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Abstract: Small-gain stability analysis is developed forlass of sampled-data systems consisting of a
parabolic-type PDE and a linear ODE connected mesewith a sampler-ZOH block. This stability
analysis is shown to be useful in designing samghtd exponentially-convergent observers and
exponentially stabilizing output-feedback contridléor some classes of ODE-PDE cascades. This work
generalizes existing results in the literatureaniaus directions.

Keywords sampled-data systems, ODE-PDE cascades, obsesigndeutput-feedback control.

observer design is presented in Section 4, alorth an

1. INTRODUCTION output-feedback control design. Some concluding arém
Sampled-data observer design has been a hot topi@® given atthe end of the paper along with areagi.
especially over the last decade, see e.g. (Ahmea@tAdl.  Notation H?(01) denotes the Sobolev space of scalar

20164, 2017) and reference list therein. As a maftéact,  functions 7:[01] ~ R  with absolutely continuous
most existing studies have been devoted to (finite- ) ) ) ) ) .
dimensional) nonlinear systems modeled by ODEs, ey~ 97/d¢UL7[01] and d*;7/d¢” DL7[01]. Given a function
e.g. (Ahmed-Ali et al., 2016b). Quite a few studiesve so  w:[01]xR, - R;(x,t) - w(x,t), wt] and w,[t] refer to
far been reported on sampled-output observersirtinife- the functions defined 00 < x<1 by (Wt])(x) = w(x,t) and
dimensional) systems involving PDEs. In (Fridmand an

Blighovsk, 2012) a ZOH sampled innovation obseivas (W[t = ow(x, 1)/ ox.

been proposed and analyzed using Lyapunov-Krasovski

functional leading to sufficient conditions for exential 2. STABILITY RESULT FOR PDE-ZOH-ODE CASCADE
stability in the form of LMIs. In (Ahmed-Ali et al2016a), In this section, we analyse the stability of thiofging class
an exponentially convergent sampled-output obsehe&  of sampled-data systems:

been designed for linear ODE-PDE cascades, usieg th 7+ =

backstepping technique. X =AXO+ AX ) rbw(0,t) + G,

In this paper, the results of (Ahmed-Ali et al.,18@) are for allt0[t,,t,.,) a.e. andk = 012... (1)
extended in different directions. First, the (stahuhe) W, (X, t) = aw, (X, t) + kw(x,t) ,

technical stability result is extended to a largtass of for (x,t) 0 (01)x (0,+0) @)
(PDE-ZOH-ODE cascade) systems where the PDE insludewi,[h

additional reaction terms and allows more genevahdary
conditions. Exponential stability of this largeras$ is
established using the small-gain method. This ktybi and
result is then shown to be useful in analyzing exial X(0) =X, and w(x,0) =(WO])(x) for xO[01] (4)

convergence of sampled-output observers, obtaiyethd  \where (g k,q) are real constants to be defined later;
backstepping design method of (Krstic, 2009), fdarger

class of ODE-PDE cascades. The new class allows for<()OR" denotes the state vector of the finite-dimensional
additional reaction and convection terms in the RDHE for ~ subsystem (1),w(x,t)0dR is the state of the distributed
much more general boundary conditions. Finally,isit ) mo
shown that the new technical stability result (RPE-ZOH- parameter subsystem (2)-(Sp()IR™ is an exogenous.
ODE cascades) is also beneficial for sampled output'npUt assumed to be measurable and locally esBgntia
feedback stabilization of a class of ODE-PDE cassad bounded; A,,A OR™, GOR™ and bOR" are constant
The paper is organized as follows: in Section Bew stand-
alone stability result is established; a first alsse problem is
formulated and dealt with in Section 3; an extemsd this

w, (0,t) = qw(0,t) and w(Lt) =0, forall t =0 3)

matrices and vecton{xk}f;o is a partition ofR , .



