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Small-gain stability analysis is developed for a class of sampled-data systems consisting of a parabolic-type PDE and a linear ODE connected in series with a sampler-ZOH block. This stability analysis is shown to be useful in designing sampled-data exponentially-convergent observers and exponentially stabilizing output-feedback controllers for some classes of ODE-PDE cascades. This work generalizes existing results in the literature in various directions.

INTRODUCTION

Sampled-data observer design has been a hot topic, especially over the last decade, see e.g. (Ahmed-Ali et al. 2016a[START_REF] Ahmed-Ali | Exponential Stability Analysis of Sampled-Data ODE-PDE Systems and Application to Observer Design[END_REF] and reference list therein. As a matter of fact, most existing studies have been devoted to (finitedimensional) nonlinear systems modeled by ODEs only, see e.g. (Ahmed-Ali et al., 2016b). Quite a few studies have so far been reported on sampled-output observers for (infinitedimensional) systems involving PDEs. In (Fridman and Blighovsk, 2012) a ZOH sampled innovation observer has been proposed and analyzed using Lyapunov-Krasovskii functional leading to sufficient conditions for exponential stability in the form of LMIs. In (Ahmed-Ali et al., 2016a), an exponentially convergent sampled-output observer has been designed for linear ODE-PDE cascades, using the backstepping technique. In this paper, the results of (Ahmed-Ali et al., 2016a) are extended in different directions. First, the (stand-alone) technical stability result is extended to a larger class of (PDE-ZOH-ODE cascade) systems where the PDE includes additional reaction terms and allows more general boundary conditions. Exponential stability of this larger class is established using the small-gain method. This stability result is then shown to be useful in analyzing exponential convergence of sampled-output observers, obtained by the backstepping design method of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF], for a larger class of ODE-PDE cascades. The new class allows for additional reaction and convection terms in the PDE and for much more general boundary conditions. Finally, it is shown that the new technical stability result (for PDE-ZOH-ODE cascades) is also beneficial for sampled outputfeedback stabilization of a class of ODE-PDE cascades. The paper is organized as follows: in Section 2, a new standalone stability result is established; a first observer problem is formulated and dealt with in Section 3; an extension of this observer design is presented in Section 4, along with an output-feedback control design. Some concluding remarks are given at the end of the paper along with an appendix. Notation.
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1 , 0 ( 2 H denotes the Sobolev space of scalar functions R → ] 1 , 0 [ : η with absolutely continuous ] 1 , 0 [ / 2 L d d ∈ ς η and ] 1 , 0 [ / 2 2 2 L d d ∈ ς η . Given a function

STABILITY RESULT FOR PDE-ZOH-ODE CASCADE

In this section, we analyse the stability of the following class of sampled-data systems:

) ( ) , 0 ( ) ( ) ( ) ( 1 0 t Gz t bw t X A t X A t X k k + + + = & , for all ) , [ 1 + ∈ k k t t t a.e. and K 2 , 1 , 0 = k (1) ) , ( ) , ( ) , ( t x kw t x aw t x w xx t + = , for ) , 0 ( ) 1 , 0 ( ) , ( +∞ × ∈ t x , (2) with ) , 0 ( ) , 0 ( t qw t w x = and 0 ) , 1 ( = t w , for all 0 ≥ t (3) and 0 ) 0 ( X X = and ) ])( 0 [ ( ) 0 , ( x w x w = for ] 1 , 0 [ ∈ x (4)
where ) , , ( q k a are real constants to be defined later;

n t X R ∈ ) (
denotes the state vector of the finite-dimensional

subsystem (1), R ∈ ) , ( t x w is the state of the distributed parameter subsystem (2)-(3); m t z R ∈ ) (
is an exogenous input assumed to be measurable and locally essentially bounded;

n n A A × ∈ R 1 0 , , m n G × ∈ R and n b R ∈ are constant matrices and vector; { } ∞ =0 k k t is a partition of + R .
Remark 1. a) Clearly, the linear subsystem represented by the parabolic PDE (2)-(3), is continuous-time autonomous, while the linear subsystem (1) is sampled-data (due to the term ) (

1 k t X A
) and input-dependent. b) The interconnection of the two subsystems, depicted by Fig. 1, results in a sampled-data PDE-ZOH-ODE cascade, to be distinguished from the (continuous-time) PDE-ODE cascades studied in e.g. [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. c) The class of sampled-data PDE-ODE cascades defined by

(1)-( 3) is a generalization of that considered in (Ahmed-Ali et al., 2016a) where 1 = a and 0 = = q k .

