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ABSTRACT This paper proposes an invariant-set based minimal detectable fault (MDF) computation
method based on the set-separation condition between the healthy and faulty residual sets for discrete-
time linear parameter varying (LPV) systems with bounded uncertainties. First, a novel invariant-set
computation method for discrete-time LPV systems is developed exclusively based on a sequence of
convex-set operations. Notably, this method does not need to satisfy the existence condition of a common
quadratic Lyapunov function for all the vertices of the parametric uncertainty compared with the traditional
invariant-set computation methods. Based on asymptotic stability assumptions, a family of robust positively
invariant (RPI) outer-approximations of minimal robust positively invariant (mRPI) set are obtained by
using a shrinking procedure. Based on the mRPI set, the healthy and faulty residual sets can be obtained.
Then, by considering the dual case of the set-separation constraint regarding the healthy and faulty residual
sets, we transform the guaranteed MDF problem based on the set-separation constraint into a simple linear
programming (LP) problem to compute the magnitude of MDF. Since the proposed MDF computation
method is robust regardless of the value of scheduling variables in a given convex set, fault detection (FD)
can be guaranteed whenever the magnitude of fault is larger than that of the MDF. At the end of the paper,
a practical vehicle model is used to illustrate the effectiveness of the proposed method.

INDEX TERMS Invariant set, minimum detectable fault, LPV systems.

I. INTRODUCTION
Fault diagnosis has attracted much attention from a great
number of researchers owing to the demand of increasing
safety and reliability of themodern industrial control systems.
Fault occurrence affects the behavior of the system and pre-
vents it from operating in a normal way [3]. The objective of
fault diagnosis is to detect, isolate, identify or estimate faults
after they have affected the system behaviors. FD determines
whether a fault has occurred or not in a system, fault isolation
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finds the system component where the fault has occurred and
fault identification or estimation determines the fault type and
magnitude [25].

As a kind of important set-based FD method, the feature
of the invariant-set technique consists in testing consistency
between the measured real-time residual signals and the
reference residual set generated from the nominal models.
In particular, as long as the system is healthy, the residual
signal will always stay inside the healthy residual set at steady
stage.Whenever faults occur in the system, the residual signal
will violate the frontiers of the healthy residual set and finally
enter into the faulty residual set [20], [21]. Thus, as long as
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the healthy and faulty residual sets are separated from each
other, it is guaranteed that the occurred fault can be detected
in the steady stage.

The core of invariant set-based FD consists in the
construction of the healthy and faulty invariant sets. For
linear time-invariant (LTI) systems with bounded uncertain-
ties, the technique on the computation of the invariant set
is relatively mature. A stand tool for ultimate invariant set
computation is by using the Lyapunov function, whose sub-
level sets are positively invariant and their shapes can be used
to characterize the steady behaviors of system dynamics [9].
Reference [10] developed a systematic method to obtain the
robust positively invariant (RPI) sets for both continuous-
time and discrete-time perturbed LTI systems from the aspect
of component-wise analysis, which can decrease the conser-
vatism of invariant sets and improve the state-estimation pre-
cision to some extent. In [7], the attractive ellipsoid method
was extended to guarantee the convergence of state trajec-
tories to the origin and simultaneously minimize the size
of an ellipsoidal set despite the presence of non-vanishing
disturbances.

However, the results on the computation of invariant sets
for LPV systems are limited. This class of dynamical systems
serve as a bridge connecting linear and nonlinear systems [23]
and could be handled by using some techniques for linear
systems at each operating point [4], [22]. Reference [16]
developed an ellipsoidal invariant set computation method
to maximize the inclusion of a given reference direction by
considering additive disturbances injected into the system
dynamics. Reference [14] used an H∞ observer and linear
matrix inequalities (LMIs) to compute an RPI set, whose
evolution is characterized to bound the estimation error at
each time instant. However, regarding both methods in [14]
and [16], there is a precondition that a common quadratic
Lyapunov function for all vertex matrices of LPV systems
should exist, which is a strict assumption and not a necessary
one for stable LPV systems. In addition, [19] presented a
component-wise based RPI set computation method for poly-
topic uncertain systems, which does not rely on the existence
of common quadratic Lyapunov functions while needs to
search a common invertible transformation matrix to guaran-
tee the Schur stability. Unfortunately, this searching process is
a non-convex problem and a numerical search routine, which
is not easy to implement, is needed.

For linear discrete-time systems affected by bounded
uncertainties, [17] proposed an interesting method to com-
pute an mRPI set by using a contractive procedure starting
from an initial RPI set. According to the work [17], we pro-
pose a novel and practical mRPI set computation method to
characterize the healthy and faulty residual sets of perturbed
discrete-time LPV systems exclusively based on a sequence
of convex-set operations without need of existence of a com-
mon quadratic Lyapunov function assumed in [16] and [14].
Meanwhile, a family of outer-approximations of the mRPI set
are obtained by using a shrinking procedure, which are also
positively invariant at each step of iteration.

The proposed invariant-set computation method leads to
the healthy and faulty residual sets for the discrete-time
LPV systems and completes the available methods in the
literature [6], [18], [24] based on adaptive thresholds, interval
analysis or LMIs. As known, since the sensitivity of FD is
highly affected by the system uncertainties, the characteriza-
tion ofMDF is important in order to know the limits of perfor-
mance of the considered FD scheme. We consider computing
the magnitude of MDF based on the set-separation constraint
on the healthy and faulty residual sets. By exploiting the
duality, we can transform the guaranteed MDF problem into
a simple linear programming (LP) problem. Furthermore,
we can compute the magnitude of MDF only by solving a
simple LP problem and avoid the complex set-based opti-
mization operations. The magnitude of MDF is related to the
varying range of scheduling variables. In particular, the larger
the varying range of scheduling variables is, the more con-
servatism the obtained results on the magnitude of MDF
have. That means, the magnitude of MDF will increase as
the varying range of scheduling variables increases.

For clarity, the main contributions of this paper are sum-
marized as follows:
• A novel invariant set computation method is proposed
for discrete-time LPV systems with bounded uncer-
tainties exclusively based on a sequence of convex-set
operations. This computation method does not need to
satisfy the strict assumption that there exists a common
quadratic Lyapunov function for all the vertex matrices
of LPV system.

• By considering the duality of set-separation constraint
between the healthy and faulty residual sets, we trans-
form the MDF problem into a simple LP problem. The
magnitude of MDF for additive actuator and sensor
faults can be efficiently computed by solving a simple
LP problem.

