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Abstract:  Small-gain stability analysis is developed for a class of sampled-data systems consisting of a 
parabolic-type PDE and a linear ODE connected in series with a sampler-ZOH block. This stability 
analysis is shown to be useful in designing sampled-data exponentially-convergent observers and 
exponentially stabilizing output-feedback controllers for some classes of ODE-PDE cascades. This work 
generalizes existing results in the literature in various directions. 
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1. INTRODUCTION 

Sampled-data observer design has been a hot topic, 
especially over the last decade, see e.g. (Ahmed-Ali et al. 
2016a, 2017) and reference list therein. As a matter of fact, 
most existing studies have been devoted to (finite-
dimensional) nonlinear systems modeled by ODEs only, see 
e.g. (Ahmed-Ali et al., 2016b). Quite a few studies have so 
far been reported on sampled-output observers for (infinite-
dimensional) systems involving PDEs. In (Fridman and 
Blighovsk, 2012) a ZOH sampled innovation observer has 
been proposed and analyzed using Lyapunov-Krasovskii 
functional leading to sufficient conditions for exponential 
stability in the form of LMIs. In (Ahmed-Ali et al., 2016a), 
an exponentially convergent sampled-output observer has 
been designed for linear ODE-PDE cascades, using the 
backstepping technique.  
In this paper, the results of (Ahmed-Ali et al., 2016a) are 
extended in different directions. First, the (stand-alone) 
technical stability result is extended to a larger class of 
(PDE-ZOH-ODE cascade) systems where the PDE includes 
additional reaction terms and allows more general boundary 
conditions. Exponential stability of this larger class is 
established using the small-gain method. This stability 
result is then shown to be useful in analyzing exponential 
convergence of sampled-output observers, obtained by the 
backstepping design method of (Krstic, 2009), for a larger 
class of ODE-PDE cascades. The new class allows for 
additional reaction and convection terms in the PDE and for 
much more general boundary conditions. Finally, it is 
shown that the new technical stability result (for PDE-ZOH-
ODE cascades) is also beneficial for sampled output-
feedback stabilization of a class of ODE-PDE cascades. 
The paper is organized as follows: in Section 2, a new stand-
alone stability result is established; a first observer problem is 
formulated and dealt with in Section 3; an extension of this 

observer design is presented in Section 4, along with an 
output-feedback control design. Some concluding remarks 
are given at the end of the paper along with an appendix.  

Notation. )1,0(2H  denotes the Sobolev space of scalar 

functions R→]1,0[:η  with absolutely continuous 

]1,0[/ 2Ldd ∈ςη  and ]1,0[/ 222 Ldd ∈ςη .  Given a function 

),(),(;]1,0[: txwtxw →→× + RR , ][ tw  and ][ twx  refer to 

the functions defined on 10 ≤≤ x  by  ),()])([( txwxtw =  and 

xtxwxtwx ∂∂= /),()])([( . 

2. STABILITY RESULT FOR PDE-ZOH-ODE CASCADE 

In this section, we analyse the stability of the following class 
of sampled-data systems: 

 )(),0()()()( 10 tGztbwtXAtXAtX kk +++=& , 

     for all ),[ 1+∈ kk ttt  a.e. and K2,1,0=k  (1) 

 ),(),(),( txkwtxawtxw xxt += , 

 for ),0()1,0(),( +∞×∈tx ,             (2) 

with 
 ),0(),0( tqwtwx = and 0),1( =tw , for all 0≥t  (3) 

and 
 0)0( XX =   and   )])(0[()0,( xwxw =  for ]1,0[∈x  (4) 

where ),,( qka  are real constants to be defined later; 
ntX R∈)(  denotes the state vector of the finite-dimensional 

subsystem (1), R∈),( txw  is the state of the distributed 

parameter subsystem (2)-(3); mtz R∈)(  is an exogenous 

input assumed to be measurable and locally essentially 

bounded; nnAA ×∈ R10 , , mnG ×∈ R  and nb R∈  are constant 

matrices and vector; { }∞
=0kkt  is a partition of +R .  