Remark 1. a) Clearly, the linear subsystem represented byhen, there exist real constanks, j >0 such that for every

the parabolic PDE (2)-(3), is continuous-time aotoous,
while the linear subsystem (1) is sampled-data (duthe
term A X(t,)) and input-dependent.

2,012 (R,:R™), X, OR",

k=0

and any T -diameter

partition {tk} of R,, the unique solution of the initial

b) The interconnection of the two subsystems, degidy value problem (7) withX (0) = X, exists for allt =0 and

Fig.1, results in a sampled-data PDE-ZOH-ODE casscad
be distinguished from the (continuous-time) PDE-OD
cascades studied in e.g. (Krstic, 2009).

¢) The class of sampled-data PDE-ODE cascadesedefin
(2)-(3) is a generalization of that consideredAhried-Ali
et al., 2016a) whera=1 andk =q=0.

z(t)¢
ODE

subsystem (1

w(0,t) w(O,t,)

PDE subsyste
(2-3)

Sample
& ZOH

Fig. 1. PDE-ZOH-ODE cascade

The following lemma describes an essential stghdtimate
for the solution of the infinite-dimensional systé)-(4).

Lemma 1 Consider the system described by (2)-(4) with it
parameters(a, k,q) satisfying the condition,

2
a>0,q9=0 andk<a(g+8j , (5)

where HD(— i ﬂj is the unique solution of the equation

[7—27+67jtan(6?)=q in the interval (_LZT]_ZTJ Then there

exist constants®@>0 and >0
w[0]OC? ([01]; R)
(WOD)(@) = (wy [0])(0) — a(w[0])(0) =0, the
problem (2)-(3) has a unique solutioft] JC? ([01];R) , for
all t =0, which satisfies the following inequality:

[wit]],, <©exp-at)wo]| ., forall t=0 (6)

See the proof in Appendix A. Next, let the finiterénsional
sampled-data subsystem (1) be rewritten as follows:

X(1) = AgX (1) + A X (ty) + 24 (1)
with

z,(t):=bw(Ot,) +Gzt) , fortO[t,,t,,,), k= 012... (8)
It has been shown in (Ahmed-Ali et al., 2016a) tha
system (7) has the following Input-to-State StapiljlSS)
property:

such that for every
with

initial value

()

atisfies the “following inequality, for alt > 0:

%X (1) < K exp(at)| Xo| + ;7Osupt02a ) exd-o(t- s))) (11)

Combining the above two lemmas, we get the foll@Mi8S
property of the original system (1)-(3).

Proposition 1 Consider the sampled-data system of Lemma
1 and suppose further that the maty + A is Hurwitz. Let
R,A >0 be any real constants ang: R, -~ R, be any

continuous function satisfying (9) for ai=0. Also, let
T >0 be a real constant satisfying

2> R (] A o 9as
Then, there exist real constants, K,y >0 such that for
gvery zOLp,[R:R™), X,OR", w0]OC?(0L;R) with
(W[OD (@D = (w, [0])(0) — q(w[O])(0) =0, and anyT -diameter

partition {tk}"k":O of R,, the unigue solution of the initial

(12)

value problem (1)-(4) exists for atl=0 and satisfies the
following inequalities for allt = 0 ;

X ()] < K expeat)|Xo| +wio]|_ )+ ¥ 0s<u<|?q Z9)]) (13)

Proof. Without loss of generality, we may assume tbat 0
is selected to be sufficiently small so that bddh dnd (10)
hold. By virtue of (6) we have, for all integeks> 0:

w(O,t,)| < ©@exd-at, Jwo]|, (14)
Using (14) and the fact tha&up(tk+1—tk)sT, it follows

k=0

from (8) that:
Os<u<pt)q 7 (s)exr{os)) < p@exdaT |wo]|
+[g| exp(ot)osuptq z(s)|)

Inequality (13), with appropriate constants,y >0, is a

direct consequence of estimate (11) and inequél®y. The
proof of Proposition 1 is completel

(15)