• The conservatism of results on the magnitude of MDF
can be decreased by adjusting the varying range of
scheduling variables. The smaller the varying range of
scheduling variables is, the smaller the obtained mag-
nitude of MDF for additive actuator faults and sensor
faults is.

For the convenience of illustration, we introduce some
mathematical symbols. Rn denotes the set of n-dimensional
real numbers. ‖ · ‖∞ indicates the ∞-norm. For two sets
X and Y , the Minkowski sum of X and Y is given by
X ⊕ Y = {z|z = x + y, x ∈ X , y ∈ Y }. A polyhedral set P
is defined by its half-space representation, P = {x|Hx ≤ b}.
A polytope is a closed polyhedral set.

Regarding the structure of the paper, Section II presents
the discrete-time LPV system affected by additive actua-
tor and sensor faults and a stability analysis of the state-
estimation error dynamics of the designed FD observer in
healthy situation is performed. In Section III, the construction
method of the mRPI set for the LPV-form state-estimation
error dynamics is proposed. In Section IV, the computation
method of MDF for additive actuator faults is proposed by
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solving a simple LP problem. Section V further proposes the
computation method of MDF for additive sensor faults. A
practical vehicle application is used to illustrate the effective-
ness of the proposedmethod in Section VI. Some conclusions
are drawn in Section VII.

II. SYSTEM MODEL
This section introduces the class of dynamics under study
and the associated family of faults and discusses the stability
prerequisites for the state-estimation error dynamics of the
designed FD observer in healthy situation.

A. SYSTEM MODEL
Considering the following discrete-time LPV system affected
by additive actuator faults:

xk+1 = A(θk )xk + B(θk )uk + Gfk + Ewk , (1a)

yk = C(θk )xk + D(θk )uk + Pgk + Fηk , (1b)

where k ∈ N is the discrete time index. A(θk ) ∈ Rnx×nx ,
B(θk ) ∈ Rnx×nu , C(θk ) ∈ Rny×nx and D(θk ) ∈ Rny×nu

are related system matrices dependent on a varying schedul-
ing vector θk ∈ Rnθ able to be measured online at time
instant k . xk ∈ Rnx and yk ∈ Rny are the system states
and outputs at time instant k , respectively. The unknown
inputs wk ∈ Rnw (including process disturbances, modeling
errors, etc.) are contained in a known compact and convex
set W = {w ∈ Rnw

∣∣Hww ≤ bw} containing the origin.
Similarly, the measurement noises ηk ∈ Rη also belong to
a given compact and convex set V = {η ∈ Rnη

∣∣Hηη ≤
bη} containing the origin. fk ∈ Rnf and gk ∈ Rng denote
the additive actuator and sensor fault vectors, respectively.
G ∈ Rnx×nf , E ∈ Rnx×nw , P ∈ Rny×ng and F ∈ Rny×nη are
the known constant distribution matrices of f , wk , g and ηk ,
respectively.

It is assumed that the nθ -dimensional scheduling vector θk
is a convex combination of given extreme values generating
a convex set2 = Conv{θ1, θ2, . . . , θN }. Therefore, a linear
affine function 8(θk ) of θk can be written as the convex
combination of vertex matrices:

8(θk ) =
N∑
i=1

λi(θk )8(θ i), (2)

where the weighting coefficients λi(θk ) satisfy
∑N

i=1 λi(θk ) =
1, 0 ≤ λi(θk ) ≤ 1 and the components of 8(·) can represent
the elements of A(·), B(·), C(·) and D(·).

B. DESIGN OF FD OBSERVER
In order to implement a robust FD, we consider the following
Luenberger-structure observer:

x̂k+1 = A(θk )x̂k + B(θk )uk + L(yk − ŷk ), (3a)

ŷk = C(θk )x̂k + D(θk )uk , (3b)

where x̂k and ŷk are the estimated state and output vectors of
the system (1), respectively. L ∈ Rnx×ny is the gain matrix of
the designed FD observer (3).

In the healthy situation without any actuator and sensor
fault (i.e., f = 0, g = 0), the state-estimation error ek is
defined as

ek = xk − x̂k . (4)

Furthermore, the dynamics of the state-estimation error ek in
the healthy situation can be obtained as

ek+1 = (A(θk )− LC(θk ))ek + Ewk − LFηk . (5)

Since wk and ηk are the additive terms in (5) and are con-
tained in the sets W and V, respectively, the bounded-input,
bounded-output (BIBO) stability of the dynamics (5) needs
to be assessed. Consider the nominal system:

e′k+1 = (A(θk )− LC(θk ))e′k . (6)

A stability conclusion for the nominal system (6) is pre-
sented in Theorem 1.
Theorem 1 ( [5]): The dynamics (6) is poly-quadratically

stable if and only if there exist symmetric positive definite
matrices Si, Sj, and matrices Mi of appropriate dimensions
such that[

Mi +MT
i − Si ∗

(Ai − LCi)Mi Sj

]
� 0, ∀ i, j = 1, 2, . . . ,N , (7)

where the symbol ∗ denotes the transpose of (Ai − LCi)Mi.
In this case, the time-varying parameter-dependent Lyapunov
function for the stability is given as V (e′k , θk ) = e′k

TR(θk )e′k ,
with R(θk ) =

∑N
i=1 λi(θk )S

−1
i ,

∑N
i=1 λi(θk ) = 1 and 0 ≤

λi(θk ) ≤ 1.
Remark 1: The poly-quadratical stability condition of (6)

is satisfied when the system matrix A(θk ) − LC(θk ) is linear
function of θk . Thus, the gain L of FD observer (3) is constant
when the output matrix C(θk ) is scheduled by θk . On the
contrary, if the output matrix C is constant, in this case,
the gain matrix L could be dependent on the scheduling
vector θk , i.e., L(θk ).
From the structural point of view, the results in [15]

provided a link between stability conditions and additional
structural properties of Lyapunov functions for the nominal
system (6). The necessary and sufficient condition regard-
ing the poly-quadratically stability of the dynamics (6) is
equivalent to that there exists a scheduling-variable depen-
dent Lyapunov function V (e′k , θk ) = e′k

TR(θk )e′k satis-
fying Theorem 1 which is considerably less conservative
than the condition that there exists a common quadratic
Lyapunov function for all vertex matrices in [14] and [16].
The subsequent computation of RPI sets assumes the
fulfillment of this necessary and sufficient stability
condition.