 
 

     

 

Remark 1. a) Clearly, the linear subsystem represented by 
the parabolic PDE (2)-(3), is continuous-time autonomous, 
while the linear subsystem (1) is sampled-data (due to the 
term )(1 ktXA ) and input-dependent.  

b) The interconnection of the two subsystems, depicted by 
Fig.1, results in a sampled-data PDE-ZOH-ODE cascade, to 
be distinguished from the (continuous-time) PDE-ODE 
cascades studied in e.g. (Krstic, 2009). 

c) The class of sampled-data PDE-ODE cascades defined by 
(1)-(3) is a generalization of that considered in (Ahmed-Ali 
et al., 2016a) where 1=a  and 0== qk . 

 
The following lemma describes an essential stability estimate 
for the solution of the infinite-dimensional system (2)-(4). 
 
 Lemma 1. Consider the system described by (2)-(4) with its 
parameters ),,( qka  satisfying the condition, 

 0>a , 0≥q  and 
2

2







 +< θπ
ak , (5)  

where 






−∈
2

,
2

ππθ  is the unique solution of the equation 

q=






 + )tan(
2

θθπ
 in the interval 







−
2

,
2

ππ
. Then there 

exist constants 0>Θ  and 0>σ   such that for every 

)];1,0([]0[ 2 RCw ∈  with 

0)0])(0[()0])(0[()1])(0[( =−= wqww x , the initial value 

problem (2)-(3) has a unique solution )];1,0([][ 2 RCtw ∈ , for 

all 0≥t , which satisfies the following inequality: 

 ( ) ∞∞ −Θ≤ ]0[exp][ wttw σ ,  for all  0≥t                 (6) 

See the proof in Appendix A. Next, let the finite-dimensional 
sampled-data subsystem (1) be rewritten as follows: 

 )()()()( 10 tztXAtXAtX ak ++=&    (7) 

with  
 )(),0(:)( tGztbwtz ka += , for ),[ 1+∈ kk ttt , K2,1,0=k  (8) 

It has been shown in (Ahmed-Ali et al., 2016a) that the 
system (7) has the following Input-to-State Stability (ISS) 
property:  

Lemma 2. Consider the sampled-data system (7) where the 
matrix 10 AA +  is Hurwitz. Let 0, >λR  be any real 

constants and ++ → RR:φ  any continuous function 

satisfying, for all 0≥t : 

 ( ) )exp()(exp 10 tRtAA λ−≤+   and  ( ) )(exp 0 ttA φ≤  (9) 

Also, let 0>T  and ),0( λσ ∈  be any constants satisfying: 

 ( )∫++>
T

dssAATAR
0101 )()exp( φσσλ   (10) 

Then, there exist real constants 0, >γK  such that for every 

( )m
loca Lz RR ;+
∞∈ , nX R∈0 ,  and any T -diameter 

partition { }∞
=0kkt  of +R , the unique solution of the initial 

value problem (7) with 0)0( XX =  exists for all 0≥t  and 

satisfies the “following inequality, for all  0≥t : 

( )( ))(exp)(sup)exp()(
0

0 stszXtKtX a
ts

−−+−≤
≤≤

σγσ  (11) 

Combining the above two lemmas, we get the following ISS 
property of the original system (1)-(3). 

Proposition 1. Consider the sampled-data system of Lemma 
1 and suppose further that the matrix 10 AA +  is Hurwitz. Let 

0, >λR  be any real constants and ++ → RR:φ  be any 

continuous function satisfying (9) for all 0≥t . Also, let 
0>T  be a real constant satisfying  

 ( )∫+>
T

dssAAAR
0

101 )(φλ  (12) 

Then, there exist real constants 0,, >γσ K  such that for 

every ( )m
locLz RR ;+
∞∈ , nX R∈0 , )];1,0([]0[ 2 RCw ∈  with 

0)0])(0[()0])(0[()1])(0[( =−= wqww x , and any T -diameter 

partition { }∞
=0kkt  of +R , the unique solution of the initial 

value problem (1)-(4) exists for all 0≥t  and satisfies the 
following inequalities for all  0≥t : 

 ( ) ( ))(sup]0[)exp()(
0

0 szwXtKtX
ts≤≤

∞ ++−≤ γσ  (13) 

Proof. Without loss of generality, we may assume that 0>σ  
is selected to be sufficiently small so that both (6) and (10) 
hold. By virtue of (6) we have, for all integers 0≥k : 

 ( ) ∞−Θ≤ ]0[exp),0( wttw kk σ    (14) 

