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 

Abstract— The problem of observer design is addressed for a 

class of triangular nonlinear systems in presence of output 

measurement sampling and time-delay. A major difficulty with 

the considered nonlinear systems is that the state matrix is 

dependent on the "undelayed output signal" which is not 

accessible to measurement, making existing observers 

inapplicable. A new observer is designed where the effects of 

time-delay and sampling are compensated for using an output 

predictor. Defined by a couple of first-order ordinary 

differential equations (ODEs), the present predictor turns out 

to be much simpler compared to previous predictors involving 

output and state predictors. Using the small gain technique, 

sufficient conditions for the observer to be exponentially 

convergent are established in terms of the maximum time-delay 

and sampling interval. 

I. INTRODUCTION 

Time-delay (or dead-time) is a natural phenomenon in 
most physical systems, see several examples in the books [9], 
[16], [17]. But, control components such as sensors and 
actuators, may also introduce additional delay in control 
systems. In this respect, the penetration of digital technology 
during the three last decades has led to networked control 
systems where time-delay is inevitable due to communication 
constraints [11]. It is well established that the negligence of 
time-delays in control design may cause the instability of 
control systems. For this reason an intensive research activity 
has been devoted to control design of delayed systems, 
leading to dozens of publications especially over the last 
fifteen years, see the recent book [13] and references therein. 
In output feedback control systems, involving online state 
estimation, the system time-delay must be accounted for in 
the underlying observer design. Although time-delays are 
fundamentally distributed parameter nature, observer design 
in presence of these elements has often been dealt with using 
finite-dimensional design tools. Accordingly, one starts with 
exponentially convergent state observers of ODEs (without 
time-delay) and modify them so that exponential 
convergence is preserved in presence of time-delay. The 
main modification amounts to introduce one or several 
predictors of the output and/or the state. In the more 
challenging case of nonlinear systems, the approach has been 
illustrated with observers based on drift-observability 
property ([10]) and with high-gain observers [1], [7]. The 
involved predictors prove to be useful in compensating the 
delay effect up to some upper limit. To enlarge the maximum 
time-delay, a set of predictors operating in cascade are 
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implemented. First introduced in [10], this idea has been 
widely used in subsequent works [1], [5], [6], [7], [15].  

In parallel with the above "finite-dimensional" research 
activity, the "infinite-dimensional" backstepping 
transformation based approach has been developed, see e.g. 
[16] and references therein. This approach consists in letting 
the output sensor delay be captured by a first-order 
hyperbolic PDE. Then, full-order observers are designed that 
estimate both the system (finite-dimensional) state and the 
sensor (infinite-dimensional) state. 

In turn, the problem of designing sampled-output 
observers for continuous-time nonlinear systems is also of 
prime importance in regard of the fact that nowadays control 
systems are implemented using digital means. This problem 
has been investigated since the early nineties [8], but it has 
witnessed a notable renewed interest on recent years, e.g. [2], 
[12], [18]. Just as for the time-delay case, the main 
underlying idea in all proposed sampled-data observer 
methods is to start the design with an exponentially 
convergent observer for ODEs (without output sampling) and 
modify these observers so that exponential convergence is 
preserved in presence of output measurement sampling. In 
[18] the sampling effect has been accounted for by using a 
zero-order-hold (ZOH) sampling of the output estimation 
error as innovation term in the observer state equation. This 
approach has proved to work well when applied to linear 
observable systems that are disturbed by a  globally Lipschitz 
function of the state vector. To enlarge the admissible 
maximum sampling interval, the observer gain is let to be 
inter-sample exponentially decaying in [2] where exponential 
convergence conditions are expressed in terms of LMIs 
involving the sampling interval and other design parameters. 
The time-varying delay effect caused by output sampling can 
also be compensated for by inserting inter-sample output 
predictors. This idea has first been introduced and illustrated 
for triangular Lipschitz systems in [12].  