C. ROBUST POSITIVELY INVARIANT SETS
Here we first introduce some basic set invariance notions [8],
which are the basis of the proposed approaches in the
remaining parts.
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Definition 1: A set E is a positively invariant (PI) set of
the dynamics ek+1 = (A(θk )−LC(θk ))ek , if ∀θk ∈ 2, for any
ek ∈ E, one has ek+1 ∈ E.
Definition 2: A set E is an RPI set of the dynamics ek+1 =

(A(θk )− LC(θk ))ek + Ewk − LFηk , if ∀θk ∈ 2, wk ∈W and
ηk ∈ V, for any ek ∈ E, one has ek+1 ∈ E.
Definition 3: The minimal RPI (mRPI) set of the dynamics

is defined as an RPI set contained in any closed RPI set and
the mRPI set is unique and compact.

III. SET-THEORETIC ANALYSIS IN HEALTHY SITUATION
This section presents the computation method for the approx-
imation of the mRPI set of the LPV-form state-estimation
error dynamics (5). If the condition of Theorem 1 is fulfilled,
then the system (6) is asymptotically stable. Moreover, wk
and ηk in the dynamics (5) are bounded, i.e., wk ∈ W and
ηk ∈ V. Therefore, there exists a family of RPI sets for the
dynamics (5). More information on the relationship between
system stability and set invariance can be found in [2].

A. CONVEX HULL OF THE MRPI SET
In general, although the mRPI set of the dynamics (5) is not
a convex set [1], the robust positive invariance of the convex
hull of the mRPI set for the dynamics (5) can be guaranteed
by the following theorem.
Theorem 2: Suppose the dynamics (6) is stable. Then, the

convex hull of the mRPI set of the dynamics (5) for arbitrary
θk ∈ 2 is an RPI set.

Proof: Let �̄ denote the mRPI set of the dynamics (5)
and the convex hull of �̄ is �∞ := Conv{�̄}. Since �̄ is the
mRPI set of the dynamics (1), based on Definitions 2 and 3,
we have  N∑

i=1

λi(θk )(Ai − LCi)

 �̄⊕ S ⊆ �̄, (8)

where S = EW⊕ (−LF)V. For any d ∈ �∞, there exist d1,
d2 ∈ �̄ and 0 ≤ α ≤ 1, such that d = αd1 + (1 − α)d2.
Furthermore,

N∑
i=1

λi(θk )(Ai − LCi)d + Ewk − LFηk

=

N∑
i=1

λi(θk )(Ai − LCi)αd1

+

N∑
i=1

λi(θk )(Ai − LCi)(1− α)d2 + Ewk − LFηk

= α

 N∑
i=1

λi(θk )(Ai − LCi)d1 + Ewk − LFηk


+(1− α)

 N∑
i=1

λi(θk )(Ai − LCi)d2+Ewk−LFηk

 . (9)

Let us note that there exist d̃1, d̃2 ∈ �̄ such that:

d̃1 =

 N∑
i=1

λi(θk )(Ai − LCi)d1 + Ewk − LFηk

 ,
d̃2 =

 N∑
i=1

λi(θk )(Ai − LCi)d2 + Ewk − LFηk

 .
Thus, ultimately we have

N∑
i=1

λi(θk )(Ai − LCi)d + Ewk − LFηk

= αd̃1 + (1− α)d̃2 ∈ Conv{�̄} = �∞. (10)

Based on Definition 2, this implies that �∞ is an RPI set of
the dynamics (5). �

Since the convex hull of the mRPI set is the tightest convex
set containing the mRPI set of the dynamics (5), its charac-
terization will represent the objective of the present section.
In the following, all analyses and computations are based on
dealing with �∞, the convex hull of the mRPI set for the
dynamics (5). For simplicity, we also denote (with an abuse
of notation) �∞ as the mRPI set.

B. COMPUTATION OF AN INITIAL RPI SET
Theorem 3: Under the condition of Theorem 1, consider

an arbitrarily given initial convex set E0 ⊇ �∞, where �∞
is the mRPI set of the dynamics (5). Let the following set
iteration:

Ēk+1 = A(Ek )⊕ S, (11a)

Ek+1 = Conv
{
Ēk+1

⋃
Ek
}
, (11b)

where A(·) is the set mapping:

A(Ek ) = Conv


N⋃
i=1

(Ai − LCi)Ek

 .
There exists a finite k∗ ∈ N such that Ek∗+1 = Ek∗ .

Moreover, Ek∗ is an RPI set for the dynamics (5).
Proof: Let us first consider the following sequence

Ẽk+1 = A(Ẽk )⊕ S. (12)

For a stable dynamics (5), if Ẽ0 ⊇ �∞, then there exists a
specific positive k∗ such that Ẽk ⊆ Ẽ0,∀k ≥ k∗ as long as the
system is stable and for any initial condition in Ẽ0, the state
trajectories reach in finite time a neighborhood of�∞. Notice
that

Ek = Conv

{
k⋃
i=0

Ẽi

}
, (13)

with Ẽ0 = E0, which is a convex set. For k = k∗+1, we have

Ek∗+1 = Conv
{
Ek∗

⋃
Ẽk∗+1

}
. (14)
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Since Ẽk∗+1 ⊆ Ẽ0 ⊆ Ek∗ , we have Ek∗+1 =

Conv
{
Ek∗

⋃
Ẽk∗+1

}
= Ek∗ .

Thus, according to (11b), we can further obtain

Ek∗ = Conv
{
Ēk∗+1

⋃
Ek∗

}
,

which indicates that Ēk∗+1 ⊆ Ek∗ holds. By combining (11a)
and (11b), we can further obtain

Ēk∗+1 = A(Ek∗ )⊕ S ⊆ Ek∗ . (15)

If ek ∈ Ek∗ , then

ek+1 =
N∑
i=1

λi(θk )(Ai − LCi)ek + Ewk − LFηk

∈ A(Ek∗ )⊕ S ⊆ Ek∗ . (16)

and thus Ek∗ is a convex RPI set for the dynamics of (5). �
Remark 2: If the initial set E0 is contained in the mRPI

set �∞, i.e., E0 ⊆ �∞, then the existence of finite k∗ such
that Ek∗+1 = Ek∗ can not be guaranteed. In this case, Ek
is not an RPI set at any iteration and only represents an
inner approximation of the mRPI set of the dynamics (5). For
further details, readers can refer the work in [11].
Remark 3: We compute the convex hull twice in Theo-

rem 3, i.e., (11a) and (11b). Obviously, Conv{·} in (11a) is
used to compute the one-step reachable set. We must point out
that the significance of Conv{·} operation in (11b) allows to
preserve the convexity of the set iterations. However, the con-
vexity comes at the price of monotonic increasing as long as
Ek+1 ⊇ Ek .
The alternative procedures in [16] and [14] use LMI condi-

tions to construct an RPI set under the precondition that there
exists a common quadratic Lyapunov function for all vertex
matrices of LPV system. Here we provide a more practical
way to construct an RPI set based exclusively on convex
operators over sets. Moreover, if E0,W and V are polyhedral
sets, then (11a) and (11b) provide a sequence of polyhedral
sets and Ek∗ is polyhedral. Next we will be concerned with
the shrinking of a given RPI set in order to better outer
approximate the mRPI set and iteratively converge towards
the mRPI set by following the idea in [17].

