 1=0

st Tppie = ATppi—1x + BUugpi—1k, (6b)

Thailk € X, Ui €U, (60)

xk+l|k € CX(]P)) (6d)

where NN, is the prediction horizon, the state and input

constraints (6¢) are assumed to be convex, containing the
origin.

Considering a polytopic representation of the obstacles (5),
the non-convex constraints (6d) can be efficiently formulated
through a mixed-integer technique [7]. To this end, we
gather the collection of support hyperplanes associated to (5),
defined as in (1) and we reach the hyperplane arrangement
(4). Labeling the feasible cells (3) into interdicted

Yp, ={o: A(o, k) NPy # 0}, (7N

or allowed Yx\p, = {0 : A(o,k) N Pp = 0}, we
replace the constraints (6d) with the following mixed-integer
formulation:

s;rx < k) +MQA - o), (8a)
—sjx < —ri(k) + Moy, (8b)
Y (l—a)+ D, ai>0,VYo €%, (80

o1 (i)="+" o (i)y="~"
where M is a significantly larger constant with respect to
the norm of the rest of the variables. Within this big M
formulation, M plays the role of a relaxation constant [13].
Since the multi-obstacle environment has a dynamical
behavior, the corresponding hyperplane arrangement alters
from one instant to another, as it can be noted from the
illustration in Fig. 2. However, a re-computation of the ar-
rangement at each sampling instant should be avoided being,
on one side, cumbersome from the enumeration point of view
but also impractical in a MPC formulation by the topological
changes of the feasible domain. For instance, for the simple
multi-obstacle environment in Fig. 2, the computation of the
feasible cells' (denoted as v*(NN)) requires a considerable
amount of time (see Table I), which is in the most of the cases
beyond the sampling time associated to the agent dynamics.
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(b) step k =k1 +1

Fig. 2: Time-varying multi-obstacle environment.

Step #FP [ FH [ 7 (V) [ by 1 | #op
k =k 3 11 49 1.04 8
k=k +1 3 11 51 1.08 11

TABLE I: Constructive parameters and computing time of
the hyperplanes arrangements given in Fig. 2.

To overcome this issue we point here a technique which
introduces an additional analysis step, by evaluating the prob-
lem in a lifted space (using a suitable parametrization [10]).

'We take into account only the cells from the bounded domain X.



This method builds on generic polyhedral sets, but it can be
enhanced by using a particular class of polyhedra, namely
the zonotopes [11], owing to their symmetry property.

Remark 2: In this paper, in order to concentrate the scope
of the work we have examined the case in which the
dynamical behavior of the environment consists only in the
translation motion of the obstacles.

III. ZONOTOPIC FRAMEWORK

Definition 2 (Zonotopes-[11]): A zonotope is a centrally
symmetric polytope, which can be described as a Minkowski
sum of line segments. In its generator representation a
zonotope Z(G,c) is described by center ¢ € R? and
generators G = [gl gm} e Raxm,

Z(G o) ={e+) &gt €l < 1}. ©)

i=1
Zonotopes own several properties of practical interest [14]:
i) are closed under Minkowski sum:

Z(Gl,cl)@Z(GQ,Cg) = Z([Gl GQ] ,01+Cg); (10)

ii) symmetric w.r.t. the center: —Z(G1,¢1) = Z(G1, —c1);
iii) their volume has an explicit formulation [15]:

Vol(Z(G,¢)) = >

1<j1<g2...ja<m

|det(G774)|, (1)

where G71+J¢ denotes the matrix composed from columns
of indices j; ... jq taken from G.

Having the generator form of a zonotope, the half-space
representation can be constructed as follows [16]: to each
sequence of d — 1 generators 1 < j; < jo...jg—1 < m
corresponds the pair (h;, k;) € R% x R, where:

= Y

Ji¢{d1-da-1}

siLgj,, Vi € {j1 - ja-1}, s 9]

12)
Adding the center from generator representation, a zonotope
is formulated as:

Z(G,c) = ﬂ

1<ji1<...ja—1<m

{z e R?: |s:(x—c)| <r}

(13)
The initial collection of obstacles (5) becomes:
No
Zy = U Z; (k). (14)
j=1

where Z;(k) represents the result of an over-approximation
procedure. There exists in the literature a variety of algo-
rithms providing over-approximations [16] and many of them
consider pre-defined families of zonotopes (e.g., by fixing the
directions of the generators).