The problem of dealing simultaneously with both time-
delay and output-sampling in observer design, has recently 
been investigated in [3], [4], [14]. The sampling and delay 
effects have been compensated for using inter-sample output 
predictors and state predictors. It was shown that the insertion 
of these predictors in any continuous-time observer, that is 
globally exponentially stable and robust with respect to 
output measurement errors, yields to an exponentially stable 
sampled-output observer. In the present work, sampling and 
delay effects are compensated for using only output 
predictors. Since no state predictors are involved, the new 
observer turns out to be much simpler, compared to those 
proposed in previously discussed works. Using the small gain 
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method, sufficient conditions are established for the observer 
to be exponentially convergent. The sufficient conditions 
particularly involve the admissible maximum time-delay and 
sampling interval.  

The paper is organized as follows: the observer problem 
is formulated in Section 2; the observer design and analysis 
are dealt with in Sections 3 and 4, respectively; a conclusion 
and reference list end the paper. 

II. OBSERVER PROBLEM FORMULATION

The continuous-time system under study is depicted by Fig. 

1 and described by the following model: 

))(),(()())(),(()( txtvbtxtztvAtx   a
)()( tcxtz   (1b) 

)()()( rtcxrtzty   (1c) 

where ntx R)(  is the state vector; R)(tz  and R)(ty  

are respectively the undelayed and delayed outputs; 
mtv R)(  is a known external input; the integer n  and the 

delay 0r  are respectively known integer and real; the raw 

vector nc  1
R and the functions nnzvA R),( , 

nxvb R),(  are known and have the following triangular 

form: 
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nc  1]001[ R (2c) 

where R),( zvai and R),...,,( 1 ii xxvb are known 

functions.  

The problem under study is to design an observer providing 

online estimates )(ˆ tx  of the state vector )(tx  such that the 

estimation error )()(ˆ txtx   converges exponentially to the 

origin. The observer must only make use of the external 

input mtv R)(  and the delayed output samples: 

)()()( rtcxrtzty kkk  

where the kt 's denote the sampling instants. The set  kt  is 

any partition of R  i.e. an increasing sequence such that 

00 t , kt  as k , and 0  with 

)(sup 1
0




 kk
k

tt . The observation problem will be dealt 

with in the next section under the following assumptions: 

A1. All system signals ),,,( zyxv  are bounded and an upper 

bound My  on the output amplitude )(ty  is known. 

A2. The functions ),( zvai )1( ni   are class 0C  with 

respect to v , and 1C  with respect to z  while the functions 

),...,,( 1 ii xxvb  )1( ni   are  globally Lipschitz . 

A3. The pair  )),,(( czvA  is uniformly observable i.e. 

0)),(det(  ozvO  , RR  yv m ,  (3a) 

for some (unknown) real constant o , where ),( zvO

denotes the nn  matrix, 
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A4. There is a (unknown) real constant  l0 , such 

that: 
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where nnzv  R),(  is defined as follows: 
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where the ia 's are as in (2a). 

Remark 1. a) The complexity with the present observation 

problem lies, on one hand, in the interference of delay and 

sampling effects and, on the other hand, in the complexity 

of model (1a-d) involving the signal )(tz  (which is not 

accessible to measurements due to output delay) in the 

state matrix ),( zvA . This makes the first term on the right 

side of (1a) subject to a double uncertainty induced by the 

state vector )(tx  and the undelayed output )(tz . It turns 

out that the existing sampled-data observers (e.g. [2], [6], 

[12], [18]) are applicable to the system (1a-c). 

b) In view of Assumption A1, it follows from A2 that the

functions ),( zvai )1( ni   are also Lipschitz in z  on 

the compact set Myz  . Since the input signal )(tv  is 

bounded, there exists a real constant al  such that, for 

ni 1  and all real numbers 21, zz : 

2121 ),(),( zzlzvazva aii  , where al is only 

)(ty  )( kty)(tz  )(tv System 

Dynamics (1a-b) 

Transmission 

delay )(r  

Fig. 1: System to be observed 
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dependent on the functions (.,.)ia  and the supremum of 

)(tv . 

c) Similarly, it readily follows from A2 that, there exists a

Lipschitz constant bl  such that, for 21, zz , 

2121 ),(),( zzlzvbzvb b  , for some constant bl  that 

is only dependent on  (.,.)b  and on the supremum of )(tv . 