Using (14) and the fact that ( ) Ttt kk
k

≤−+
≥

1
0

sup , it follows 

from (8) that: 
 ( )( ) ( ) ∞

≤≤
Θ≤ ]0[expexp)(sup

0
wTbssza

ts
σσ  

 ( ) ( ))(supexp
0

sztG
ts≤≤

+ σ  (15) 

Inequality (13), with appropriate constants 0, >γK , is a 

direct consequence of estimate (11) and inequality (15). The 
proof of Proposition 1 is complete. <  

3. SAMPLED-DATA OBSERVER DESIGN FOR ODE-
PDE CASCADES 

3.1 Class of observed systems 
In this section, we are interested in a class of continuous-time 
systems modelled by the following ODE-PDE cascade: 

 ))(()()( tvftAXtX +=& ,  for 0≥t  (16) 

 ))(,(),(),(),( tvxgtxkutxautxu xxt ++= , 

 for ),0()1,0(),( +∞×∈tx   (17) 

 ))((),0(),0( 0 tvptqutux += ,  for all 0≥t   (18) 

 ))(()(),1( 1 tvptcXtu += ,  for all 0≥t   (19) 

where 0>a , R∈k , 0≥q  are real parameters satisfying 

(5); nnA ×∈ R  and nc ×∈ 1R  are constant matrices; (.)f  is of 

)(tz

),0( ktw  ),0( tw  

Fig. 1. PDE-ZOH-ODE cascade 

PDE subsystem 
(2-3) 

ODE 
subsystem (1) 
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& ZOH 



 
 

     

 

class ( )nmC RR ;1 , g  is of class ( )RR ;]1,0[1 mC ×  and 

10 , pp  are of class ( )RR ;2 mC ; the signal ntX R∈)(  

denotes the state vector of the subsystem, described by (16) 
with initial condition 0)0( XX = , while R∈),( txu  

designates the state of the infinite-dimensional subsystem, 
described by the parabolic type PDE (17) with boundary 

conditions (18)-(19); mtv R∈)(  is any exogenous signal of 

class ( )mC RR ;2
+  that is accessible to measurements. 

The pair ),( cA  is observable and the whole system is 

observed through a ZOH sampling of the signal ),0( tu , i.e. 

the system output is: 
 ),0()( ktuty =  , for all ),[ 1+∈ kk ttt  and K2,1,0=k  (20) 

where { }∞
=0kkt  denotes the sampling time sequence, supposed 

to be a partition of +R  with diameter T . We seek an 

observer that provides accurate online estimates of both the 
(finite-dimensional) state vector )(tX  and the distributed 

state ),( txu , 10 ≤≤ x , based the system input )(tv  and the 

output )(ty . The signal ),1( tu  is not accessible to 

measurements. 
     Global existence and uniqueness of solutions for the 
problem (16)-(17) follow from Theorem 2.1 in (Karafyllis 
and Krstic, 2016) (and the arguments in the proof of Lemma 

1) for aby initial condition nX R∈0 , )];1,0([]0[ 2 RCu ∈ , any 

input ( )mCv RR ;2
+∈  with ))0(()0])(0[()0])(0[( 0 vpuqux += , 

))0(()1])(0[( 10 vpcXu += . If both functions 10 , pp  are 

zero, then the input v  can be of class ( )mC RR ;1
+ .    

3.2. Observer design and analysis 
Consider the following backstepping transformation: 
 )()(),(),( tXxcMtxutxp −= ,  

  for ),0[]1,0[),( +∞×∈tx               (21) 

where  nnxM ×∈ R)(  is defined by the following ODE 

equation: 

 ))(()( 1
2

2

kIAxMax
dx

Md −= −  (22) 

with initial condition 

 )0()0( qM
dx

dM =                                       (23) 

The solution of the problem (22)-(23) is analytic and is 
expressed by the following globally convergent series 

=)(xM  



























+
+−++ ∑

∞

=

+
−

1

122

)!12()!2(
)()1()0(

l

ll
ll

l

x
q

l

x
kIAaIqxM  (24) 

We next assume that there is a matrix nnM ×∈ R)0(  such that 

ckIA
la

ql
IqcMcM

l

l
l

=













−

+
++

++= ∑
∞

=1

)(
)!12(

)12(
)1()0()1(  (25) 