Considering Def. 2 and (9) we refer to a family of
zonotopes parametrized after their centers ¢, € R? and
scaling factors A, € R™*™ applied to a common generator
“seed” (an a priori given matrix G' € R4*™):

Z(GAj,¢j), j=1...N,. (15)

Ay is a diagonal matrix whose diagonal elements are equal
/ distinct®. The k-th diagonal element is noted as 4, .

Having a common generator seed has numerous advan-
tages in what regards the over-approximation procedure and,
moreover, regarding the complexity of the control problem.

Therefore, the overall goal is to provide adequate over-
approximations (15) for the multi-obstacle environment (5).
That is, seek a (inherently symmetric) zonotope Z(GAj, ¢;)
enclosing the known (usually non-symmetric) polytope P;
such that a specific measure parametrized after c;, A; is
minimized:

(Aj,¢;)" =arg min C(Aj, ¢;) (16a)
S.t. Pj - Z(GA]',C]'). (16b)

The inclusion (16b) can be readily expressed using the
support functions [17] in combination with the definition of
a zonotope:

|si (vr — ¢;)| < 1i(A;), V. 17)

where s; and r;(A;) are given by the half-space represen-
tation of the i-th zonotope from (15), replacing g; with
gk - 0j, in (12). Several measures can be considered [18]
with different performances, in this paper we opted to use
the measure which provides the most accurate (tightest)
approximation, specifically the one given by the volume (11):

C(Ajci) = |det(G** )| ] 6.

1<ki1<--<kqg<m ke{ky,....ka}

(18)

One of the most relevant benefit of using a common gener-
ator seed is that it provides some complexity bounds of the
representation of the multi-obstacle environment [18].

IV. PARAMETRIZED HYPERPLANE ARRANGEMENTS

As stated in Section I, the collection (1) can evolve due to
the dynamical behavior of the environment, or in other words
whenever the obstacles change their position in time. For this
reason and in order to avoid a burdensome re-computation,
a pre-analysis is necessary.

Let us consider a parameter p € R" and a linear
dependence of the polyhedral set description:

Hi(p) ={zx € RY: ij =7, — (sf)Tp}, (19)

Remark 3: Specifically, in (19) we separate the time-
varying component of the hyperplanes in (1): r;(k) = r; —
(s7) Tp(k). For compactness, k was omitted in (19). ¢
Hence, we have a collection of hyperplanes in the lifted

space H* = {#H;} € R¥" with:

Hi ={z e R"™™ : [s] (sD)7] {i] =r;}, (20)
The arrangement A(H*) is composed of cells A(c*). The
parametrization (19) leads to a dependence of the domain
of existence of each cell A(c*) w.rt. the parameter p.

2If not explicitly stated otherwise, we consider the later case since the
former is a simplification of the later.



Therefore, we need to project on the parameter space in
order to describe the range of variation of the respective
configuration. Conversely, by cutting the polyhedron (20) at
a particular value p leads to a parameterized form of the
arrangement A(c, p).

Recalling the halfspace representation of a zonotope (13),
we note that the hyperplanes defining a zonotope are strongly
dependent on the value of the zonotope center. Therefore,
these hyperplanes can be written under the following form:

Hi(e) ={z e RY:s]x =71+ 5] c}, (1)

Consequently, the center c is a suitable choice as the param-
eter p in (19) or as one of its component. Noteworthy, in the
context of the translation motion, c is the only time-varying
characteristic of a zonotope.

Next, we rewrite (20) for the case p < c:

o= {[ewte af-r)

The arrangement A(H*) with H*(¢) = {H;(c)} is com-
posed of feasible cells A(c*), o* € X*. An interesting
feature of this approach is that it allows to compute the
domain of existence of each cell A(c*) w.rt. the center
position by projecting on the parameter (center) space:

dom{A(c*)} = {c :Jz st m c A(a*)} (23)

All these validity domains can be computed offline and
represent polyhedral domains in R<.

The above reasoning can lay an instrumental role in the
next multi-agent scenario. Let us consider two zonotopes:
Zy = 2(Gi,¢1), Zo = Z(Ga,co) with their compact
halfspace representations:

Zy ={x: Hi(z—c1) <wi}, Zy={x:Hy(x—c2) <wsy}
(24)
A cell A(¢’) from the hyperplane arrangement induced by

these two zonotopes is given by:
A(o’)={z e R": Hf(x —c) < wi‘i,

i i 25
Hg(a:—cQ)Swg} 25)

where o’ = [0} ¢?] with o’ sign tuple w.r.t. Z;, i € {1,2}.
Note that the important aspect at the above described
multi-agent scenario is not the absolute position of the
centers, but their relative position. Thus, we can assume,
without loss of generality, that the obstacle Z; is fixed
and Z, is a moving obstacle. Hence we can construct the
correspondent collection of hyperplanes H(c) = {#}:

x
C2

o (17 ) Ooi {x} <
HY  —HS C2
Similarly to (23), we compute the domain of existence

of each cell A(c’) in the parameter co space (validity
domain)[10]:

H = ]ERQ”:

wi' + Hficll } (26)

J
w3

dom(A(¢")) = proj,, A(c")

Hllustrative example

Consider the hyperplane arrangement induced by the fol-
lowing two zonotopes. Using this method for a simple case
(d = 2, “rectangular” zonotopes Fig. 3a) we obtain that only
81 tuples are feasible (dcy such that the tuple is feasible)
from 28 = 256 possible ones. Moreover, the symmetry of
the zonotopes brings a benefit with respect to the number of
valid domains Fig. 3.

m
I8

(a) Zonotopes (24) (b) Number of validity domains
Fig. 3: Illustrative example of the parametrization of the
hyperplane arrangements. The left figure presents one par-
ticular position of the obstacles for a given value of the
parameters. On the right, the number of regions describing
the complement of the obstacles as a function of the inter-
distance between their centers.

Remark 4: We can further extend the method for a general
case consisting of N > 3 dynamical obstacles. Thus,
considering the relative position of the centers with respect
to a ’fixed” one (e.g., the N-th obstacle), we obtain a
collection of hyperplanes as in (22), except that the lifted
space is augmented towards R4T(N=1d4 In other words,
¢ [ef e .. c;\—,fl]T. Certainly, this may lead to
a relatively high complexity, but it is a desirable aspect
compared to the re-computation of the arrangement at each
sampling instant.

V. COLLISION AVOIDANCE WITH MOVING OBSTACLES

In order to illustrate the valuable insight of the hyperplane
parametrization in the control problem we consider a case
study which can be interpreted as a surveillance mission with
respect to two intruders. More precisely, an agent has to
monitor these two intruders and but also to remain outside
their region of visibility. The agent is described by the LTI
dynamics (6b) in RY, d = 3, with the following parameters:

ner 14 | Oq
a=lor gl =)

where 1 = 3 and M, = 60. The agent’s state is composed
from position and velocity components

27

T
1':[:70 Dy Pz Uz Uy Uz] 5

whereas the input is given by the acceleration
T
U= [az ay az]

Both state and input are constrained: X = {z: =15 < z; <
15,Vi = 1...2d,229-1 = p, > 0t and U = {u: =3 <
u; < 3,Vi =1...2d}. For the monitoring ability, the agent



is equipped with downwards facing visual sensors [19], able
to cover a conical field of view. Hence, the agent is able
to survey (in a xy-plane) an ellipsoidal region centered in
[ = py} , whose dimension depends on the value of p, and
on the characteristics of the visual sensor (hereinafter, we
consider the field of view angle ¢).

The two intruders (and their visibility zones) are modeled
using two convex bodies with uncorrelated motions, whose
trajectories are depicted in Fig. 4. Since the motion is
within the xy-plane, the resulting interdicted regions can

be defined as zonotopes by taking a common generator
1

0
01
Ay = diag([2.5 3]) and Ay = diag([1 0.5]), while the
centers, ¢; (k) and co(k) respectively, follow the trajectories
depicted in Fig. 4. For further use we denote:

P, = Z(GAl,Cl(]f)) U Z(GAQ,CQ(k))

matrix’> G = and two different scaling factors

(28)

15 10

—10

il 50 500
Xe 1070 50 100 150 200 250 300 350 100 450

15
—14-12-10-8 —6 —4 =2 0 2 4 6 § 10 12 14 k

(a) X-Y (b) X-Y-t

Fig. 4: Trajectories of the two intruders.

The scenario depicted in Fig. 4 will be considered for
the test cases such that the motion of the intruders is
cyclical and restricted to the xy-plane. Therefore, we deal
with the surveillance mission by partially decoupling the
xy-dimensions and z-dimension respectively. We delineate
in Fig. 5 the control scheme corresponding to the proposed
method. Firstly, we have two blocks which provide informa-
tion about the dynamical multi-obstacle environment and set
the reference points. Based on these we set as objective of
the control design the tracking of the midpoint between two
moving bodies (obstacles, detection zones, etc.):

Ko = 5 (€1 (R) + ea(R)). (29)

The MPCy, consists in the resolution of a constrained
optimization (30). Hence, if the intersection of the agent
coordinates in xy-plane with the intruders’ neighborhood
(pre-defined visibility zones) cannot be avoided, it should
be minimized. From the MPC’s point of view this objective
can be translated in hard avoidance constraints. But, in order
to avoid the infeasibility of such constraints, we penalize the
entry into these zones in the objective function associated

3For the sake of clarity, we considered two “boxes”, but the reasoning
and simulation are generic and apply also for more complex shapes of the
obstacle, in as much as they are (approximated by) zonotopic sets.

