The problem of observer design is addressed for a class of triangular nonlinear systems in presence of output measurement sampling and time-delay. A major difficulty with the considered nonlinear systems is that the state matrix is dependent on the "undelayed output signal" which is not accessible to measurement, making existing observers inapplicable. A new observer is designed where the effects of time-delay and sampling are compensated for using an output predictor. Defined by a couple of first-order ordinary differential equations (ODEs), the present predictor turns out to be much simpler compared to previous predictors involving output and state predictors. Using the small gain technique, sufficient conditions for the observer to be exponentially convergent are established in terms of the maximum time-delay and sampling interval.

I. INTRODUCTION

Time-delay (or dead-time) is a natural phenomenon in most physical systems, see several examples in the books [START_REF] Fridman | Introduction to Time-Delay Systems: Analysis and Control[END_REF], [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF], [START_REF] Michiels | Stability, control and computation for time-delay systems. An eigenvalue based approach[END_REF]. But, control components such as sensors and actuators, may also introduce additional delay in control systems. In this respect, the penetration of digital technology during the three last decades has led to networked control systems where time-delay is inevitable due to communication constraints [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF]. It is well established that the negligence of time-delays in control design may cause the instability of control systems. For this reason an intensive research activity has been devoted to control design of delayed systems, leading to dozens of publications especially over the last fifteen years, see the recent book [START_REF] Karafyllis | Recent Results on Nonlinear Delay Control Systems[END_REF] and references therein. In output feedback control systems, involving online state estimation, the system time-delay must be accounted for in the underlying observer design. Although time-delays are fundamentally distributed parameter nature, observer design in presence of these elements has often been dealt with using finite-dimensional design tools. Accordingly, one starts with exponentially convergent state observers of ODEs (without time-delay) and modify them so that exponential convergence is preserved in presence of time-delay. The main modification amounts to introduce one or several predictors of the output and/or the state. In the more challenging case of nonlinear systems, the approach has been illustrated with observers based on drift-observability property ( [START_REF] Germani | A new approach to state observation of nonlinear systems with delayed output. Automatic Control[END_REF]) and with high-gain observers [START_REF] Ahmed-Ali | Cascade high gain predictors for a class of nonlinear systems[END_REF], [START_REF] Cacace | An observer for a class of nonlinear systems with time-varying measurement delays[END_REF]. The involved predictors prove to be useful in compensating the delay effect up to some upper limit. To enlarge the maximum time-delay, a set of predictors operating in cascade are T. Ahmed-Ali, F. Giri and T. Folin are with the GREYC Lab, University of Caen Basse-Normandie, ENSICAEN, 14032 Caen, France.
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implemented. First introduced in [START_REF] Germani | A new approach to state observation of nonlinear systems with delayed output. Automatic Control[END_REF], this idea has been widely used in subsequent works [START_REF] Ahmed-Ali | Cascade high gain predictors for a class of nonlinear systems[END_REF], [START_REF] Besancon | Asymptotic state prediction for continuous-time systems with delayed input and application to control[END_REF], [START_REF] Cacace | A Chain Observer for nonlinear systems with multiple time-varying measurement delays[END_REF], [START_REF] Cacace | An observer for a class of nonlinear systems with time-varying measurement delays[END_REF], [START_REF] Kazantzis | Nonlinear observer design in the presence of delayed output measurements[END_REF].

In parallel with the above "finite-dimensional" research activity, the "infinite-dimensional" backstepping transformation based approach has been developed, see e.g. [START_REF] Krstic | Delay Compensation for Nonlinear, Adaptive, and PDE Systems[END_REF] and references therein. This approach consists in letting the output sensor delay be captured by a first-order hyperbolic PDE. Then, full-order observers are designed that estimate both the system (finite-dimensional) state and the sensor (infinite-dimensional) state.

In turn, the problem of designing sampled-output observers for continuous-time nonlinear systems is also of prime importance in regard of the fact that nowadays control systems are implemented using digital means. This problem has been investigated since the early nineties [START_REF] Deza | High gain estimation for nonlinear systems[END_REF], but it has witnessed a notable renewed interest on recent years, e.g. [START_REF] Ahmed-Ali | Using exponential time-varying gains for sampled-data stabilization and estimation[END_REF], [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF], [START_REF] Raff | Observer with Sampleand-Hold Updating for Lipschitz Nonlinear Systems with Nonuniformly Sampled Measurements[END_REF]. Just as for the time-delay case, the main underlying idea in all proposed sampled-data observer methods is to start the design with an exponentially convergent observer for ODEs (without output sampling) and modify these observers so that exponential convergence is preserved in presence of output measurement sampling. In [START_REF] Raff | Observer with Sampleand-Hold Updating for Lipschitz Nonlinear Systems with Nonuniformly Sampled Measurements[END_REF] the sampling effect has been accounted for by using a zero-order-hold (ZOH) sampling of the output estimation error as innovation term in the observer state equation. This approach has proved to work well when applied to linear observable systems that are disturbed by a globally Lipschitz function of the state vector. To enlarge the admissible maximum sampling interval, the observer gain is let to be inter-sample exponentially decaying in [START_REF] Ahmed-Ali | Using exponential time-varying gains for sampled-data stabilization and estimation[END_REF] where exponential convergence conditions are expressed in terms of LMIs involving the sampling interval and other design parameters. The time-varying delay effect caused by output sampling can also be compensated for by inserting inter-sample output predictors. This idea has first been introduced and illustrated for triangular Lipschitz systems in [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF].