Now, using (22), (16) and (17), it follows that the new state 
),( txp  defined by (21) undergoes the following PDE, for all 

),0()1,0(),( +∞×∈tx : 

))(()())(,(),(),(),( tvbxcMtvxgtxkptxaptxp xxt −++=  (26) 

For convenience, the new system representation expressed in 
terms of the states  )),(),(( txptX  is recapitulated here: 

 ))(()()( tvftAXtX +=& , for all 0≥t  (27) 

 ))(()())(,(),(),(),( tvfxcMtvxgtxkptxaptxp xxt −++= , 

 for all ),0()1,0(),( +∞×∈tx  (28)  

 ))((),0(),0( 0 tvptqptpx += ,  for all 0≥t  (29) 

 ))((),1( 1 tvptp = ,      for all 0≥t        (30) 

 )()(),(),( tXxcMtxptxu +=                         (31) 

where the boundary conditions (29)-(30) are immediately 
obtained from (21) using (18), (19), (23) and (25). A key 
feature of the new model is that the infinite-dimensional 
subsystem, here defined by (28)-(30), is decoupled from the 
finite-dimensional subsystem described by (27) (while 
coupling exists in the initial system representation (16)-(19)).  

To get online estimates )(ˆ tX  and ),(ˆ txp  of the 

unmeasurable states )(tX  and ),( txp  of the system (27)-

(31), the following sampled-output observer is considered:  

 ))()(ˆ())(()(ˆ)(ˆ
kk tytyLtvftXAtX −−+=&

, 

    for all ),[ 1+∈ kk ttt  and K2,1,0=k  (32) 

 ))(()())(,(),(ˆ),(ˆ),(ˆ tvfxcMtvxgtxpktxpatxp xxt −++= , 

     for all ),0()1,0(),( +∞×∈tx  (33) 

 0))((),1(ˆ))((),0(ˆ),0(ˆ 10 =−=−− tvptptvptpqtpx , 

 for all 0≥t        (34) 

 )(ˆ)(),(ˆ),(ˆ tXxcMtxptxu += , ),0[]1,0[),( +∞×∈tx  (35) 

with ),0(ˆ)(ˆ kk tuty = , where nL R∈  is arbitrary vector such 

that LcA−  is a Hurwitz matrix. The last requirement is not 
an issue since the pair ),( cA  is observable. Clearly, the 

observer is a copy of the system (27)-(31) with a feedback 
innovation term in equation (32). To analyze this observer, 
the following state estimation errors are introduced: 

 )()(ˆ)(
~

tXtXtX −= , ),(),(ˆ),(~ txptxptxp −=     (36) 

 ),(),(ˆ),(~ txutxutxu −= , ),(),(ˆ),(~ txptxptxp −=  (37) 

Then, the following error system is readily obtained, using 
(27)-(31), (32)-(33) and definitions (36), (37): 

 ),0(~)(
~

)(
~

)(
~

kk tpLtXcLtXAtX −−=&

, 

 for all ),[ 1+∈ kk ttt  and K2,1,0=k  (38) 

 ),(~),(~),(~ txpktxpatxp xxt += ,  

 for all ),0()1,0(),( +∞×∈tx  (39) 

 0),1(~),0(~),0(~ ==− tptpqtpx ,    for all 0≥t , (40) 

 )(
~

)(),(~),(~ tXxcMtxptxu += , 

    for all ),0[]1,0[),( +∞×∈tx  (41) 

where the first equation is obtained using the fact that 
),0(~)()(ˆ kkk tutyty =−  and equations (32) and (35). It is 

readily checked that the error system (38)-(41) fits the form 
of the sampled-data system (1)-(3) with ),( wX  replaced by 

)~,
~

( pX ,  AA =0 , LcA −=1 , Lb −=  and 0)( =tz . With 

these notations, 1AA+ = LcA−  is Hurwitz. It turns out that 



 
 

     

 

Proposition 1 is applicable to the error system (38)-(41) 
leading to the following result: 

Theorem 1. Consider the class of systems defined by 
equations (16)-(19) with parameters ),,( qka  satisfying 

inequalities (5). Consider the observer defined (32)-(35), 

where the gain nL R∈  is selected so that the matrix 
nnLcA ×∈− R  is Hurwitz and the matrix )(xM  is defined by 