3. SAMPLED-DATA OBSERVER DESIGN FOR ODE-
PDE CASCADES

3.1 Class of observed systems
In this section, we are interested in a class afinoous-time

Lemma 2 Consider the sampled-data system (7) where thgstems modelled by the following ODE-PDE cascade:

is Hurwitz. Let RA>0 be any real
any continuous function

matrix A, +A
constants and ¢:R, - R,
satisfying forall t = 0:

lexpl(A, + A)t) < RexpAt) and exp(At) < @t) (9)
Also, letT >0 and o0 (0,1) be any constants satisfying:
> o+ RA|expeT) (A +|A])[ #9ds (10)

X(t) = AX(t) + f(v(t)), fort=0 (16)
U (X 1) = AU, (X, 1) +Ku(x, 1) + g(x V(1))

for (x,t) 0 (O x (0,+)  (17)
u, (0,t) = qu(0,t) + py(v(t)), forallt=0 (18)
u(dt) =cX(t) + p;(v(t)), forallt=0 (29)

where a>0, kKOR, g=0 are real parameters satisfying
(5); AOR™ and cOR™" are constant matrices;(.) is of



class CYR™R"), g is of class C}[0xR™R) and () =ap,(xt) +kp(x.t) + gx V(1)) ~cM (Yb(v(t)) (26)
For convenience, the new system representatioressed in

Po. P, are of class CZ(R"‘; R); the signal X(t)OR" _ _
terms of the stateg X (t), p(x,t)) is recapitulated here:

denotes the state vector of the subsystem, dedchip€16)

with initial condition X (0)=X,, while u(xt)OR X(t)= AX(t) + f(v(t)), forall t 20 (27)
designates the state of the infinite-dimensiondisgatem, Py (X,t) = apy (X, 1) + kp(X,t) + g(x v(t)) —cM () f(v(t))
described by the parabolic type PDE (17) with baugd for all (x,t) 0 (02)x (0,+) (28)
conditions (18)-(19);v(t) JR™ is any exogenous signal of P, (0.t) = qp(0,t) + po(v(t)), forallt=0 (29)
cIassCz(R+; Rm) that is accessible to measurements. p@t) = py(v(t)), forallt=0 (30)
The pair (Ac) is observable and the whole system is u(x,t) = p(x,t) +cM (X)X (t) (31)
observed through a ZOH sampling of the signé),t), i.e. where the boundary conditions (29)-(30) are immntedja
the system output is: obtained from (21) using (18), (19), (23) and (2B)key

y(t) =u(Ot,) , forall tOft, t,.,) andk = 012... (20) feature of the new model is that the infinite-dirsiemal
subsystem, here defined by (28)-(30), is decoufpieah the
where {t }k - denotes the sampling time sequence, sUPPosghite-dimensional subsystem described by (27) [gvhi

to be a partition ofR, with diameter T. We seek an coupling exists in the initial system representa(o6)-(19)).
observer that provides accurate online estimatesotf the TO get online estimatesX(t) and p(x,t) of the
(finite-dimensional) state vectoiX(t) and the distributed unmeasurable stateX(t) and p(xt) of the system (27)-
state u(x,t), 0< x<1, based the system inpuft) and the (31), the following sampled-output observer is ¢deased:

output y(t). The signal u@t) is not accessible to )2({):A)2(t)+f(V(t))—l_(g/(tk)—y(tk)),