The problem of dealing simultaneously with both timedelay and output-sampling in observer design, has recently been investigated in [START_REF] Ahmed-Ali | Global exponential sampled-data observers for nonlinear systems with delayed measurements[END_REF], [START_REF] Ahmed-Ali | Robust Stabilization of Nonlinear Globally Lipschitz Delay Systems[END_REF], [START_REF] Karafyllis | Stabilization of Nonlinear Delay Systems Using Approximate Predictors and High-Gain Observers[END_REF]. The sampling and delay effects have been compensated for using inter-sample output predictors and state predictors. It was shown that the insertion of these predictors in any continuous-time observer, that is globally exponentially stable and robust with respect to output measurement errors, yields to an exponentially stable sampled-output observer. In the present work, sampling and delay effects are compensated for using only output predictors. Since no state predictors are involved, the new observer turns out to be much simpler, compared to those proposed in previously discussed works. Using the small gain
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Mohamed Kahelras, Tarek Ahmed-Ali, Théo Folin, Fouad Giri, Françoise Lamnabhi-Lagarrigue method, sufficient conditions are established for the observer to be exponentially convergent. The sufficient conditions particularly involve the admissible maximum time-delay and sampling interval.

The paper is organized as follows: the observer problem is formulated in Section 2; the observer design and analysis are dealt with in Sections 3 and 4, respectively; a conclusion and reference list end the paper.

II. OBSERVER PROBLEM FORMULATION

The continuous-time system under study is depicted by Fig. 1 and described by the following model:
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where the i a 's are as in (2a . This makes the first term on the right side of (1a) subject to a double uncertainty induced by the state vector ) (t x and the undelayed output ) (t z . It turns out that the existing sampled-data observers (e.g. [START_REF] Ahmed-Ali | Using exponential time-varying gains for sampled-data stabilization and estimation[END_REF], [START_REF] Cacace | A Chain Observer for nonlinear systems with multiple time-varying measurement delays[END_REF], [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF], [START_REF] Raff | Observer with Sampleand-Hold Updating for Lipschitz Nonlinear Systems with Nonuniformly Sampled Measurements[END_REF]) are applicable to the system ( 1a-c is presently signaldependent. A similar assumption was required in the nondelayed non-sampled case dealt with in [START_REF] Schreier | Cascade nonlinear observers. Application to an experimental induction motor benchmark[END_REF].

f) The class of systems defined by (1a-c) is much wider than those in most existing works on sampled-and/or delayed-output based observer design, see e.g. [START_REF] Raff | Observer with Sampleand-Hold Updating for Lipschitz Nonlinear Systems with Nonuniformly Sampled Measurements[END_REF], [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF], [START_REF] Ahmed-Ali | Global exponential sampled-data observers for nonlinear systems with delayed measurements[END_REF], [START_REF] Ahmed-Ali | Using exponential time-varying gains for sampled-data stabilization and estimation[END_REF], [START_REF] Ahmed-Ali | Robust Stabilization of Nonlinear Globally Lipschitz Delay Systems[END_REF], [START_REF] Cacace | A Chain Observer for nonlinear systems with multiple time-varying measurement delays[END_REF]. Indeed, in those works either the state matrix ) , ( z v A is either constant or only dependent on the input signal v . In those works not involving output-delay, the signal z in the (corresponding) function ) , ( x v b coincides with the output that is accessible to measurements (here denoted y ). The fact that z is presently inaccessible to measurements entails an extra difficulty ■

III. SAMPLED-OUTPUT OBSERVER DESIGN

Since no existing sampled-output observer is applicable to system (1a-c), a new observer will now be constructed. To this end, some relevant expressions are immediately established from the problem formulation of Section II. In this respect, the following saturation operator, suggested by Assumption A1, will be used in the observer:
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where sgn(.) designates the sign function and M y is as in Assumption A1. On the other hand, it follows from equations (1a-c) that the (delayed and non-delayed) outputs undergo the following ODEs, respectively:
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In view of (1c), equation (6b) also rewrites in the integral form:
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Considering the above observations, the system model (1a-c) suggests the following sampled-output observer:
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The sampled-output observer defined by equations (7a-d) will now be analyzed. For analysis purpose, the following errors are introduced:
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Subtracting system equations (1a), (6a) and (6c) from the corresponding observer equations, i.e. (7a), (7b) and (7d), one gets using [START_REF] Germani | A new approach to state observation of nonlinear systems with delayed output. Automatic Control[END_REF] and rearranging terms the following equations describing the error dynamics: 

     x Kc w v w v A x z z ) ( , ) ( , ~1 1                      x v b x v b x z v A w v A z , , , ) ( ,        z z Ke w v 1 1 ) ( ,       (11a)   ) ( )) ( (

  ).

	Remark 1. a) The complexity with the present observation
	problem lies, on one hand, in the interference of delay and
	sampling effects and, on the other hand, in the complexity
	of model (1a-d) involving the signal	z	(t	)	(which is not
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  Note that the argument t has deliberately been omitted in (11a) to alleviate it. The main result is now stated in the following theorem:
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Then, the sets of admissible delay and sampling interval are respectively defined by

This study has addressed the problem of state estimation for the class of nonlinear systems (1a-c)-(2a-c) using sampled output measurements. The problem complexity lies, on one hand, in the interference of the output time-delay and sampling effects and, on the other hand, in the injection of the undelayed output (which is not accessible to measurements) in the state matrix

. The proposed observer (7a-d) features a simpler output predictor defined by two ODEs (while previous observers involved output and state predictors defined by several ODEs). The maximum sampling interval and time-delay for the observer to be exponentially convergent are well defined by inequalities (58).