(22)-(25). Then there exist real constants 0,, >σρT  such 

that, for any T -diameter partition { }∞
=0kkt  and any 

( )mCv RR ;2
+∈ , nXX R∈00

ˆ, , )];1,0([]0[ˆ],0[ 2 RCpu ∈ , with 

0))0(()1])(0[ˆ( 1 =− vpp , 0))0(()0])(0[ˆ()0])(0[ˆ( 0 =−− vppqpx , 

))0(()0])(0[()0])(0[( 0 vpuqux += , and 

))0(()1])(0[( 10 vpcXu += , one has: 

(i) The initial value problem defined by (21)-(24) and (32)-

(35) with initial conditions 0)0( XX = , 0
ˆ)0(ˆ XX = , 

)])(0[()0,( xuxu = , )])(0[ˆ()0,(ˆ xpxp =  for ]1,0[∈x , has a 

unique solution; 

(ii) This unique solution satisfies for all 0≥t : 

 ( )∞∞ +−−≤+ ]0[~ˆ)exp(][~)(
~

00 pXXttutX σρ  (42) 

where )(
~

tX , )];1,0([][~ 2 RCtu ∈  and )];1,0([][~ 2 RCtp ∈  are 

defined by (36)-(37), for 0≥t . 

Proof. Applying Proposition 1 to the system (38)-(39), it 
follows that for any 0>T  sufficiently small so that (12) 
holds, there exist real constants 0,,, >Θ γσ K   such that (13) 

and (6) hold, with ),( wX  replaced by )~,
~

( pX  and 0)( =tz . 

Accordingly, one has: 
 ( ) ∞∞ −Θ≤ ]0[~exp][~ pttp σ                        (43) 

 ( )∞+−≤ ]0[~)0(
~

)exp()(
~

pXtKtX σ             (44) 

for all 0≥t . Using (43)-(44), it follows from (41) that: 

 ( ) )(
~

)(max][~][~
10

tXxcMtptu
x≤≤∞∞ +≤ , for all 0≥t  (45) 

Combining (44) and (45) yields, 

 ( )∞∞ +−≤+ ]0[~)0(
~

)exp(][~)(
~

pXttutX σρ  

for some real constant 0>ρ  and all 0≥t , which proves 

(42). Theorem 1 is proved. <  

4. EXTENSIONS 

4.1 Observer design extension 
The observer design method of Section III will next be 
extended to the following wider class of systems: 

 ))(()()( tvftAXtX +=& ,  for 0≥t  (46) 

 ))(,(),(),(),(),( tvxgtxkwtxbwtxawtxw xxxt +++= , 

 for ),0()1,0(),( +∞×∈tx  a.e.  (47) 

 ))((),0(),0( 0 tvptqwtwx += ,  for all 0≥t   (48) 

 ))(()(),1( 1 tvptcXtw += ,  for all 0≥t  (49) 

Compared to the initial class of systems defined by (16)-(19), 
the new PDE equation (47) includes the convection term 

),( txbwx  (with R∈b ); all other quantities remain 

unchanged with respect to (16)-(19). Here, we seek an 
exponentially convergent observer for the new system (46)-
(49). To this end, we will introduce a state transformation and 
show that the resulting transformed system fits the model 
structure (16)-(19). Consider the transformation, 

  ),(),( )1( txwetxu xr −= ,  for ),0[]1,0[),( +∞×∈tx  (50) 

with 

   
a

b
r

2
=   (51)  

Differentiating ),( txu , one gets using (40): 

 ),(),(),( )1()1( txwbetxwaetxu x
xr

xx
xr

t
−− +=  

 ))(,(),( )1()1( tvxgetxwke xrxr −− ++  (52) 

 ),(),(),( )1()1( txwetxwretxu x
xrxr

x
−− +=  (53) 

 ),(2),(),( )1()1(2 txwretxwertxu x
xrxr

xx
−− +=   

 ),()1( txwe xx
xr −+   (54) 

for ),0[]1,0[),( +∞×∈tx . It follows from (52)-(54) that: 

 ))(,()
4

(),(),( )1(
2

tvxgeu
a

b
ktxautxu xr

xxt
−+−+=  

 for ),0()1,0(),( +∞×∈tx  a.e.  (55) 

Similarly, the following boundary conditions are readily 
obtained from (50) and (53), using (48) and (49): 
 ))(()(),1(),1( 1 tvptcXtwtu +== ,  for all 0≥t  (56) 