The following lemma describes an essential stability estimate for the solution of the infinite-dimensional system (2)-(4).

Lemma 1. Consider the system described by ( 2)-( 4) with its parameters ) , , ( q k a satisfying the condition,

0 > a , 0 ≥ q and 2 2       + < θ π a k , (5) where       - ∈ 2 , 2 π π θ is the unique solution of the equation q =       + ) tan( 2 θ θ π in the interval       - 2 , 2 π π
. Then there exist constants 0 > Θ and 0 > σ such that for every

) ]; 1 , 0 ([ ] 0 [ 2 R C w ∈ with 0 ) 0 ])( 0 [ ( ) 0 ])( 0 [ ( ) 1 ])( 0 [ ( = - = w q w w x , the initial value problem (2)-(3) has a unique solution ) ]; 1 , 0 ([ ] [ 2 R C t w ∈
, for all 0 ≥ t , which satisfies the following inequality:

( ) ∞ ∞ - Θ ≤ ] 0 [ exp ] [ w t t w σ , for all 0 ≥ t (6)
See the proof in Appendix A. Next, let the finite-dimensional sampled-data subsystem (1) be rewritten as follows: (Ahmed-Ali et al., 2016a) that the system (7) has the following Input-to-State Stability (ISS) property:

) ( ) ( ) ( ) ( 1 0 t z t X A t X A t X a k + + = & (7) with ) ( ) , 0 ( : ) ( t Gz t bw t z k a + = , for ) , [ 1 + ∈ k k t t t , K 2 , 1 , 0 = k (8) It has been shown in
Lemma 2. Consider the sampled-data system (7) where the matrix

1 0 A A + is Hurwitz. Let 0 , > λ R
be any real constants and

+ + → R R : φ any continuous function satisfying, for all 0 ≥ t : ( ) ) exp( ) ( exp 1 0 t R t A A λ - ≤ + and ( 
)

) ( exp 0 t t A φ ≤ (9)
Also, let 0 > T and ) , 0 ( λ σ ∈ be any constants satisfying:

( ) ∫ + + > T ds s A A T A R 0 1 0 1 ) ( ) exp( φ σ σ λ (10)
Then, there exist real constants 0 , > γ K such that for every ( ) 

m loc a L z R R ; + ∞ ∈ , n X R ∈ 0 , and any T -diameter partition { } ∞ =0 k k t of + R ,
)

) ( exp ) ( sup ) exp( ) ( 0 0 s t s z X t K t X a t s - - + - ≤ ≤ ≤ σ γ σ (11)
Combining the above two lemmas, we get the following ISS property of the original system (1)-(3).

Proposition 1. Consider the sampled-data system of Lemma 1 and suppose further that the matrix

1 0 A A + is Hurwitz. Let 0 , > λ R
be any real constants and

+ + → R R : φ be any continuous function satisfying (9) for all 0 ≥ t . Also, let 0 > T be a real constant satisfying ( ) ∫ + > T ds s A A A R 0 1 0 1 ) ( φ λ (12)
Then, there exist real constants 0 , , > γ σ K such that for every ( )

m loc L z R R ; + ∞ ∈ , n X R ∈ 0 , ) ]; 1 , 0 ([ ] 0 [ 2 R C w ∈ with 0 ) 0 ])( 0 [ ( ) 0 ])( 0 [ ( ) 1 ])( 0 [ ( = - = w q w w x , and any T -diameter partition { } ∞ =0 k k t of + R
, the unique solution of the initial value problem ( 1)-( 4) exists for all 0 ≥ t and satisfies the following inequalities for all 0 ≥ t :

( ) ( )

) ( sup ] 0 [ ) exp( ) ( 0 0 s z w X t K t X t s≤ ≤ ∞ + + - ≤ γ σ (13)
Proof. Without loss of generality, we may assume that 0 > σ is selected to be sufficiently small so that both (6) and (10) hold. By virtue of (6) we have, for all integers 0 ≥ k :