C. SHRINKING PROCEDURE
Considering that the unknown inputs wk and the measure-
ment noises ηk are both bounded by the known convex sets,
i.e.,wk ∈W and ηk ∈ V, we can recursively build a sequence
of RPI sets starting with the initial RPI set Ek∗ according to
the following theorem.
Theorem 4: Given an initial RPI set Ek∗ for (5),

the sequence �k :

�k+1 = A(�k )⊕ S, (17)

with �0 = Ek∗ , ensures that at each iteration �k is an RPI
set of (5) and

�∞ ⊆ �k+1 ⊆ �k ⊆ �0 (18)

holds for k ≥ 1. Furthermore, we have

�∞ = lim
k→+∞

�k =
∞

⊕
i=0

Ai(S), (19)

which is the exact mRPI set of the dynamics (5).
Proof: Suppose that �0 = Ek∗ is an RPI set of the

dynamics (5). �1 can be computed as

�1 = A(�0)⊕ S, (20)

which characterizes the set of all possible e1 starting from the
initial e0 ∈ �0. Since �0 is an RPI set, we have

�1 ⊆ �0. (21)

Furthermore, by considering �k+1 ⊆ �k , we can obtain

�k+2 = A(�k+1)⊕ S ⊆ A(�k )⊕ S = �k+1, (22)

which means that all ek+1 starting from�k+1 will evolve into
�k+2 ⊆ �k+1. Thus, �k+1 is also an RPI set. Thus, �k
describes a monotonic sequence (in terms of set inclusions)
of RPI sets. This is lower bounded by the mRPI set which is
contained in any RPI set by definition. The monotonic and
lower bounded sequence is thus convergent. In order to prove
that the limit set�∞ is the mRPI set and not only an RPI set,
it should be noted that

�∞ = A(�∞)⊕ S (23)

and �k+1 ⊆ �k whenever �k 6= �∞. Exploiting the fact
that the mRPI set is known to be unique and to verify (23),
we can obtain that �∞ is the mRPI set of dynamics (5).
Furthermore, the recursive equation (17) can be written in a
more explicit way by iterating from �0. Thus, a polyhedral
RPI set is obtained as follows:

�k = Ak (�0)⊕
k∑
i=1

Ai−1(S). (24)

Considering lim
k→+∞

Ak (�0) = 0, it follows (19). �

As pointed out in Remark 2, we should find a proper E0
such that �∞ ⊆ E0 holds. Considering that the mRPI set
�∞ is convex, unique and compact, we can always find a
proper E0 such that �∞ ⊆ E0. We will propose a practi-
cal method to compute the proper set E0 in the following
Theorem 5.
Theorem 5: Suppose that the dynamics (5) is stable,

the initial convex set E0 ⊇ �∞ can be given by

E0 =
p∗−1
⊕
i=0

Ai(B(r))⊕
p∗ξ
1− ξ

B(r), (25)

where ξ ∈ (0, 1), p∗ ∈ N and B(r) := {x ∈ Rnx : ‖x‖∞ ≤ r}
is a box containing S.

Proof: Since the dynamics (5) is stable, it implies that
there exist a scalar ξ ∈ (0, 1), p∗ ∈ N and a box B(r)
containing S, i.e., S ⊆ B(r), such that for any k ≥ p∗,
Ak (B(r)) ⊆ ξB(r). Moreover, assuming for any k ≥ np∗,
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Ak (B(r)) ⊆ ξnB(r) holds for a given n, then for any k ≥
(n+ 1)p∗,

Ak (B(r)) = Ap∗ (Ak−p∗ (B(r)))

⊆ Ap∗ (ξnB(r)) = ξnAp∗ (B(r))

⊆ ξn+1B(r). (26)

Therefore, for any k ≥ np∗, n ∈ N, we have Ak (B(r)) ⊆
ξnB(r). Furthermore, since �∞ =

∞

⊕
i=0

Ai(S), we can have

�∞ =

p∗−1∑
i=0

Ai(S)⊕
∞∑
n=1

(n+1)p∗−1∑
i=np∗

Ai(S)

⊆

p∗−1∑
i=0

Ai(B(r))⊕
∞∑
n=1

(n+1)p∗−1∑
i=np∗

Ai(B(r))

⊆

p∗−1∑
i=0

Ai(B(r))⊕
∞∑
n=1

(n+1)p∗−1∑
i=np∗

ξnB(r)

=

p∗−1∑
i=0

Ai(B(r))⊕ p∗
∞∑
n=1

ξnB(r)

=

p∗−1∑
i=0

Ai(B(r))⊕
p∗ξ
1− ξ

B(r). (27)

Since p∗ is a finite number, and S and B(r) are known,
bounded sets, we can build the set E0 :=

∑p∗−1
i=0 Ai(B(r))⊕

p∗ξ
1−ξ B(r) containing the mRPI set �∞. �

D. OUTER-APPROXIMATION OF THE MRPI
SET WITH GIVEN PRECISION
According to Theorem 4, we can find that it needs in infinite
times of iterations to obtain the mRPI set�∞ of the dynamics
(5), which is not realistic for obtaining the exact value of
the mRPI set �∞. In the following, we propose an outer-
approximation method of the mRPI set with arbitrarily given
precision. By combining (19) and (24), we can obtain

�k = Ak (�0)⊕
k∑
i=1

Ai−1(S) ⊆ Ak (�0)⊕�∞. (28)

Thus, the set iteration computation (17) can be terminated
when there exists a k† ∈ N+ such that

Ak†(�0) ⊆ Anx
p (ε), (29)

with Anx
p (ε) := {x ∈ Rnx : ‖x‖p ≤ ε} is a prior given ball

with arbitrary small size. Therefore, based on (18) and (28),
we can conclude that the set�k† is not only an RPI set for the
dynamics (5) but also an outer approximation of the mRPI set
�∞ with the precision Anx

p (ε). That is

�∞ ⊆ �k† ⊆ Anx
p (ε)⊕�∞. (30)

IV. COMPUTATION OF MDF IN ACTUATOR-FAULT
SITUATION
This section considers computing the magnitude of MDF for
the system (1) in the additive actuator-fault situation.