 ))((),0()
2

(),0( 0 tvpetu
a

b
qtu r

x
−++= ,  for all 0≥t  (57) 

The transformed system with states )),(),(( txutX  is modeled 

by equations (46), (55), (56) and (57). For convenience, this 
system model is rewritten; 

 ))(()()( tvftAXtX +=& ,  for 0≥t  (58) 

 ))(,()
4

(),(),( )1(
2

tvxgeu
a

b
ktxautxu xr

xxt
−+−+=  

 for ),0()1,0(),( +∞×∈tx  a.e.  (59) 

 ))(()(),1( 1 tvptcXtu += ,  for all 0≥t   (60) 

 ))((),0()
2

(),0( 0 tvpetu
a

b
qtu r

x
−++= ,  for 0≥t  (61) 

 ),(),( )1( txuetxw xr −−=   (62) 

Clearly, equations (58)-(61) fit the model structure (16)-(19) 
where the couple of parameters ),( qk  are replaced by 

)
2

,
4

(
2

a

b
q

a

b
k +− provided that the pair ),( cA  is observable 

and ),,( qka  satisfy the conditions: 

 0>a , 0
2

≥+
a

b
q ,  and  

22

24







 +<− θπ
a

a

b
k  (63)  

where 






−∈
2

,
2

ππθ  is the unique solution of the equation, 

 
a

b
q

2
)tan(

2
+=







 + θθπ
   (64) 



 
 

     

 

Then, state estimates can be obtained by applying observer 
(32)-(35) with obvious notation adaptations. Specifically, the 
observer writes: 

 ))()(ˆ())(()(ˆ)(ˆ
kk tytyLtvftXAtX −−+=&

,  

 for ),[ 1+∈ kk ttt  and K2,1,0=k   (65) 

 ))(,(),(ˆ)
4

(),(ˆ),(ˆ )1(
2

tvxgetxp
a

b
ktxpatxp xr

xxt
−+−+=  

 ))(()( tvfxcM− , for ),0()1,0(),( +∞×∈tx  (66) 

 0))((),0(ˆ)
2

(),0(ˆ 0 =−+− tvptp
a

b
qtpx ,  for 0≥t  (67) 

 0))((),1(ˆ 1 =− tvptp ,  for all 0≥t   (68) 

 )(ˆ)(),(ˆ),(ˆ tXxcMtxptxu += ,  

  for ),0[]1,0[),( +∞×∈tx  (69) 

 ),(ˆ),(ˆ )1( txuetxw xr −−=   with  
a

b
r

2
=  (70) 

where  nnxM ×∈ R)(  is as in (22)-(24) under assumption (25) 

with the parameters ),( qk  replaced by )
2

,
4

(
2

a

b
q

a

b
k +− . 

Then, Theorem 1 is applied yielding the following result. 

Corollary 1 . Consider the system defined by equations (46)-
(49) where the real parameters ),,( qka  satisfy inequalities 

(63)-(64). Consider the observer defined (65)-(70), where the 

gain nL R∈  is selected so that the matrix nnLcA ×∈− R  is 
Hurwitz and the matrix )(xM  is defined by (22)-(24) under 

assumption (25) with ),( qk  replaced by )
2

,
4

(
2

a

b
q

a

b
k +− . 

Then there exist real constants 0,, >σρT  such that, for any 

(T -diameter partition) { }∞
=0kkt , ( )mCv RR ;2

+∈ , any 
nXX R∈00

ˆ, , )];1,0([]0[ˆ],0[ 2 RCpw ∈ , with 

0))0(()1])(0[ˆ( 1 =− vpp , ))0(()0])(0[()0])(0[( 0 vpwqwx += , 

))0(()1])(0[( 10 vpcXw += , and 

0))0(()0])(0[ˆ)(
2

()0])(0[ˆ( 0 =−+− vpp
a

b
qpx , one has: 

(i) The initial value problem defined by (46)-(49) and (65)-

(70) with initial conditions 0)0( XX = , 0
ˆ)0(ˆ XX = , 

)])(0[()0,( xwxw = , )])(0[ˆ()0,(ˆ xpxp =  for ]1,0[∈x , has a 

unique solution; 

(ii) This unique solution satisfies, for all 0≥t : 

 ( )∞∞ +−−≤+ ]0[~ˆ)exp(][~)(
~

00 pXXttwtX σρ    

where )(
~

tX , )];1,0([][~ 2 RCtw ∈  and )];1,0([][~ 2 RCtp ∈  are 

defined by (36)-(37), for 0≥t . 