measurements. _ _ for all tO[t, ,t,,,) andk = 012... (32)
Global existence and uniqueness of solutioms the N A . ¢
problem (16)-(17) follow from Theorem 2.1 in (Kayhis P (%) = @Dy (X 1) + KD(X, 1) + g(x, V(1)) M (X) F(v(1)) .
and Krstic, 2016) (and the arguments in the prddfesnma for all (x,t) O (01)x (0,+) (33)
1) for aby initial conditionX, OR", u[0]OC?([01];R), any P (0,1) = ap(0,t) — po(V(1)) = P t) - p(W(t)) =0,
input vOC2(R,:R™) with (U [0)O = AUO)O + P, VO, . forall t=0 (34)
(UOD® =cXq + p; (v(0)) . If both functions py, p; are u(xt) = p(x,t) +cM(x) X (1) , (x,t)D[01]x[0,+0) (35)
zero, then the input can be of cIasQl(R+; Rm)_ with y(t,) =0(0,t,), where LOR" is arbitrary vector such
3.2. Observer design and analysis that A-Lc is a Hurwitz matrix. The last requirement is not
Consider the following backstepping transformation: an issue since the paifAc) is observable. Clearly, the
p(x,t) = u(x,t) —cM (X) X(t), observer is a copy of the system (27)-(31) witreadback
for (x,t) 0 [0] % [0,+0) (21) innovation term in equation (32). To analyze thixserver,
. ’ ) the following state estimation errors are introdiice
\;th;:(),:l-()() OR™ is defined by the following ODE X(t) = X(t) = X (1), POt) = POut) = p(x.t) (36)
a U(x,t) = a(x,t) —u(xt) , Blxt) = pOxt) = pixt)  (37)
d*m (x) =a*M (x)(A-kI) (22)  Then, the following error system is readily obtain&sing

(27)-(31), (32)-(33) and definitions (36), (37):

with |n|t|al condition < ~ ~ -
X(t) = AX(t) - LeX(t) -L p(Oty),

OI—M(O) am (0) (23) for all tO[t,,t,,,) andk = 01,2... (38)
The solutlon of the problem (22)-(23) is analytindais P (x,1) = 8P (X, 1) + Kp(X, 1) ,
expressed by the following globally convergenteseri for all (x,t) 0 (01)x (0,+0) (39)
M(x) = 0~ PO =p@At)=0, forallt=0,  (40)
2 241 ~ ~ =
M oV @ | L (A—K] X X > u(x,t) = p(x,t) +cM(x) X(t),
( )(( e +|21a (A=) {(ZI)' (2I +1)!D (24) for all (x,t)0[01]x[0,+00)  (41)

where the first equation is obtained using the fdwt
y(t,) - y(t,)=u(t,) and equations (32) and (35). It is

M (1) = cM (0){(1+q)| +z (2 +1+0) (A=KI)' ] -c (25) readily checked that the error system (38)-(41 tite form

We next assume that there is a matix0) JR™" such that

(2| +1)! of the sampled-data system (1)-(3) wifi,w) replaced by

Now, using (22), (16) and (17), it follows that thew state ()Z,f)), A, =A, A =-Lc, b=-L and z(t) =0. With
p(x,t) defined by (21) undergoes the following PDE, fr a these notationsA+ A = A-Lc is Hurwitz. It turns out that
(x,t) O (02) x (O,+00) :



Proposition 1 is applicable to the error system){d8) bw,(xt) (with bOR); all other quantities remain

leading to the following result: unchanged with respect to (16)-(19). Here, we sesk

Theorem 1 Consider the class of systems defined b§xponentially convergent observer for the new sps46)-

equations (16)-(19) with parametergak,q) satisfying 49). To this end, we Wlll introduce a state tramsfatlon and

inequalities (5). Consider the observer defined ){@5) show that the resulting transformed system fits miedel
q g ) ' structure (16)-(19). Consider the transformation,

where the gain LOR" is selected so that the matrix

u(x,t) =e"*Dw(xt), for (x,t)0[01]x [0,+eo 50
A-LcOR™" is Hurwitz and the matrisM (x) is defined by 0 e (D101 *[0+<2) (50)