A. DISTURBANCE-FREE DYNAMICS WITH ADDITIVE
ACTUATOR FAULTS
Let us first consider the behavior of state-estimation-error
dynamics (5) with additive actuator faults in the absence of
the unknown inputs wk and the measurement noises ηk . Note
that, we only consider single actuator-fault situation in order
to compute the magnitude of MDF for each fault fi, where fi
is the i-th component of fk corresponding to the i-th actuator
fault. Thus, the analysis is carried on based on the following
disturbance-free dynamics:

ẽa,ik+1 = (A(θk )− LC(θk ))ẽ
a,i
k + fiGi, (31)

where Gi is the i− th column of the matrix G. For simplicity,
here we only consider the situation fi > 0. The situation
fi < 0 can be handled similarly using an equivalent trans-
formation fiGi = (−fi)(−Gi). Suppose that the dynamics
(31) is stable, based on the results in Theorems 3 and 4,
the mRPI set of the dynamics (31) can be obtained as fiẼai ,
where Ẽai =

∞

⊕
i=0

Ai(Gi) denotes the mRPI set of the dynamics

(31) in the case of fi = 1.

B. HEALTHY AND ACTUATOR-FAULT RESIDUAL SETS
Combining (5) with (31), we can further derive the dynamics
of state-estimation error ea,ik in the single actuator-fault situ-
ation with additive uncertainties (i.e., the unknown inputs wk
and measurement noises ηk ).

ea,ik+1 = (A(θk )− LC(θk ))e
a,i
k + Ewk − LFηk + fiGi,

with ea,ik = ek + ẽa,ik leading to the invariant set
characterization:

Eai = E ⊕ fiẼai , (32)

where E = �∞ denotes the mRPI set of the dynamics (5).
Since the system state vector xk is unknown and we cannot
obtain the specific value of the state estimation error ek ,
we define the following residual vector corresponding to (5)
in healthy situation to implement robust FD:

rk = yk − ŷk = C(θk )ek + Fηk . (33)

The set version of (33) is

R = C(E)⊕ FV, (34)

where C(E) = Conv
{⋃N

i=1 CiE
}
. Similarly, we can get the

residual signal in single actuator-fault situation:

ra,ik = C(θk )e
a,i
k + Fηk

= C(θk )ek + Fηk + C(θk )ẽ
a,i
k

= rk + C(θk )ẽ
a,i
k . (35)

Furthermore, the set version of (35) can be characterized:

Ra
i = R⊕ C(fiẼai ) = R⊕ fiC(Ẽai ). (36)

The monitoring criterion based on invariant sets for FD needs
to real-timely check whether

rk ∈ R (37)
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holds or not. If there is a violation of (37), i.e., rk 6∈ R
after a time instant k − 1 where rk−1 ∈ R, it indicates that
the system (1) is faulty at time instant k . Otherwise, we still
consider that the system (1) operates in the healthy situation.
Once there is an actuator fault occurring in the system (1),
based on the properties of invariant sets, we know that the
residual signal rk will converge towards the actuator-fault
residual set Ra

i . Therefore, as long as the intersection of the
healthy residual setR and the faulty residual setRa

i is empty,
i.e., R ∩Ra

i = ∅, it can be guaranteed that the occurred and
persistent actuator fault will be detected in the steady stage
regardless of the specific value of the scheduling vector θk
varying in the scheduling set 2.

C. COMPUTATION OF MDF FOR ACTUATOR FAULTS
In this section, we propose a method to compute the mag-
nitude of MDF by considering the constraint R ∩ Ra

i = ∅.
Thus, we formulate the following optimization problem:

min
fi>0

fi; s.t.R ∩Ra
i = ∅. (38)

Unfortunately, it is difficult to directly obtain the optimal fi
owing to the complexity of the optimization problem (38).
By exploiting the duality of (38), we can use Theorem 6
next to transform the optimization problem (38) into a simple
LP problem to obtain the minimum of fi. Before introducing
this main result, let us recall a relevant preliminary result in
Lemma 1 taken from [12].
Lemma 1: If two known polytopes P and W are given in

half-space representation, i.e., P = {x ∈ Rn
|Pxx ≤ Pc}

and W = {x ∈ Rn
|W xx ≤ W c

}, their Minkowski sum Q =
P ⊕W can be computed by the following projection:

Q =
{
r ∈ Rn

∣∣∣∣∃ x, s.t. [ Px 0
−W x W x

] [
x
r

]
≤

[
Pc

W c

]}
.

Theorem 6: For the i-th actuator fault in the system (1),
the magnitude of guaranteedMDF can be obtained by solving
the following LP problem:

min
fi>0

−fi

s.t.

{
Hx ≤ b,Hηy ≤ bη, Hx − Hz ≤ b,
Hηy− Hηt ≤ bη, −H̃az− H̃aFt ≤ fib̃a.

(39)

where V = {η ∈ Rnη
∣∣Hηη ≤ bη}, C(E) = {x ∈ Rny |Hx ≤ b}

and C(Ẽai ) = {x ∈ Rny |H̃ax ≤ b̃a}.
Proof: Consider the dual case of (38) and let us formu-

late the following optimization problem using the compact
convex sets R and Ra

i :

max
fi>0

fi; s.t.R ∩Ra
i 6= ∅. (40)

Note that, for any fi larger than the optimizer of (40), the con-
straint in (38) is satisfied and thus the optimizer here rep-
resents an infimum for the optimization (38). Furthermore,
the optimization problem (40) is equivalent to the optimiza-
tion problem

min
fi>0
−fi; s.t.R ∩Ra

i 6= ∅. (41)

Based on (34) and (36), regarding the constraint
R ∩Ra

i 6= ∅, we have

R ∩Ra
i 6= ∅

⇔ 0 ∈ Ra
i ⊕ (−R)

⇔ 0 ∈ R⊕ fiC(Ẽai )⊕ (−R)

⇔ 0∈C(E)⊕(−C(E))⊕F(V⊕(−V))⊕ fiC(Ẽai ). (42)

Since the sets E and Ẽai are the mRPI sets of the dynamics
(5) and (31), respectively, both of them are known polytopes.
Thus, the convex hulls C(E) and C(Ẽai ) are also known. For
the convenience of illustration, we assume C(E) = {x ∈
Rny |Hx ≤ b} and C(Ẽai ) = {x ∈ Rny |H̃ax ≤ b̃a}. Then,
according to Lemma 1, we have

C(E)⊕ (−C(E))

=

{
z ∈ Rny

∣∣∣∣∃ x, s.t. [H 0
H q− H

] [
x
z

]
≤

[
b
b

]}
,

F(V⊕ (−V))

=

{
β ∈ Rny

∣∣∣∣∃y, t, s.t. β = Ft,
[
Hη 0
Hη −Hη

] [
y
t

]
≤

[
bη
bη

]}
.