Enviromental
analysis Py

Pr m‘l\

Multi-agent
system

MPC,, H

MPC,

Fig. 5: The control scheme.

to the MPC problem, as in (31c). Any violation of the
constraints in the xy coordinates should be made at a
considerably higher height. By consequence, whenever the
xy anti-collision constraints are violated, they are translated
in an increase of the reference in the z-coordinated which

represents an “escape”’ dimension. Practically, this penalty
will be further employed in the MPC problem corresponding
to the third dimension.
Np—1
llszlillne Xk Ny 18 — >_<ref|k\|2p + Z IXkt16 — )Zreflk”QQ"‘
=1
N (30)
+ > IAu Ik +eM
1=0
st Xwgik = AwyXegpi—1k + Bzyuﬁl,l‘ka (31a)
Xk+1|k € Xxy’“’ziﬂk eu ™, (31b)
Xk+ilk + € & Pr, (3lc)

Remark 5: In (31) the state vector x is composed from the
position and velocity corresponding to the x-,y-dimensions,
and the matrices A,,, B,, are their associated values
from (27). This holds likewise for input and for sets XY,
U™, which are projections of the initial sets on the xy-
subspace. Furthermore, M represents a sufficiently large
constant, which includes the conversion of units between zy-
coordinates and z-coordinates.

The existence of the common “seed” GG in (28) allows us to
rewrite the control problem (30) obtaining a parametrization
with respect to the positions of the centers. Further using a
similar procedure like in the case of (6d), we rewrite (31c)
as mixed-integer constraints like in (8) and the resulting MI
problem can be solved using, e.g., CPLEX [20].

Regarding the block MPC,, the control strategy relies on
resolution of (32).

Np—1

min > lzetun — Zerlld, (32a)
=1

st zZppik = AeTppi—1k + B, (32b)

2kl € Z, Upqyk € Uz, (32¢)

24142 2 Zref|k- (32d)

where A,, B, are selected from the extended system (27).
The reference Z.cf);, has the following components: prj;

which is the sum between the reference given by the visual



area coverage (dependent on the xy-position) zref and the
value of the penalty e resulted from MPCyy; and viT,i, which
is set at 0. The constraint (32d) ensures that the field of view
of the agent includes the zone of interest, even though not
at the optimal quality.

The computation of zI°f (the block V.A.C.= visual area
coverage) is based on ﬁndlng the minimal ellipsoid centered
in pgy = [ - py] which is able to (visual) cover (at
optimal quality) all possible position of the intruders (the
zone of interest). To this end, we need to solve the following
optimization problem [21] at each sampling instant:

i = H;in D

(33a)

1
st ———|w

— <l,Vi=1...
pztan(b pa:y” = Lve Ny,

(33b)

where v; represents the vertices of the convex hull of the
surveyed zone, and ¢ is the angle of the conical field of
view.

s 5 i\ /M‘u "
ARV / AR - A o
3 g |
| / —4
2 “ { f t e
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0 50 100 150 200 250 300 350 400 450 500 550 600
k 1211 -10 -9 -8 —7 —6 -5 —4 -3 - 2 -1 0

(@) pz, €

Fig. 6: Simulation results for N, = 10 P = 1034, Q =

10612(1, R= Id and Qz = 10512,1.

In Fig. 6a the time-variation of the value of € and of the
value p, are shown. Note that, it can be visible in the z-
coordinate when the anti-collision constraints (30) do not
hold, while ensuring an optimal monitoring of the zone of
interest.

VI. CONCLUSIONS

We have tackled the collision avoidance problem within
a dynamical multi-obstacle environment by employing an
optimization-based control strategy. The main contribution is
the use of parametrized hyperplane arrangements and zono-
topic sets in order to obtain a compact representation of the
resulting time-variant non-convex feasible domain in terms of
mixed-integer constraints. Lastly, we apply the result over a
prototype surveillance problem. The challenges with respect
to the use of a parametrized version of the obstacles and the
related hyperplane arrangements is the computation, storage
and location within the validity domains. Obviously, in the
case of dynamical environments with multiple obstacles, a
prior stage of identification of the closest obstacles is to be
considered in order to reduce the exponential complexity of
the parameter space and of the subsequent validity domains.
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