4.2 Output Feedback Stabilization 
Consider the following system of the form (16)-(19): 

 )()()( tBvtAXtX +=& ,  for 0≥t  (71) 

 ),(),(),( txkutxautxu xxt += , 

 for ),0()1,0(),( +∞×∈tx  a.e.  (72) 

 ),0(),0( tqutux = ,  for all 0≥t  (73) 

 )(),1( tcXtu = ,  for all 0≥t  (74) 

where mnB ×∈ R  is such that the pair the pair ),( BA  is 

stabilizable and all other quantities are identical to (16)-(19). 
We seek the stabilization of the subsystem (71) based on the 
ZOH sampled system output defined by (20). To this end, we 
consider the output-feedback controller: 

 )(ˆ)( tXKtv −=  (75) 

where nmK ×∈ R  is such that the matrix BKA−  is Hurwitz 

and )(ˆ tX  is provided by the observer (32)-(35) letting there, 

  0(.),0(.),0(.),)( 10 ==== ppgBvvf  (76) 

To analyse the closed-loop control system, it again proves to 
be useful representing the controlled system (71)-(74) in the 
coordinates )),(),(( txptX , with the second variable defined 

by (21). Then, substituting the right side of (75) to )(tv  in the 

obtained representation and in the observer (32)-(35), one 
gets the following closed-loop control system representation, 

expressed in terms of the states )(tX , )(
~

tX , and ),(~ txp : 

 )(
~

)()()( tXBKtXBKAtX −−=& , for 0≥t ,               (77) 

 ),0(~)(
~

)(
~

)(
~

kk tpLtXcLtXAtX −−=&

, 

 for all ),[ 1+∈ kk ttt  and K2,1,0=k  (78) 

 ),(~),(~),(~ txpktxpatxp xxt += ,  

 for all ),0()1,0(),( +∞×∈tx  (79) 

 0),1(~),0(~),0(~ ==− tptpqtpx ,    for all 0≥t , (80) 

 )(
~

)(),(~),(~ tXxcMtxptxu += , 

     for all ),0[]1,0[),( +∞×∈tx  (81) 

The estimation error system (78)-(81) is obtained from (38)-
(41) using (76). Then, Theorem 1 applies to the former which 

entails the exponential convergence of )(
~

tX  to the origin. 

Since the matrix BKA− is Hurwitz, it follows from (77) that 
)(tX  also converges to the origin exponentially. The 

performance of the output-feedback controller is described by 
the following corollary of Theorem 1. 

Corollary 2 . Consider the class of systems (71)-(74) with 
parameters ),,( qka  which satisfy inequalities (5). Consider 

the output-feedback controller defined by the control law 
(75), with the gain K  is such that the matrix BKA−  is 

Hurwitz, and the observer (32)-(35) with the gain nL R∈ and 
the matrix )(xM  are as in Theorem 1. Then, there exist real 

constants 0,, >σρT  such that, for any T -diameter 

partition { }∞
=0kkt  , any nXX R∈00

ˆ, , )];1,0([]0[ˆ],0[ 2 RCpu ∈ , 

with 0)1])(0[ˆ( =p , )0])(0[()0])(0[( uqux = , 0)1])(0[( cXu =  

and 0)0])(0[ˆ()0])(0[ˆ( =− pqpx , one has: 

(i) The initial value problem defined by (71)-(74), (32)-(35) 
and (75)-(76) with initial conditions 0)0( XX = , 

0
ˆ)0(ˆ XX = , )])(0[()0,( xuxu = , )])(0[ˆ()0,(ˆ xpxp =  for 

]1,0[∈x , has a unique solution; 

(ii) This unique solution satisfies, for all 0≥t : 



 
 

     

 

 ∞++ ][~)(
~

)( tutXtX  

 ( )∞+−+−≤ ]0[~ˆ)exp( 000 pXXXtσρ   (42) 

with )(
~

),( tXtX , )];1,0([][~ 2 RCtu ∈  and )];1,0([][~ 2 RCtp ∈ . 