(43)

Furthermore, let S = C(E) ⊕ (−C(E)) ⊕ F(V ⊕ (−V)) ⊕
fiC(Ẽai ), which can be computed as

S =
{
m ∈ Rny

∣∣∣∣∃x, z, y, t, r, s.t. m = z+β + r, H̃ar ≤ fib̃a[
H 0
H −H

] [
x
z

]
≤

[
b
b

]
, β = Ft,[

Hη 0
Hη −Hη

] [
y
t

]
≤

[
bη
bη

]}
=

{
m ∈ Rny

∣∣∣∣∃x, z, y, t, s.t. [H 0
H −H

] [
x
z

]
≤

[
b
b

]
,

β = Ft,
[
Hη 0
Hη −Hη

] [
y
t

]
≤

[
bη
bη

]
,

H̃a(m− z− β) ≤ fib̃a
}

=

{
m ∈ Rny

∣∣∣∣∃x, z, y, t, s.t. [H 0
H −H

] [
x
z

]
≤

[
b
b

]
,[

Hη 0
Hη −Hη

] [
y
t

]
≤

[
bη
bη

]
,

H̃a(m− z− Ft) ≤ fib̃a
}
. (44)

Since R ∩ Ra
i 6= ∅ ⇔ 0 ∈ S based on (42), by combining

(44), the constraint 0 ∈ S can lead to a series of linear
constraints Hx ≤ b, Hηy ≤ bη, Hx − Hz ≤ b, Hηy − Hηt ≤
bη and −H̃az − H̃aFt ≤ fib̃a. Finally, by minimizing −fi,
we obtain (39). �
Note that, Theorem 6 gives the method to compute the

magnitude of guaranteed MDF no matter how the scheduling
vector θk varies in the scheduling set 2. We can always
guarantee that the occurred fault can be detected by using
the invariant set-based FD method as long as the magni-
tude of occurred fault is larger than that of MDF. However,
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the results obtained from the optimization problem (39) may
be considered conservatively since all the realizations of the
scheduling vector θk are considered. As an alternative, using
the specific value of θk to compute the set C(θk )E at each
time step k instead of computing the off-line convex hull
C(E) in (34), we can obtain a less conservative magnitude of
MDF at the price of a certain computational cost. In this case,
the magnitude of MDF is dependent of the value of θk and we
can further obtain an LP problem explicitly dependent on the
scheduling vector θk in Theorem 7.
Theorem 7: For the i-th actuator fault in the system (1),

given the specific value of the scheduling vector θk , the mag-
nitude of MDF can be obtained by solving the following LP
problem:

min
fi>0
−fi

s.t.


HEα ≤ bE ,Hηy ≤ bη,
HEα − HEξ ≤ bE ,Hηy− Hηt ≤ bη,
Ft = −C(θk )(fi(I − A(θk )+ LC(θk ))−1Gi + ξ ).

Proof: The proof is similar to that of Theorem 6. Con-
sidering the space limit, we omit the detailed proof. �

V. COMPUTATION OF MDF IN SENSOR-FAULT
SITUATION
In this section, we consider computing the MDF of sensor
faults for the system (1) in the sensor-fault situation.

A. DISTURBANCE-FREE DYNAMICS WITH
ADDITIVE SENSOR FAULTS
Here we consider the behavior of state-estimation-error
dynamics (1) with additive sensor faults in the absence of the
unknown inputs wk and the measurement noises ηk . Similar
to the computation of MDF for the actuator faults, we also
consider single sensor-fault situation in order to compute the
magnitude of MDF for each sensor fault gi, where gi is the
i-th component of sensor fault vector gk . Thus, the analysis
is carried on the following disturbance-free dynamics with
additive sensor fault:

ẽs,ik+1 = (A(θk )− LC(θk ))ẽ
s,i
k − giLPi, (45)

where Pi is the i-th column of the matrix P. Similar to the
actuator-fault situation, we only consider the case gi > 0.
Suppose that the dynamics (45) is stable, based on the results
in Theorems 3 and 4, the mRPI set of the dynamics (45) can

be obtained as giẼ si , where Ẽ si =
∞

⊕
i=0

Ai(−LPi) denotes the

mRPI set of the dynamics (45) in the case of gi = 1.

B. SENSOR-FAULT RESIDUAL SET
Combining (5) with (45), we can further derive the dynamics
of state-estimation error es,ik in the single sensor-fault situa-
tion with additive uncertainties (i.e., the unknown input wk
and measurement noise ηk ).

es,ik+1 = (A(θk )− LC(θk ))e
s,i
k + Ewk − LFηk − giLPi, (46)

with es,ik = ek + ẽs,ik leading to the invariant set
characterization:

E si = E ⊕ giẼ si , (47)

Similarly, we can obtain the residual signal in single sensor-
fault situation:

rs,ik = C(θk )e
s,i
k + Fηk + giPi

= C(θk )ek + Fηk + C(θk )ẽ
s,i
k + giPi

= rk + C(θk )ẽ
s,i
k + giPi. (48)

Furthermore, the set version of (48) can be obtained as

Rs
i = R⊕ C(giẼ si )⊕ {giPi}
= R⊕ giC(Ẽ si )⊕ {giPi}. (49)

Furthermore, as long as the intersection of the healthy resid-
ual set R and the sensor-fault residual set Rs

i is empty,
i.e., R ∩ Rs

i = ∅, it can be guaranteed that the occurred
and persistent single fault will be detected in the steady stage
regardless of the specific value of the scheduling vector θk
varying in the scheduling set 2.