( ) ∞ - Θ ≤ ] 0 [ exp ) , 0 ( w t t w k k σ (14)
Using ( 14) and the fact that

( ) T t t k k k ≤ - + ≥ 1 0 sup , it follows from (8) that: ( ) ( ) ( ) ∞ ≤ ≤ Θ ≤ ] 0 [ exp exp ) ( sup 0 w T b s s z a t s σ σ ( ) ( ) ) ( sup exp 0 s z t G t s≤ ≤ + σ (15) Inequality (13), with appropriate constants 0 , > γ K
, is a direct consequence of estimate (11) and inequality (15). The proof of Proposition 1 is complete. <

SAMPLED-DATA OBSERVER DESIGN FOR ODE-PDE CASCADES

Class of observed systems

In this section, we are interested in a class of continuous-time systems modelled by the following ODE-PDE cascade:

)) Global existence and uniqueness of solutions for the problem ( 16)-( 17) follow from Theorem 2.1 in [START_REF] Karafyllis | ISS in Different Norms for 1-D Parabolic PDEs With Boundary Disturbances[END_REF] (and the arguments in the proof of Lemma 1) for aby initial condition 

( ( ) ( ) ( t v f t AX t X + = & , for 0 ≥ t (16) )) ( , ( ) , ( ) , ( ) , ( t v x g t x ku t x au t x u xx t + + = , for ) , 0 ( ) 1 , 0 ( ) , ( +∞ × ∈ t x (17) )) ( ( ) , 0 ( ) , 0 ( 0 t v p t qu t u x + = , for all 0 ≥ t (18) )) ( ( ) ( ) , 1 ( 1 t v p t cX t u + = , for all 0 ≥ t (19) where 0 > a , R ∈ k , 0 ≥ q are real parameters satisfying (5); n n A × ∈ R and n c × ∈ 1 R are constant matrices; (.) f is of ) (t z ) , 0 ( k t w ) , 0 ( t w Fig. 1. PDE-ZOH-ODE cascade PDE subsystem (2-3) ODE subsystem (1) Sampler & ZOH class ( ) n m C R R ; 1 , g is of class ( ) R R ; ] 1 , 0 [ 1 m C ×
n X R ∈ 0 , ) ]; 1 , 0 ([ ] 0 [ 2 R C u ∈ , any input ( ) m C v R R ; 2 + ∈ with )) 0 ( ( ) 0 ])( 0 [ ( ) 0 ])( 0 [ ( 0 v p u q u x + = , )) 0 ( ( ) 1 ])( 0 [ ( 1 0 v p cX u + = . If

Observer design and analysis

Consider the following backstepping transformation:

) ( ) ( ) , ( ) , ( t X x cM t x u t x p - = , for ) , 0 [ ] 1 , 0 [ ) , ( +∞ × ∈ t x ( 21 
)
where

n n x M × ∈ R ) (
is defined by the following ODE equation:

) )( ( ) ( 1 2 2 kI A x M a x dx M d - = - (22) 
with initial condition

) 0 ( ) 0 ( qM dx dM = (23)
The solution of the problem ( 22)-( 23) is analytic and is expressed by the following globally convergent series

= ) (x M                 + + - + + ∑ ∞ = + - 1 1 2 2 )! 1 2 ( )! 2 ( ) ( ) 1 ( ) 0 ( l l l l l l x q l x kI A a I qx M (24)
We next assume that there is a matrix

n n M × ∈ R ) 0 ( such that c kI A l a q l I q cM cM l l l =         - + + + + + = ∑ ∞ =1 ) ( )! 1 2 ( ) 1 2 ( ) 1 ( ) 0 ( ) 1 ( (25) 
Now, using ( 22), ( 16) and ( 17 29)-( 30) are immediately obtained from ( 21) using ( 18), ( 19), ( 23) and ( 25). A key feature of the new model is that the infinite-dimensional subsystem, here defined by ( 28)-( 30), is decoupled from the finite-dimensional subsystem described by ( 27) (while coupling exists in the initial system representation ( 16)-( 19)). 27)-( 31), the following sampled-output observer is considered: (37) Then, the following error system is readily obtained, using ( 27)-( 31), ( 32)-( 33) and definitions (36), (37):