In this respect, let us note that instead of the globally 

Lipschitz assumption on (.,.)b , one could alternately 

assume this function to be 1C  in x . Since the state vector 

trajectory )(tx  lies in a known compact domain, say xD

(by Assumption A1), one would conclude that (.)b  is 

Lipschitz on xD . Then, the state estimation problem could 

be solved by replacing ))(ˆ),(( txtvb , in the observer 

described in Section 2, by )))(ˆ(),(( txPtvb  where (.)P

denotes the orthogonal projection on the domain xD . This 

alternative has been illustrated (in the absence of output 

sampling and time-delay) in [20]. 

d) Assumption A3 is also usual in observer design literature.

Presently, that assumption amounts to assuming that, 

0),(inf 


ai
yz

zva
M

 , for some real constant 0a . 

e) Assumption A4 is a technical condition induced by the

fact that the state matrix ),( zvA  is presently signal-

dependent. A similar assumption was required in the non-

delayed non-sampled case dealt with in [19]. 
f) The class of systems defined by (1a-c) is much wider

than those in most existing works on sampled- and/or 
delayed-output based observer design, see e.g. [18], [12], [3], 
[2], [4], [6]. Indeed, in those works either the state matrix 

),( zvA  is either  constant or only dependent on the input 

signal v . In those works not involving output-delay, the 

signal z  in the (corresponding) function ),( xvb  coincides 

with the output that is accessible to measurements (here 
denoted y ). The fact that z  is presently inaccessible to 

measurements entails an extra difficulty ■ 

III. SAMPLED-OUTPUT OBSERVER DESIGN

Since no existing sampled-output observer is applicable to 

system (1a-c), a new observer will now be constructed. To 

this end, some relevant expressions are immediately 

established from the problem formulation of Section II. In 

this respect, the following saturation operator, suggested by 

Assumption A1, will be used in the observer: 

),min()sgn()(  My   

where sgn(.) designates the sign function and My  is as in 

Assumption A1. On the other hand, it follows from 

equations (1a-c) that the (delayed and non-delayed) outputs 

undergo the following ODEs, respectively: 

   )(),()()(),()( rtxrtvcbrtxtyrtvcAty   (6a)

   )(),()()(),()( txtvcbtxtztvcAtz  (6b) 

In view of (1c), equation (6b) also rewrites in the integral 

form: 

     
t

rt
dssxsvcbsxszsvcAtytz )(),()()(),()()(  (6c) 

Considering the above observations, the system model (1a-c) 

suggests the following sampled-output observer: 

   )(ˆ),()(ˆ))((),()(ˆ txtvbtxtwtvAtx z  

   )()(ˆ)(),( 11 twtxcKwtv zz    (7a) 

   )(ˆ),()(ˆ))((),()( rtxrtvcbrtxtwrtvcAtw yy  

for 1 kk ttt (7b) 

)()( kky tytw  (7c) 
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(7d) 

where 

nn

n
diag 








 R


1

,,
1

 , for any 1  

and the gain nK R  is chosen such that the matrix KcA 
is Hurwitz with 
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Note that K  exists because the pair ),( cA  is observable. In 

(7a), the initial state estimates )0()(ˆ  srsx  are 

arbitrarily chosen. In (7d), one uses the initial conditions 

)()()( rsyszswz  , )0(  sr . In view of (6a-c), the 

variables )(twy  and )(twz  are nothing other than estimates 

of the delayed and undelayed outputs )(ty and )(tz , 

respectively. In fact, )(twy  is a prediction of )(ty  over the 

open intervals ),( 1kk tt , it is generated by the predictor (7b-

c) from the output samples )(),( 1kk tyty  Then, the filter 

(7d) is resorted to get the estimate )(twz  of  )(tz . Since 

none of )(twy  and )(twz  are a priori bounded, these signals 

enter through their saturated versions in the observer 

equations (7a-d). Without using this saturation, it will not be 

possible to ensure the boundedness of the various observer 

signals. 