(22)-(25). Then there exist real constafisp,o >0 such with b
that, for any T -diameter partition {tk}[f:O and any ' :5 1)
vDCZ(R+; Rm), Xo, X OR", U[0], PO]OC2([04];R), with Differentiating u(xt) , one gets using (40):
(PIOD® - Py (V(0) =0, (P, [O1)(0) ~ A PION(O) ~ Po (V(0)) =0, U (1) = ae gy (x,1) +be’ P (x 1)
(U [01)(0) = G(U[ON(0) + po (V(0)) , and +ke' CPwx,t) +e" 0D g(x (1) (52)
(u[0D)(@) =cX, + p,(v(0)) , one has: u, (x,t) = re" D w(x,t) + e Dw, (x,1) (53)
(i) The initial value problem defined by (21)-(2dind (32)- Uy (X,1) = r2e" O Dw(x,t) + 2re" “Dw, (x,1)

(35) with initial conditions X (0) = X,, X (0) = +e" Dy (x1) (54)

u(x,0) = (U[OD(x), P(x,0) =(P[O])(x) for xOI[01], has a for (x,t)0[01]x[0,+w) . It follows from (52)-(54) that:
unique solution;

— b2 r(x-1)
(ii) This unique solution satisfies for all= 0: U (1) = au (1) + (k E)u Te glx ()

‘)Z(t)‘+||ﬁ[t]||oo < pexp(—at)Q)ZO —x0‘+||5[0]||w) (42) for (x,t)0 (0)x (O,+) a.e. (55)
= Similarly, the following boundary conditions aread#
where X(t), G[]0C*([01];R) and AtJ0IC* ((01;R) are obtaineyd/ from (50) andg(53), usingy(48) and (49): ’

defined by(36)-(37).,for t 20. u(Lt) = w(t) = cX(t) + py(v(t)), forallt=0 (56)
Proof. Applying Proposition 1 to the system (38)-(39), it
follows that for anyT >0 sufficiently small so that (12)
holds,there exist real constants,K,0,y >0 such that (13) The transformed system with stateX(t),u(x,t)) is modeled
and (6) hold, with(X,w) replaced by()?, p) and z(t) =0. by equations (46), (55), (56) and (57). For coneroe, this

u, Ot)=(q +%)u Ot)+e " py(v(t)), forallt=0 (57)

Accordingly, one has: system model is rewritten;
|, <oexd-ot)|alo]], (43) X (t) = AX(t) + f(v(t)), fort=0 (58)
[X(0]< & expton|X @] |01l 49 0 = A (k- Dure D gxu()

forall t = 0. Using (43)- (44) it follows from (41) that: for (x,t) 0 (01)x (0.+e) a.e. (59)
ol <[Al, + max{emeo)X ). forallt=0 45) 4 - cxiy+ pve), forallts0 (60)

Combining (44) and (45) yields,
X (0| +|at], < pexpea)|X )+ 70, )
for some real constanp>0 and allt >0, which proves w(x,t) = e Du(x,t) (62)

(42). Theorem 1 is proved Clearly, equations (58)-(61) fit the model struetf.6)-(19)

where the couple of parameter&k, q) are replaced by
4. EXTENSIONS )

b b . . .
4.1 Observer design extension (k—E,Q"‘g) provided that the pai(Ac) is observable
The observer design method of Section Il will nebe
extended to the following wider class of systems:

X (t) = AX(t) + f(v(t)), fort=0 (46) a>0’q+£20, andk—b—2<a(’_7+gj2 -
W (X, 1) = awg (X, 1) +bwg, (x,1) + kw(x.t) + g(x V(D)) , 2a 4da |2

for (x,t) 0 (0D x (0,+0) a.e. 47
w, (0,t) = qw(0,t) + py(v(t)), forallt=0 (48)
w(Lt) = cX(t) + py(v(t)), forallt=0 (49)

Compared to the initial class of systems defined1)-(19),
the new PDE equation (47) includes the convectienmt

u, (0,t)=(q+%)u(0,t)+e‘r po(v(t)), fort=0 (61)

and (a k,q) satisfy the conditions:

whereHD[—%T,]—sz is the unique solution of the equation,

n g2
(E + Hj tan@) =q+ oa (64)



Then, state estimates can be obtained by applyirsgroer
(32)-(35) with obvious notation adaptations. Spealfy, the
observer writes:

X (1) = AR() + (VD) - LIt - (t))

for td[t,,t,,,) andk = 012... (65)

2
P () = @ (X, 1) + (k -%) P(x,t) +e ™ g(x (b))
—cM(X) f(v(t)), for (x,t) O (01)x (0,+x) (66)

B (0.0 ~(A+ ) PO~ Po(v(t) =0, for 120 (67

p@t) - py(v(t)) =0, forallt=0 (68)
G(x,t) = P(x,t) +cM ()X (1) ,
for (x,t)0[03] % [0,+) (69)
Wx,t) =e"*Di(xt) with r - b (70)
2a

u, 0,t) =qu(0,t), forallt=0 (73)
u(Lt) =cX(t), forallt=0 (74)
where BOR™™ is such that the pair the paitA B) is

stabilizable and all other quantities are identtca{16)-(19).
We seek the stabilization of the subsystem (71gdas the
ZOH sampled system output defined by (20). To ¢md, we
consider the output-feedback controller:

v(t) = -KX(t) (75)
where K OR™™" is such that the matrixd—-BK is Hurwitz
and X(t) is provided by the observer (32)-(35) letting ther

f(v)=Bv,g(.)=0,po(.)=0,p,()=0 (76)
To analyse the closed-loop control system, it agaaves to

be useful representing the controlled system (74)-(n the
coordinates(X (t), p(x,t)), with the second variable defined

by (21). Then, substituting the right side of (I®N(t) in the
obtained representation and in the observer (3&)-(8ne

where M (x) OR™ is as in (22)-(24) under assumption (25)yets the following closed-loop control system repreation,

2
with the parameterg(k,q) replaced by (k—b—,q+£) .
4a 2a
Then, Theorem 1 is applied yielding the followiregult.

Corollary 1. Consider the system defined by equations (46)-

(49) where the real parameter&, k,q) satisfy inequalities
(63)-(64). Consider the observer defined (65)-(Where the

gain LOR" is selected so that the matri&k—LcOR™" is
Hurwitz and the matrixM (x) is defined by (22)-(24) under

2
assumption (25) with(k,q) replaced by(k—g—,q+
a

Then there exist real constants p,o >0 such that, for any
(T -diameter  partition) {tk}[f:O ,VDCZ(R+; Rm), any
X0 %o OR", w[o], o] OC2([01];R), with
(POD@ - P (V@) =0, (W, [01)(0) = A(W[O])(0) + po (V(0)) ,
(WOD@ =cXo + p1(v(0)) and
(B[0DO) ~(q +%)(ﬁ[0])(0) ~ P ((0)=0, one has:
(i) The initial value problem defined by (46)-(480d (65)-
(70) with initial conditions X (0) = X,, X(0)=X,,

w(x,0) =(WON(X), P(x.0)=(pON(x) for x1[0], has a
unique solution;

b
2

(ii) This unique solution satisfies, for al=0':
X (0| + [l < pexpe-at)|Xo - Xo| +| 70, )

where X(t), Wt]OC?([01];R) and P[t]OC2([01];R) are
defined by36)-(37),for t>0.

4.2 Output Feedback Stabilization
Consider the following system of the form (16)-(19):

X (t) = AX(t) + Bu(t), fort=0 (71)
U, (x,t) = auy, (x,t) + ku(x,t) ,
for (x,t) 0 (0D x (0,+) a.e. (72)

expressed in terms of the stat&gt) , )Z(t) , and p(x,t) :

X (t) = (A- BK) X (t) - BKX(t) , for t = 0, (77)
X(t) = AX(t) - LeX (t) -L PO, ty)

for all tO[t,,t,,4) andk = 012... (78)
B (X, 1) = @y (X, 1) + Kp(x, 1) ,

for all (x,t) 0 (0)x (0,+c0) (79)
POt -p@O1t)=pELt)=0, forallt=0, (80)
T(x,t) = P(x,t) +cM ()X (1) ,

for all (x,t)d[01] % [0,+) (81)

The estimation error system (78)-(81) is obtainainf (38)-
(41) using (76). Then, Theorem 1 applies to thenfarwhich

entails the exponential convergence B(t) to the origin.