)) ( ) ( ( )) ( ( ) ( ) ( ˆk k t y t y L t v f t X A t X - - + = & , for all ) , [ 1 + ∈ k k t t t and K 2 , 1 , 0 = k (32) )) ( ( ) ( )) ( , ( ) , ( ) , ( ) , ( ˆt v f x cM t v x g t x p k t x p a t x p xx t - + + = , for all ) , 0 ( ) 1 , 0 ( ) , ( +∞ × ∈ t x (33) 0 )) ( ( ) , 1 ( )) ( ( ) , 0 ( ) , 0 ( ˆ1 0 = - = - - t v p t p t v p t p q t p x , for all 0 ≥ t (34) ) ( ) ( ) , ( ) , ( ˆt X x cM t x p t x u + = , ) , 0 [ ] 1 , 0 [ ) , ( +∞ × ∈ t x (
) , 0 ( ) ( ) ( ) ( ~k k t p L t X c L t X A t X - - = & , for all ) , [ 1 + ∈ k k t t t and K 2 , 1 , 0 = k (38) ) , ( ) , ( ) , ( ~t x p k t x p a t x p xx t + = , for all ) , 0 ( ) 1 , 0 ( ) , ( +∞ × ∈ t x (39) 0 ) , 1 ( ) , 0 ( ) , 0 ( ~= = - t p t p q t p x , for all 0 ≥ t , ( 40 
) ) ( ) ( ) , ( ) , ( ~t X x cM t x p t x u + = , for all ) , 0 [ ] 1 , 0 [ ) , ( +∞ × ∈ t x
(41) where the first equation is obtained using the fact that

) , 0 ( ) ( ) ( ˆk k k t u t y t y = -
and equations ( 32) and (35). It is readily checked that the error system (38)-( 41) fits the form of the sampled-data system (1)-( 3

) with ) , ( w X replaced by ) , ( p X , A A = 0 , Lc A - = 1 , L b - = and 0 ) ( = t z
. With these notations,

1 A A + = Lc A - is Hurwitz. It turns out that
Proposition 1 is applicable to the error system (38)-( 41) leading to the following result:

Theorem 1. Consider the class of systems defined by equations ( 16)-( 19) with parameters ) , , ( q k a satisfying inequalities (5). Consider the observer defined ( 32)-( 35), where the gain n L R ∈ is selected so that the matrix

n n Lc A × ∈ - R
is Hurwitz and the matrix ) (x M is defined by ( 22)-( 25). Then there exist real constants 0 , , > σ ρ

T such that, for any T -diameter partition { } ∞ =0 k k t and any ( ) m C v R R ; 2 + ∈ , n X X R ∈ 0 0 , , ) ]; 1 , 0 ([ ] 0 [ ], 0 [ 2 R C p u ∈ , with 0 )) 0 ( ( ) 1 ])( 0 [ ( 1 = -v p p , 0 )) 0 ( ( ) 0 ])( 0 [ ( ) 0 ])( 0 [ ( 0 = - - v p p q p x , )) 0 ( ( ) 0 ])( 0 [ ( ) 0 ])( 0 [ ( 0 v p u q u x + = , and 
)) 0 ( ( ) 1 ])( 0 [ ( 1 0 v p cX u + =
, one has:

(i) The initial value problem defined by ( 21)-( 24) and ( 32)-( 35) with initial conditions

0 ) 0 ( X X = , 0 ) 0 ( ˆX X = , ) ])( 0 [ ( ) 0 , ( x u x u = , ) ])( 0 [ ( ) 0 , ( ˆx p x p = for ] 1 , 0 [ ∈ x
, has a unique solution;

(ii) This unique solution satisfies for all 0 ≥ t : ); all other quantities remain unchanged with respect to ( 16)-( 19). Here, we seek an exponentially convergent observer for the new system ( 46)-(49). To this end, we will introduce a state transformation and show that the resulting transformed system fits the model structure ( 16 50) and (53), using ( 48) and (49):