Remark 2. a) The observer (7a-d) is inspired by the high-

gain observer proposed in (Schreier et al., 2001) for 

continuous-time systems with no output delay and no 

output sampling. The main novelty of the new observer is 

the inter-sample predictor (7b-d) providing the estimates 

)(twz  (of the non-delayed output )(tz ) which is used in 
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the innovation of the state equation (7a). Another new 

feature of  the present observer, compared to [19], is the 

saturation operator (.) . These novel features will prove 

to be useful in getting rid of the delay and sampling 

effects. 

b) Note that expression (7d) can be reformulated as follows:

)()()( ttwtw yz   

with )(t  defined by the following ODE: 

   )(ˆ),()(ˆ))((),()( txtvcbtxtwtvcAt z  

         )(ˆ),()(ˆ))((),( rtxrtvcbrtxrtwrtvcA z  

    
0

)(ˆ),()(ˆ))((),()0(
r

dssxsvcbsxrsysvcA    ■

IV. OBSERVER ANALYSIS

The sampled-output observer defined by equations (7a-d) 

will now be analyzed. For analysis purpose, the following 

errors are introduced: 

xxx  ˆ~  ywe yy   zwe zz   

Subtracting system equations (1a), (6a) and (6c) from the 

corresponding observer equations, i.e. (7a), (7b) and (7d), 

one gets using (10) and rearranging terms the following 

equations describing the error dynamics: 

    xKcwvwvAx zz
~)(,)(,~ 11     

           xvbxvbxzvAwvA z ,ˆ,,)(,  

   zz Kewv 11 )(,    (11a) 

  )(~))((),()( rtxtwrtvcAte yy  

     )()(),())((),( rtxtyrtvcAtwrtvcA y  

    )(),()(ˆ),( rtxrtvcbrtxrtvcb 
for 1 kk ttt (11b) 

0)( ky te  (11c) 

  
t

rt zyz dssxswsvcAtete )(~))((),()()( 
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t

rt z dssxszsvAswsvAc )()(),())((),(   

       
t

rt
dssxsvbsxsvbc )(),()(ˆ),(  (11d)

Note that the argument t  has deliberately been omitted in 

(11a) to alleviate it. The main result is now stated in the 

following theorem: 

Theorem 1. Let the sampled-output adaptive observer (7a-d) 

be applied to the system (1a-c), subject to Assumptions A1-

A4. Then, there exists a real constant  *1   such that if 
*   then, there exist real constant  *0   and 

 *0 r  so that, if  
*   and *rr   then, 0t : 

2/)(~ t
xetx   , 2/)( t

yy ete   , 
2/)( t

zz ete   ,  

for some real constants 0,0,0,0  zyx     ■ 

Proof. The proof is partly inspired by [19], [12]. For 

Remark 3. Admissible values of the delay r  and the 

maximum sampling interval   are those satisfying 

conditions (45), (51) and (57). Accordingly, the maximum 

admissible values, say Mr  and M , depend on the free 

parameter   which has been introduced for analysis 

purpose. The smaller   the larger the maximum admissible 

values. It follows that Mr  and M  are obtained by letting 

0  in (45), (51) and (57). Doing so one gets: 
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Then, the sets of admissible delay and sampling interval are 

respectively defined by  

Mrr 0  and M 0 (59) ■ 

V. CONCLUSION 

This study has addressed the problem of state estimation 

for the class of nonlinear systems (1a-c)-(2a-c) using 

sampled output measurements. The problem complexity lies, 

on one hand, in the interference of the output time-delay and 

sampling effects and, on the other hand, in the injection of 

the undelayed output (which is not accessible to 

measurements) in the state matrix ))(),(( tztvA . The proposed 

observer (7a-d) features a simpler output predictor defined 

by two ODEs (while previous observers involved output and 

state predictors defined by several ODEs). The maximum 

sampling interval and time-delay for the observer to be 

exponentially convergent are well defined by inequalities 

(58). 
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