C. COMPUTATION OF MDF FOR SENSOR FAULTS
Similar to the actuator-fault situation, we can formulate the
following optimization problem for sensor-fault situation:

min
gi>0
−gi; s.t.R ∩Rs

i 6= ∅. (50)

The following Theorem 8 formulates a simple LP problem to
compute the MDF gi of sensor faults.
Theorem 8: For the i-th sensor fault in the system (1),

the magnitude of MDF gi can be obtained by solving the
following LP problem:

min
gi>0

−gi

s.t.

{
Hx ≤ b,Hηy ≤ bη, Hx − Hz ≤ b,
Hηy− Hηt ≤ bη, −H̃ sz−H̃ sFt≤gi(b̃s+H̃ sPi).

where C(Ẽ si ) = {x ∈ Rny |H̃ sx ≤ b̃s}.
Similarly, if we consider the specific value of θk , an LP

problem explicitly dependent on the scheduling vector θk to
compute the magnitude of DDF gi is given in Theorem 9.
Theorem 9: For the i-th sensor fault in the system (1),

given the specific value of the scheduling vector θk , the mag-
nitude of MDF can be obtained by solving the following LP
problem:

min
gi>0

−gi

s.t.


HEα ≤ bE , Hηy ≤ bη,
HEα − HEξ ≤ bE , Hηy− Hηt ≤ bη,
Ft = C(θk )(gi(I − A(θk )+ LC(θk ))−1LPi − ξ )− giPi.

where Ẽ si = {x ∈ Rnx |HẼai
x ≤ bẼai

}.
Note that, both the proofs of Theorems 8 and 9 are similar

to those of the actuator-fault situation. The detailed proofs are
omitted here.
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VI. APPLICATION TO VEHICLE DYNAMICS MODEL
In this section, we consider the vehicle model taken from [24]
to illustrate the effectiveness of the proposed method. The
dynamics is given by

[
β̇(t)
ṙ(t)

]
=

 −
cαV + cαH
mv(t)

lHcαH − lV cαV
mv2(t)

− 1

lHcαH − lV cαV
Iz

l2v cαV + l
2
HcαH

Izv(t)

[β(t)r(t)

]

+


cαV
mv(t)
lV cαV
Iz

 u(t),
[
a(t)
r(t)

]
=

−CαV + CαHm
lHCαH − lVCαV

mv(t)2
0 1

[β(t)
r(t)

]

+

[
CαV
0

]
u(t),

where β(t) denotes the side slip angle, r(t) the yaw rate, u the
relative steering wheel angle and a(t) the lateral acceleration.
The remaining definitions and values of all the involved
parameters are displayed in Table 1.

TABLE 1. Parameters of vehicle model.

We discretize the primitive continuous-time model with
a sampling period Td = 0.1s by using the first-order
Euler difference method and define two scheduling variables
θk (1) = 1

v and θk (2) =
1
v2
. Then, the nonlinear vehicle model

can be equivalently transformed into a discrete-time LPV
model:[
βk+1
rk+1

]

=

1−Td
CαV+CαH

m
θk (1) Td

lHCαH−lVCαV
m

θk (2)−Td

Td
lHCαH − lVCαV

Iz
1+Td

l2VCαV + l
2
HCαH

Iz
θk (1)


×

[
βk
rk

]
+

Td
CαV
m
θk (1)

Td
lVCαV
Iz

 uk ,
[
ak
rk

]
=

[
−
CαV + CαH

m
lHCαH − lVCαV

mθk (2)
0 1

][
βk
rk

]
+

[
CαV
0

]
uk .

In this example, the speed v(t) varies between 2m/s and 4m/s.
Since v(t) is bounded, θk (1) and θk (2) are also bounded.

FIGURE 1. Vertex reduction.

This implies that a polytope bounding the vector composed
of these two scheduling variables can be obtained and it has
four vertices. Meanwhile, by using the vertices, the vehicle
model can be transformed into a polytopic LPV form. Fur-
thermore, since θk (1) and θk (2) have an explicit mathematical
relationship as shown in Figure 1, i.e., θk (2) = θ2k (1),

The number of the vertices of the obtained LPV model can
be reduced to three, i.e., N = 3 (see [24] for more details).
Thus, the bounding set of the scheduling vector θk is obtained
as

2 = Conv
{[
θ (1)
θ (2)

]
,

[
θ̄ (1)
θ (2)

]
,

[
θ̄ (1)
θ̄ (2)

]}
= Conv

{[
0.25
0.0625

]
,

[
0.5

0.0625

]
,

[
0.5
0.25

]}
.

Furthermore, the bounding sets of unknown inputs wk and
measurement noises ηk are designed as W = {w ∈

R2
|‖w‖∞ ≤ 0.05} and V = {η ∈ R2

|‖η‖∞ ≤ 0.05}, whose
distribution matrices E and F are respectively given by

E =
[
0.6324 0.2785
0.0975 0.5469

]
, F =

[
0.9572 0.8003
0.4854 0.1419

]
.

In this example, we consider two additive actuator faults[
f1 f2

]T and two additive sensor faults
[
g1 g2

]T , whose dis-
tribution matrices are respectively designed as

G =
[
0.8147 0.1270
0.9058 0.9134

]
, P =

[
0.9575 0.1576
0.9649 0.9706

]
.

The gain matrix L of the designed FD observer (3) is given as

L =
[
−0.0178 0.0400
−0.0028 0.6386

]
.

Based on Theorem 1, we can solve the LMIs (7) and obtain
the proper parametric matrices to verify the poly-quadratical
stability of the dynamics (5) using YALMIP [13]:

S1 =
[
9.0061 0.0152
0.0152 9.1924

]
, S2 =

[
7.2147 0.0020
0.0020 6.7395

]
,

S3 =
[
7.2531 0.5289
0.5289 6.6162

]
, M1 =

[
8.6153 0.0036
0.0082 8.8690

]
,

M2 =

[
7.0225 −0.0003
−0.0165 6.6299

]
, M3 =

[
7.0499 0.5015
0.5164 6.4982

]
.
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FIGURE 2. Construction of E0.

FIGURE 3. Computation of initial RPI set Ek∗ .

We first consider the construction of the initial set E0 in the
healthy situation and the related sets are shown in Figure 2.
The green region denotes the set S = EW ⊕ (−LF)V. The
red region denotes the box B(r) = {x ∈ R2

: ‖x‖∞ ≤ 0.1}
containing the set S. Furthermore, we can find that the yellow
region is contained in the blue region, i.e.,Ap∗ (B(r)) ⊆ ξB(r)
with ξ = 0.95 and p∗ = 20. Thus, we can further implement
the construction of E0 using (25) in Theorem 5.
By iterating (11) in Theorem 3, we can compute the initial

RPI set Ek∗ with a number of k∗ = 8 iterations. The whole
iterative procedure computing Ek∗ from the initial set E0 is
displayed in Figure 3.