Since the matrixA - BK is Hurwitz, it follows from (77) that
X(t) also converges to the origin exponentially. The
performance of the output-feedback controller isctided by
the following corollary of Theorem 1.

Corollary 2. Consider the class of systems (71)-(74) with
parameters(a k,q) which satisfy inequalities (5). Consider

the output-feedback controller defined by the amntaw
(75), with the gainK is such that the matrixA—-BK is

Hurwitz, and the observer (32)-(35) with the gdifl R" and
the matrix M (x) are as in Theorem 1. Then, there exist real

constants T,p,0 >0 such that, for any T -diameter

partition {t.}7, ., any Xo % OR", u[0], PO] OC?([01]; R),

with  (P[O)@ =0, (u,[0])(0) = q(u[0)(0), (u[O](D) =cX,

and (p,[0])(©) - a(P[O)(0) =0, one has:

() The initial value problem defined by (71)-(7432)-(35)
and (75)-(76) with initial conditions X(0) = X,,

X(0) = X,, u(x0)=(ON(), pe0)=(PON(X)
x[01], has a unique solution;

for

(i) This unique solution satisfies, for @l 0:



X ()] +[X @[+,
< pexpt-at){Xo| +|Xo - Xo| + 01,
with X (), X (t), a[t]0C2([04]; R) and P[t]IC2 ([01];R) .

= % ((2n+1)77+28, ) with 6, O [o, ’ET] (A2)

(42)

where 6, is the unique solution of the equation

[nn+7—7+ Hnjtan(ﬁn) =q in the interval(—l—T,E] (recall
5. CONCLUSION 2 2

The stability result of Proposition 1, which is extension of that g=0). It turns out that{(q () OC?([o]; R)}|=o and

previous results on sampled-data PDE-ZOH-ODE cas;ad A, =ay, -k for | = 012... are the eigenfunctions and the
has been shown to be useful in design and analysis
exponentially  convergent  sampled-output  observefdgenvalues of the Sturm-Liouville operaterad” / dx” ~k

(Theorem 1 and Corollary 1) and sampled output-faekib

stabilizing controllers (Corollary 2). Further intggstions
are underway to extend the present stability regaft
Proposition 1) and its application in observer amhtrol
design to nonlinear systems.
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Appendix A. PROOF OF LEMMA 1

Let {¢f (x)DCZ([O,l];R)};X;O and g, < iy < i1, <... denote
respectively the eigenfunctions and the eigenvahfeshe

Sturm-Liouville operator-d? / dx? defined on the set
={f OH2(01): f @ =%(0)—qf(0) =o}.
X

These eigenfunctions and eigenvalues are expligtiyen by
the following formulas, fom= 012... and zO[0]] :

_ P Hly
7 (2 -@/—qz o sin{(1- 24z, )

(A1)

-2 Zqz;”;(y o cod(1- p)o )+ asin{1- p o )

q~+a+ L
Using (A2), it follows that the right side of the@ve equality

-2 +q+u0 AT tH g y)(zwojsm(eo)

p=0. By continuity, the inequality'(0)—q7(0) <0 still
holds for sufficiently smallp>0. Therefore, Assumption
(H4) in (Karafyllis and Krstic, 2016) holds. As weave
already shown that Assumptions (H1), (H2) and (HB),
follows from Theorem 2.2 in (Karafyllis and Krsti2016)
that the following inequality holds for all=0:

[wix )] < expl-crt)ma |w(x,0)
n(x) osx<l - 77(X)

The above inequality, together with definition (A3nplies
the existence of a consta@ >0 such that (6) holds for all
t=0. This ends the proof of Lemma<

équals for

0< ><<