( ) ∞ ∞ + - - ≤ + ] 0 [ ) exp( ] [ ) ( ~0 0 p X X t t u t X σ ρ (42) where ) ( ~t X , ) ]; 1 , 0 ([ ] [ ~2 R C t u ∈ and ) ]; 1 , 0 ([ ] [ ~2 R C t
))

( ( ) ( ) , 1 ( ) , 1 ( 1 t v p t cX t w t u + = = , for all 0 ≥ t ( 56) 
))

( ( ) , 0 ( ) 2 ( ) , 0 ( 0 t v p e t u a b q t u r x - + + =
, for all 0 ≥ t (57)

The transformed system with states )) , ( ), ( ( t x u t X is modeled by equations ( 46), ( 55), ( 56) and (57). For convenience, this system model is rewritten;

) q for 0 = p . By continuity, the inequality 0 ) 0 ( ) 0 ( < -′ η η q still holds for sufficiently small 0 > p . Therefore, Assumption (H4) in [START_REF] Karafyllis | ISS in Different Norms for 1-D Parabolic PDEs With Boundary Disturbances[END_REF] holds. As we have already shown that Assumptions (H1), (H2) and (H3), it follows from Theorem 2.2 in [START_REF] Karafyllis | ISS in Different Norms for 1-D Parabolic PDEs With Boundary Disturbances[END_REF] that the following inequality holds for all 0 ≥ t :

( ) The above inequality, together with definition (A3), implies the existence of a constant 0 > Θ such that (6) holds for all 0 ≥ t . This ends the proof of Lemma 1 <

        - ≤         ≤ ≤ ≤ ≤ ) (

  the unique solution of the initial

	value problem (7) with	X	(	) 0	=	X	0	exists for all	t	≥	0	and
	satisfies the "following inequality, for all	t	≥ (	0	:	)

where

is as in ( 22)-( 24) under assumption ( 25)

Then, Theorem 1 is applied yielding the following result.

Corollary 1. Consider the system defined by equations ( 46)-( 49) where the real parameters ) , , ( q k a satisfy inequalities ( 63)-( 64). Consider the observer defined ( 65)-( 70), where the gain n L R ∈ is selected so that the matrix

is defined by ( 22)-( 24) under assumption (25) with

Then there exist real constants 0 , , > σ ρ T such that, for any

, one has:

(i) The initial value problem defined by ( 46)-( 49) and ( 65)-( 70) with initial conditions

, has a unique solution;

(ii) This unique solution satisfies, for all 0 ≥ t :

Output Feedback Stabilization

Consider the following system of the form ( 16)-( 19

where

is such that the pair the pair ) , ( B A is stabilizable and all other quantities are identical to ( 16)-( 19). We seek the stabilization of the subsystem (71) based on the ZOH sampled system output defined by (20). To this end, we consider the output-feedback controller: )

where

is provided by the observer (32)-( 35) letting there, 0 (.) , 0 (.) , 0 (.) , ) (

(76) To analyse the closed-loop control system, it again proves to be useful representing the controlled system ( 71)-( 74 

(81) The estimation error system (78)-( 81) is obtained from ( 38)-( 41) using (76). Then, Theorem 1 applies to the former which entails the exponential convergence of ) ( ~t X to the origin. Since the matrix BK Ais Hurwitz, it follows from (77) that ) (t X also converges to the origin exponentially. The performance of the output-feedback controller is described by the following corollary of Theorem 1. 71)-( 74 

Corollary 2. Consider the class of systems (

, one has:

(i) The initial value problem defined by ( 71)-( 74), ( 32)-( 35) and ( 75)-( 76) with initial conditions

, has a unique solution;

(ii) This unique solution satisfies, for all 0 ≥ t :

CONCLUSION

The stability result of Proposition 1, which is an extension of previous results on sampled-data PDE-ZOH-ODE cascades, has been shown to be useful in design and analysis of exponentially convergent sampled-output observers (Theorem 1 and Corollary 1) and sampled output-feedback stabilizing controllers (Corollary 2). Further investigations are underway to extend the present stability result (of Proposition 1) and its application in observer and control design to nonlinear systems. 

These eigenfunctions and eigenvalues are explicitly given by the following formulas, for ,...

where n θ is the unique solution of the equation