Then, by using a shrinking process with the initial set Ek∗
based on Theorem 4, we can obtain a sequence of outer-
approximations of the mRPI set E , which are shown in
Figure 4. We can find that these outer-approximations of the
mRPI set E are also positively invariant. After 329 iterations,
the outer-approximations converge to a suitable outer invari-
ant approximation of the mRPI set E with the approximating
precision ε = 0.001.

For the scheduling vector θk varying in the set 2, we con-
sider computing the magnitude ofMDF f1, f2 and g1, g2 based
on Theorems 6 and 8, respectively. The set separation results
between the healthy and faulty residual sets with respect to
MDF f1, f2, g1 and g2 are shown in Figure 5. The corre-
sponding magnitudes of MDF are f1 = 1.1741, f2 = 1.1643,
g1 = 3.7427 and g2 = 3.6915. Thus, for any actuator or
sensor fault, as long as their magnitudes are larger than the
corresponding thresholds, we can guarantee the detection of

FIGURE 4. Shrinking process.

FIGURE 5. The set-separation results between the healthy and faulty
residual sets w.r.t MDF f1, f2, g1 and g2 for any θk ∈ 2.

a persistent fault regardless of the value of the scheduling
vector θk varying in 2.

Since the varying range of the scheduling vector θk can
affect the magnitude of MDF, we can lower the conservatism
of results on themagnitude ofMDF by decreasing the varying
range of the scheduling vector θk . In this example, since the
scheduling vector θk is directly dependent on the vehicle
speed v, we use the variation of v to characterize the vary-
ing range of the scheduling vector θk . The magnitudes of
MDF for the actuator and sensor faults w.r.t different varying
ranges of v are displayed in Table 2. Furthermore, for the
specific value of θk , we can also compute the corresponding
magnitude of MDF for actuator and sensor faults based on
Theorems 7 and 9, respectively.

For the clarity of display and illustration, we show the case
of specific value of θk and results of Table 2 in Figure 6.
We take Figure 6(a) as an example to illustrate the results
on the magnitude of MDF f1 w.r.t different varying ranges
of v. The purple line in Figure 6(a) denotes the magnitudes of
MDF for specific values of speed v, which is plotted by using
an interpolation method to compute a magnitude of MDF
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TABLE 2. The magnitude of MDF for actuator and sensor faults w.r.t
different varying ranges of v .

FIGURE 6. The different magnitudes of MDF f1, f2, g1 and g2 w.r.t
different varying ranges of v .

with a step increment of 0.001m/s from 2m/s to 4m/s. The
four green lines from left to right represent the magnitudes
of MDF f1 when v ∈ [2, 2.5]m/s, v ∈ [2.5, 3]m/s, v ∈
[3, 3.5]m/s and v ∈ [3.5, 4]m/s, respectively. It can be found
that in each small interval (i.e., [2, 2.5]m/s, [2.5, 3]m/s,
[3, 3.5]m/s or [3.5, 4]m/s ), since the speed v has a larger
varying range for the green line, the purple line is always
below the green line, which exactly matches the theoretic
analysis that the conservatism of results on MDF can be
lowered by decreasing the varying range of the scheduling
vector θk . Similarly, the two blue lines from left to right
denote the magnitudes of MDF f1 when v ∈ [2, 3]m/s and
v ∈ [3, 4]m/s, respectively. Since the two small intervals
[2, 2.5]m/s and [2.5, 3]m/s are both contained in the larger
interval [2, 3]m/s, the corresponding green lines and purple
line are all below the blue line, which implies that the result
of MDF f1 for the blue line has a higher conservatism. The
red line corresponds the magnitude of MDF f1 when v ∈
[2, 4]m/s, whose result is the most conservative since all
possible values of speed v are considered. It can be found
that all other blue lines, green lines and purple line are below
the red line. For the remaining Figures 6(b), 6(c) and 6(d),
we can conduct the similar analysis and obtain the similar
results. Based on the above analysis, it can be found that if
we know more information (i.e., the punctual value) on the

FIGURE 7. The results of FD for the MDF f1, f2, g1 and g2 when
v ∈ [2,4]m/s.

scheduling vector θk , we can decrease the conservatism of
the magnitude of MDF as expected.

Furthermore, the results of FD on the MDF f1, f2, g1 and
g2 when v ∈ [2, 4]m/s are shown in Figure 7. We take
Figure 7(a) as an example to illustrate the results of FD for the
MDF f1 = 1.1741 when v ∈ [2, 4]m/s. For the convenience
of display, we consider drawing the interval hull (the two
blue lines) of the healthy residual set R and only the second
components of R and rk are shown in the plot. We consider
the following fault scenario: from k = 0 to k = 30, the system
operates in the health situation. From k = 31 to k = 100,
we inject a fault f1 into the system. Then, the results of on-
line FD are shown in Figure 7(a). We can find that from
k = 31 to k = 32, the residual rk is contained in the healthy
residual set R and the detection cannot be triggered due to
the transitory. From k = 33 to k = 100, the residual rk is
no longer contained inR and the fault f1 is detected by using
our proposed method. Furthermore, similar analysis can be
conducted in Figures 7(b), 7(c) and 7(d) for the results of FD
on the remaining faults f2, g1 and g2.

VII. CONCLUSION
This paper characterizes theMDF for perturbed discrete-time
LPV systems affected by additive faults using the invariant set
theory. Themain contribution is threefold. First, we propose a
novel two-stage set computation method for state estimation
error dynamics with LPV form, which does not need to satisfy
the sufficient condition that there must exists a common
quadratic Lyapunov function for all the vertex matrices of
the dynamics. Furthermore, we can obtain the healthy and
faulty residual sets based on such approximations of the
mRPI set. Second, by considering the duality of guaranteed
MDF problem, we transform the complex set-separation con-
straint into a simple and tractable LP problem to compute
the magnitude of MDF. Third, the conservatism of results
on the magnitude of MDF can be decreased if more infor-
mation (i.e., the punctual values or smaller varying ranges)
on the scheduling vector θk can be obtained. In the future,
we aim to extend these results to the active fault diagnosis and
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fault-tolerant control fields, with applications in areas such as
robotics, biotechnology, process automation.
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