5. CONCLUSION 

The stability result of Proposition 1, which is an extension of 
previous results on sampled-data PDE-ZOH-ODE cascades, 
has been shown to be useful in design and analysis of 
exponentially convergent sampled-output observers 
(Theorem 1 and Corollary 1) and sampled output-feedback 
stabilizing controllers (Corollary 2). Further investigations 
are underway to extend the present stability result (of 
Proposition 1) and its application in observer and control 
design to nonlinear systems. 
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Appendix A. PROOF OF LEMMA 1 

Let { }∞
=∈ 0

2 )];1,0([)( ll Cx Rφ  and ...210 <<< µµµ  denote 

respectively the eigenfunctions and the eigenvalues of the 

Sturm-Liouville operator 22 / dxd−  defined on the set 

  ( )






 =−=∈=Ω 0)0()0()1(:1,02 qf

dx

df
fHf .  

These eigenfunctions and eigenvalues are explicitly  given by 
the following formulas, for ,...2,1,0=n  and ]1,0[∈z :  

 ( )n
n

n
n z

qq

q
z µ

µ
µ

φ )1(sin2)(
2

2

−
++

+
=   (A1) 

 ( )22)12(
4

1
nn n θπµ ++= with 







∈
2

,0
πθ n  (A2) 

where nθ  is the unique solution of the equation 

qn nn =






 ++ )tan(
2

θθππ  in the interval 






−
2

,
2

ππ
 (recall 

that 0≥q ). It turns out that { }∞
=∈ 0

2 )];1,0([)( ll Cx Rφ  and 

ka ll −= µλ  for ,...2,1,0=l  are the eigenfunctions and the 

eigenvalues of the Sturm-Liouville operator kdxad −− 22 /  

defined on ( )






 =−=∈=Ω 0)0()0()1(:1,02 qf

dx

df
fHf . 

Inequality (5) guarantees that 00 >λ . Moreover, formulas 

(A1) and (A2), together with the fact that 0≥q , imply that 

( ) 1)(max
10

≤
≤≤

zn
z

φ  and kann −≥ 22πλ  for all ,...2,1,0=n . It 

turns out that Assumptions (H1), (H2), (H3) in (Karafyllis 
and Krstic, 2016) all hold for the Sturm-Liouville operator 

kdxad −− 22 /  defined on Ω . Then, Theorem 2.1 in 
(Karafyllis and Krstic, 2016), entails global existence and 
uniqueness of solutions of the problem (2)-(3), for any 

)];1,0([]0[ 2 RCw ∈  with )0])(0[()0])(0[( wqwx = , 0)1])(0[( =w . 

 On the other hand, let 0, >γp  be constants with 1<+ γp . 

Clearly, the function 

 ( )0
0

2
0

2

)1(sin2)( µγ
µ

µ
η zp

qq

q
z −−

++
+

=     (A3) 

is positive on ]1,0[  and satisfies the differential equation 

)()()( zzkza ησηη −=+′′  on ]1,0[  with 

)1(: 22
0 γγλσ −−= k . It is readily seen that, by selecting 

0>γ  to be sufficiently close to 1, one can guarantee that 

0>σ . Finally, notice that  

( ) ( )( )000
0

2
0

2

)1(sin)1(cos2

)0()0(

µµµγ
µ

µ

ηη

pqp
qq

q

q

−+−
++

+
−=

=−′

Using (A2), it follows that the right side of the above equality 

equals ( ) ( ) 0sin
2

12 00
0

2
0

2

<






 +−
++

+
− θθπγ

µ
µ

qq

q
 for 

0=p . By continuity, the inequality 0)0()0( <−′ ηη q  still 

holds for sufficiently small 0>p . Therefore, Assumption 

(H4) in (Karafyllis and Krstic, 2016) holds. As we have 
already shown that Assumptions (H1), (H2) and (H3), it 
follows from Theorem 2.2 in (Karafyllis and Krstic, 2016) 
that the following inequality holds for all 0≥t : 

( )













−≤















≤≤≤≤ )(

)0,(
maxexp

)(

),(
max

1010 x

xw
t

x

txw

xx η
σ

η
 

The above inequality, together with definition (A3), implies 
the existence of a constant 0>Θ  such that (6) holds for all 

0≥t . This ends the proof of Lemma 1 <  


